1
|
Barash I. Mammalian Species-Specific Resistance to Mammary Cancer. J Mammary Gland Biol Neoplasia 2025; 30:3. [PMID: 40048007 PMCID: PMC11885404 DOI: 10.1007/s10911-025-09578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
Tumorigenesis in mammals is driven by inherited genetic variants, environmental factors and random errors during normal DNA replication that lead to cancer-causing mutations. These factors initiate uncontrolled cellular proliferation and disrupt the regulation of critical checkpoints. A few mammalian species possess unique protective mechanisms that enable them to resist widespread cancer development and achieve longevity. Tissue-specific tumor protection adds another layer of complexity to this diversity. Breast cancer is a leading cause of human mortality, particularly among females. Driven by the need for new strategies in treatment and prevention, this opinion article explores and supports the idea that herbivores are more resistant to mammary cancer than carnivores and omnivores. This diversity has occurred despite the remarkably similar basic mammary biology. Herbivores' meatless diet cannot explain the differences in cancer resistance, which have accompanied species segregation since the Jurassic era. To investigate the causes of this diversity, the characteristics of tumorigenesis in the human breast-and to a lesser extent in other carnivores-have been compared with data from retrospective analyses of bovine mammary tumor development across various locations over the past century. Well-established genomic, cellular, and systemic triggers of breast cancer exhibit different, or less pronounced tissue-specific activity in the bovine mammary gland, accompanied by novel bovine-specific protective mechanisms. Together, these factors contribute to the near absence of breast cancer in bovines and offer a basis for developing future anticancer strategies.
Collapse
Affiliation(s)
- Itamar Barash
- Institute of Animal Science, ARO, The Volcani Center, Bet Dagan, Israel.
| |
Collapse
|
2
|
Liang J, Cheng S, Song Q, Tang Y, Wang Q, Chen H, Feng J, Yang L, Li S, Wang Z, Fan J, Huang C. Effect of Mesenchymal Stem Cell-Derived Extracellular Vesicles Induced by Advanced Glycation End Products on Energy Metabolism in Vascular Endothelial Cells. Kidney Int Rep 2025; 10:227-246. [PMID: 39810759 PMCID: PMC11725971 DOI: 10.1016/j.ekir.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Advanced glycation end products (AGEs) play a critical role in the development of vascular diseases in diabetes. Although stem cell therapies often involve exposure to AGEs, the impact of this environment on extracellular vesicles (EVs) and endothelial cell metabolism remains unclear. Methods Human umbilical cord mesenchymal stem cells (MSCs) were treated with either 0 ng/ml or 100 ng/ml AGEs in a serum-free medium for 48 hours, after which MSC-EVs were isolated. The EVs were characterized by morphology, particle size, and protein markers of MSC-EVs, and microRNA (miRNA) sequencing was performed to identify differentially expressed miRNAs. MSC-EVs were cocultured with human umbilical vein endothelial cells (HUVECs) to assess effects on cell viability, metabolic activity, oxidative stress, and antioxidant capacity. Tube formation and glucose transporter protein analyses were conducted to evaluate the angiogenic ability and glucose metabolism capacity. Results MSC-EVs ranged from 30 to 150 nm, which is consistent with exosomal properties. AGEs treatment reduced MSC viability but had minimal effect on EV morphology and protein markers. miRNA sequencing showed downregulation of hsa-miR-223-3p and hsa-miR-126-3p_R-1, with upregulation of hsa-miR-574-5p, implicating changes in glycolytic and oxidative phosphorylation pathways. MSC-EVs treated with AGEs decreased HUVEC viability (P < 0.05), pH (P < 0.05), adenosine triphosphate (ATP) metabolism (P < 0.05), glucose metabolism (P < 0.05), while enhancing glycolysis processes, including glycolytic activity, capacity, and reserve (P < 0.05). This likely resulted from impaired mitochondrial function, including reduced ATP production, maximal respiration, basal respiration, and spare respiratory capacity (P < 0.05), or increased reactive oxygen species (ROS) (P < 0.05) and glucose-6-phosphate dehydrogenase (G6PD) activity (P < 0.05). In addition, AGEs reduced glucose transporter types 1, 3, and 4 (GLUT1, GLUT3, GLUT4), and synthesis of cytochrome c oxidase 2 expression (P < 0.05), along with angiogenic capacity (P < 0.05) in HUVECs. Conclusion Exposure to AGEs diminishes the therapeutic potential of MSC-derived EVs by disrupting energy metabolism and promoting metabolic reprogramming in endothelial cells. These findings suggest that adjusting the dosage or frequency of MSC-EVs may enhance their efficacy for treating diabetes-related vascular conditions. Further research is warranted to evaluate AGEs' broader impact on various cell types and metabolic pathways for improved exosome-based therapies.
Collapse
Affiliation(s)
- Jiabin Liang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sihang Cheng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Qide Song
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yukuan Tang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Wang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hanwei Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Panyu Health Management Center, Guangzhou, China
| | - Jie Feng
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Yang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shunli Li
- Panyu Health Management Center, Guangzhou, China
| | - Zhiwei Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinghui Fan
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chen Huang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Yu J, Mao Z, Zhou Z, Yuan B, Wang X. Microbiome dysbiosis occurred in hypertrophic scars is dominated by S. aureus colonization. Front Immunol 2023; 14:1227024. [PMID: 37701435 PMCID: PMC10494536 DOI: 10.3389/fimmu.2023.1227024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/01/2023] [Indexed: 09/14/2023] Open
Abstract
Background The mechanisms of hypertrophic scar formation and its tissue inflammation remain unknown. Methods We collected 33 hypertrophic scar (HS) and 36 normal skin (NS) tissues, and detected the tissue inflammation and bacteria using HE staining, Gram staining, and transmission electronic microscopy (TEM), in situ hybridization and immunohistochemistry for MCP-1, TNF-α, IL-6 and IL-8. In addition, the samples were assayed by 16S rRNA sequencing to investigate the microbiota diversity in HS, and the correlation between the microbiota and the indices of Vancouver Scar Scale(VSS)score. Results HE staining showed that a dramatically increased number of inflammatory cells accumulated in HS compared with NS, and an enhanced number of bacteria colonies was found in HS by Gram staining, even individual bacteria could be clearly observed by TEM. In situ hybridization demonstrated that the bacteria and inflammation cells co-localized in the HS tissues, and immunohistochemistry indicated the expression of MCP-1, TNF-α, IL-6, and IL-8 were significantly upregulated in HS than that in NS. In addition, there was a significantly different microbiota composition between HS and NS. At the phylum level, Firmicutes was significantly higher in HS than NS. At the genus level, S. aureus was the dominant species, which was significantly higher in HS than NS, and was strongly correlated with VSS indices. Conclusion Microbiome dysbiosis, dominated by S. aureus, occurred in HS formation, which is correlated with chronic inflammation and scar formation, targeting the microbiome dysbiosis is perhaps a supplementary way for future scar management.
Collapse
Affiliation(s)
- Jiarong Yu
- The Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhigang Mao
- The Department of Plastic Surgery, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zengding Zhou
- The Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bo Yuan
- The Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiqiao Wang
- The Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Taguchi K, Fukami K. RAGE signaling regulates the progression of diabetic complications. Front Pharmacol 2023; 14:1128872. [PMID: 37007029 PMCID: PMC10060566 DOI: 10.3389/fphar.2023.1128872] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes, the ninth leading cause of death globally, is expected to affect 642 million people by 2040. With the advancement of an aging society, the number of patients with diabetes having multiple underlying diseases, such as hypertension, obesity, and chronic inflammation, is increasing. Thus, the concept of diabetic kidney disease (DKD) has been accepted worldwide, and comprehensive treatment of patients with diabetes is required. Receptor for advanced glycation endproducts (RAGE), a multiligand receptor, belonging to the immunoglobulin superfamily is extensively expressed throughout the body. Various types of ligands, including advanced glycation endproducts (AGEs), high mobility group box 1, S100/calgranulins, and nucleic acids, bind to RAGE, and then induces signal transduction to amplify the inflammatory response and promote migration, invasion, and proliferation of cells. Furthermore, the expression level of RAGE is upregulated in patients with diabetes, hypertension, obesity, and chronic inflammation, suggesting that activation of RAGE is a common denominator in the context of DKD. Considering that ligand–and RAGE–targeting compounds have been developed, RAGE and its ligands can be potent therapeutic targets for inhibiting the progression of DKD and its complications. Here, we aimed to review recent literature on various signaling pathways mediated by RAGE in the pathogenesis of diabetic complications. Our findings highlight the possibility of using RAGE–or ligand–targeted therapy for treating DKD and its complications.
Collapse
|
5
|
Jeon J, Han EY, Jung I. MOPA: An integrative multi-omics pathway analysis method for measuring omics activity. PLoS One 2023; 18:e0278272. [PMID: 36928437 PMCID: PMC10019735 DOI: 10.1371/journal.pone.0278272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/13/2022] [Indexed: 03/18/2023] Open
Abstract
Pathways are composed of proteins forming a network to represent specific biological mechanisms and are often used to measure enrichment scores based on a list of genes in means to measure their biological activity. The pathway analysis is a de facto standard downstream analysis procedure in most genomic and transcriptomic studies. Here, we present MOPA (Multi-Omics Pathway Analysis), which is a multi-omics integrative method that scores individual pathways in a sample wise manner in terms of enriched multi-omics regulatory activity, which we refer to mES (multi-omics Enrichment Score). The mES score reflects the strength of regulatory relations between multi-omics in units of pathways. In addition, MOPA is able to measure how much each omics contribute to mES that may be used to observe what kind of omics are active in a pathway within a sample group (e.g., subtype, gender), which we refer to OCR (Omics Contribution Rate). Using nine different cancer types, 93 clinical features and three types of omics (i.e., gene expression, miRNA and methylation), MOPA was used to search for clinical features that were explainable in context of multi-omics. By evaluating the performance of MOPA, we showed that it yielded higher or at least equal performance compared to previous single and multi-omics pathway analysis tools. We find that the advantage of MOPA is the ability to explain pathways in terms of omics relation using mES and OCR. As one of the results, the TGF-beta signaling pathway was captured as an important pathway that showed distinct mES and OCR values specific to the CMS4 subtype in colon adenocarcinoma. The mES and OCR metrics suggested that the mRNA and miRNA expressions were significantly different from the other subtypes, which was concordant with previous studies. The MOPA software is available at https://github.com/jaeminjj/MOPA.
Collapse
Affiliation(s)
- Jaemin Jeon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Gwanak-Gu, Seoul, Republic of Korea
| | - Eon Yong Han
- School of Computer Science and Engineering, Kyungpook National University, Buk-gu, Deagu, Republic of Korea
| | - Inuk Jung
- School of Computer Science and Engineering, Kyungpook National University, Buk-gu, Deagu, Republic of Korea
- * E-mail:
| |
Collapse
|
6
|
Rainard P, Gilbert FB, Germon P. Immune defenses of the mammary gland epithelium of dairy ruminants. Front Immunol 2022; 13:1031785. [PMID: 36341445 PMCID: PMC9634088 DOI: 10.3389/fimmu.2022.1031785] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The epithelium of the mammary gland (MG) fulfills three major functions: nutrition of progeny, transfer of immunity from mother to newborn, and its own defense against infection. The defense function of the epithelium requires the cooperation of mammary epithelial cells (MECs) with intraepithelial leucocytes, macrophages, DCs, and resident lymphocytes. The MG is characterized by the secretion of a large amount of a nutrient liquid in which certain bacteria can proliferate and reach a considerable bacterial load, which has conditioned how the udder reacts against bacterial invasions. This review presents how the mammary epithelium perceives bacteria, and how it responds to the main bacterial genera associated with mastitis. MECs are able to detect the presence of actively multiplying bacteria in the lumen of the gland: they express pattern recognition receptors (PRRs) that recognize microbe-associated molecular patterns (MAMPs) released by the growing bacteria. Interactions with intraepithelial leucocytes fine-tune MECs responses. Following the onset of inflammation, new interactions are established with lymphocytes and neutrophils recruited from the blood. The mammary epithelium also identifies and responds to antigens, which supposes an antigen-presenting capacity. Its responses can be manipulated with drugs, plant extracts, probiotics, and immune modifiers, in order to increase its defense capacities or reduce the damage related to inflammation. Numerous studies have established that the mammary epithelium is a genuine effector of both innate and adaptive immunity. However, knowledge gaps remain and newly available tools offer the prospect of exciting research to unravel and exploit the multiple capacities of this particular epithelium.
Collapse
|
7
|
Dialkyl Carbamoyl Chloride-Coated Dressing Prevents Macrophage and Fibroblast Stimulation via Control of Bacterial Growth: An In Vitro Assay. Microorganisms 2022; 10:microorganisms10091825. [PMID: 36144427 PMCID: PMC9502631 DOI: 10.3390/microorganisms10091825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/27/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
In this work, we evaluated the direct effect of a dialkyl carbamoyl chloride (DACC)-coated dressing on Staphylococcus aureus adhesion and growth in vitro, as well as the indirect effect of the dressing on fibroblast and macrophage activity. S. aureus cultures were treated with the dressing or gauze in Müller-Hinton medium or serum-supplemented Dulbecco’s modified Eagle medium. Bacterial growth and attachment were assessed through colony-forming units (CFU) and residual biomass analyses. Fibroblast and macrophage co-cultures were stimulated with filtered supernatants from the bacterial cultures treated with the DACC-coated dressing, following which tumor necrosis factor (TNF)-α/transforming growth factor (TGF)-β1 expression and gelatinolytic activity were assessed by enzyme-linked immunosorbent assays (ELISA) and zymography, respectively. The DACC-coated dressing bound 1.8−6.1% of all of the bacteria in the culture. Dressing-treated cultures presented biofilm formation in the dressing (enabling mechanical removal), with limited formation outside of it (p < 0.001). Filtered supernatants of bacterial cultures treated with the DACC-coated dressing did not over-stimulate TNF-α or TGF-β1 expression (p < 0.001) or increase gelatinolytic activity in eukaryotic cells, suggesting that bacterial cell integrity was maintained. Based on the above data, wound caregivers should consider the use of hydrophobic dressings as a first option for the management of acute or chronic wounds.
Collapse
|
8
|
N6-Methyladenosine Modification Profile in Bovine Mammary Epithelial Cells Treated with Heat-Inactivated Staphylococcus aureus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1704172. [PMID: 35251466 PMCID: PMC8890870 DOI: 10.1155/2022/1704172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/04/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022]
Abstract
The symptoms of mastitis caused by Staphylococcus aureus (S. aureus) in dairy cows are not obvious and difficult to identify, resulting in major economic losses. N6-Methyladenosine (m6A) modification has been reported to be closely associated with the occurrence of many diseases. However, only a few reports have described the role of m6A modification in S. aureus-induced mastitis. In this study, after 24 h of treatment with inactivated S. aureus, MAC-T cells (an immortalized bovine mammary epithelial cell line) showed increased expression levels of the inflammatory factors IL-1β, IL-6, TNF-α, and reactive oxygen species. We found that the mRNA levels of METLL3, METLL14, WTAP, and ALKBH5 were also upregulated. Methylated RNA immunoprecipitation sequencing analysis revealed that 133 genes were m6A hypermethylated, and 711 genes were m6A hypomethylated. Biological functional analysis revealed that the differential m6A methylated genes were mainly related to oxidative stress, lipid metabolism, inflammatory response, and so on. In the present study, we also identified 62 genes with significant changes in m6A modification and mRNA expression levels. These findings elucidated the m6A modification spectrum induced by S. aureus in MAC-T cells and provide the basis for subsequent m6A research on mastitis.
Collapse
|
9
|
Progress towards the Elusive Mastitis Vaccines. Vaccines (Basel) 2022; 10:vaccines10020296. [PMID: 35214754 PMCID: PMC8876843 DOI: 10.3390/vaccines10020296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 01/25/2023] Open
Abstract
Mastitis is a major problem in dairy farming. Vaccine prevention of mammary bacterial infections is of particular interest in helping to deal with this issue, all the more so as antibacterial drug inputs in dairy farms must be reduced. Unfortunately, the effectiveness of current vaccines is not satisfactory. In this review, we examine the possible reasons for the current shortcomings of mastitis vaccines. Some reasons stem from the peculiarities of the mammary gland immunobiology, others from the pathogens adapted to the mammary gland niche. Infection does not induce sterilizing protection, and recurrence is common. Efficacious vaccines will have to elicit immune mechanisms different from and more effective than those induced by infection. We propose focusing our research on a few points pertaining to either the current immune knowledge or vaccinology approaches to get out of the current deadlock. A possible solution is to focus on the contribution of cell-mediated immunity to udder protection based on the interactions of T cells with the mammary epithelium. On the vaccinology side, studies on the orientation of the immune response by adjuvants, the route of vaccine administration and the delivery systems are among the keys to success.
Collapse
|
10
|
Peng R, Sun Y, Zhou X, Liu S, Han Q, Cheng L, Peng X. Treponema denticola Promotes OSCC Development via the TGF-β Signaling Pathway. J Dent Res 2022; 101:704-713. [PMID: 35045750 DOI: 10.1177/00220345211067401] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Numerous studies have demonstrated an association between periodontitis and oral squamous cell carcinoma (OSCC), and periodontal pathogens such as Treponema denticola are implicated in the pathogenesis of OSCC. Previous studies have mainly focused on T. denticola surface proteins—for example, chymotrypsin-like proteinase, which was detected in the majority of orodigestive tumor tissues. T. denticola may influence the development of OSCC. Nevertheless, the potential direct regulatory mechanism of T. denticola in OSCC is still unclear. Therefore, this study aimed to explore the direct effect of T. denticola on OSCC cell proliferation and elucidate potential mechanisms of T. denticola in contributing to cell proliferation. A series of in vitro experiments (e.g., CCK-8, EdU, flow cytometry) were performed to explore the effect of T. denticola on cell proliferation, cell cycle, and apoptosis. Mice experiments were performed to explore the effect of T. denticola on tumor growth. Whole mRNA transcriptome sequencing and quantitative real-time polymerase chain reaction were performed to explore the intracellular signaling pathway. Our study found that T. denticola could invade Cal-27 cells and directly promote cell proliferation, regulate the cell cycle, and inhibit apoptosis. T. denticola could also promote the growth of OSCC tumors in mice, and it upregulated Ki67 expression. Regarding the mechanism, T. denticola could promote the development of OSCC by activating the TGF-β pathway. In conclusion, T. denticola could promote OSCC cell proliferation directly, and the mechanism was associated with intracellular TGF-β pathway activation.
Collapse
Affiliation(s)
- R.T. Peng
- Department of Endodontics, West China Hospital of Stomatology & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Y. Sun
- Department of Endodontics, West China Hospital of Stomatology & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - X.D. Zhou
- Department of Endodontics, West China Hospital of Stomatology & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - S.Y. Liu
- Department of Endodontics, West China Hospital of Stomatology & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Q. Han
- Department of Oral Pathology, West China Hospital of Stomatology & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - L. Cheng
- Department of Endodontics, West China Hospital of Stomatology & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - X. Peng
- West China Hospital of Stomatology & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Barua N, Huang L, Li C, Yang Y, Luo M, Wei WI, Wong KT, Lo NWS, Kwok KO, Ip M. Comparative Study of Two-Dimensional (2D) vs. Three-Dimensional (3D) Organotypic Kertatinocyte-Fibroblast Skin Models for Staphylococcus aureus (MRSA) Infection. Int J Mol Sci 2021; 23:ijms23010299. [PMID: 35008727 PMCID: PMC8745520 DOI: 10.3390/ijms23010299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 01/03/2023] Open
Abstract
The invasion of skin tissue by Staphylococcus aureus is mediated by mechanisms that involve sequential breaching of the different stratified layers of the epidermis. Induction of cell death in keratinocytes is a measure of virulence and plays a crucial role in the infection progression. We established a 3D-organotypic keratinocyte-fibroblast co-culture model to evaluate whether a 3D-skin model is more effective in elucidating the differences in the induction of cell death by Methicillin-resistant Staphylococcus aureus (MRSA) than in comparison to 2D-HaCaT monolayers. We investigated the difference in adhesion, internalization, and the apoptotic index in HaCaT monolayers and our 3D-skin model using six strains of MRSA representing different clonal types, namely, ST8, ST30, ST59, ST22, ST45 and ST239. All the six strains exhibited internalization in HaCaT cells. Due to cell detachment, the invasion study was limited up to two and a half hours. TUNEL assay showed no significant difference in the cell death induced by the six MRSA strains in the HaCaT cells. Our 3D-skin model provided a better insight into the interactions between the MRSA strains and the human skin during the infection establishment as we could study the infection of MRSA in our skin model up to 48 h. Immunohistochemical staining together with TUNEL assay in the 3D-skin model showed co-localization of the bacteria with the apoptotic cells demonstrating the induction of apoptosis by the bacteria and revealed the variation in bacterial transmigration among the MRSA strains. The strain representing ST59 showed maximum internalization in HaCaT cells and the maximum cell death as measured by Apoptotic index in the 3D-skin model. Our results show that 3D-skin model might be more likely to imitate the physiological response of skin to MRSA infection than 2D-HaCaT monolayer keratinocyte cultures and will enhance our understanding of the difference in pathogenesis among different MRSA strains.
Collapse
Affiliation(s)
- Nilakshi Barua
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
| | - Lin Huang
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Carmen Li
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
| | - Ying Yang
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
| | - Mingjing Luo
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wan In Wei
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.I.W.); (K.O.K.)
| | - Kam Tak Wong
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
| | - Norman Wai Sing Lo
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
| | - Kin On Kwok
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.I.W.); (K.O.K.)
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
- Correspondence: ; Tel.: +852-35051265
| |
Collapse
|
12
|
Raheem A, Liang L, Zhang G, Cui S. Modulatory Effects of Probiotics During Pathogenic Infections With Emphasis on Immune Regulation. Front Immunol 2021; 12:616713. [PMID: 33897683 PMCID: PMC8060567 DOI: 10.3389/fimmu.2021.616713] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
In order to inhibit pathogenic complications and to enhance animal and poultry growth, antibiotics have been extensively used for many years. Antibiotics applications not only affect target pathogens but also intestinal beneficially microbes, inducing long-lasting changes in intestinal microbiota associated with diseases. The application of antibiotics also has many other side effects like, intestinal barrier dysfunction, antibiotics residues in foodstuffs, nephropathy, allergy, bone marrow toxicity, mutagenicity, reproductive disorders, hepatotoxicity carcinogenicity, and antibiotic-resistant bacteria, which greatly compromise the efficacy of antibiotics. Thus, the development of new antibiotics is necessary, while the search for antibiotic alternatives continues. Probiotics are considered the ideal antibiotic substitute; in recent years, probiotic research concerning their application during pathogenic infections in humans, aquaculture, poultry, and livestock industry, with emphasis on modulating the immune system of the host, has been attracting considerable interest. Hence, the adverse effects of antibiotics and remedial effects of probiotics during infectious diseases have become central points of focus among researchers. Probiotics are live microorganisms, and when given in adequate quantities, confer good health effects to the host through different mechanisms. Among them, the regulation of host immune response during pathogenic infections is one of the most important mechanisms. A number of studies have investigated different aspects of probiotics. In this review, we mainly summarize recent discoveries and discuss two important aspects: (1) the application of probiotics during pathogenic infections; and (2) their modulatory effects on the immune response of the host during infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Abdul Raheem
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Lin Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
13
|
Angulo M, Reyes-Becerril M, Angulo C. Yarrowia lipolytica N6-glucan protects goat leukocytes against Escherichia coli by enhancing phagocytosis and immune signaling pathway genes. Microb Pathog 2021; 150:104735. [PMID: 33453314 DOI: 10.1016/j.micpath.2021.104735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/06/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Immunostimulant and protective effects of Yarrowia lipolytica glucans against important pathogens, such as Escherichia coli, have not been investigated in goats and other ruminants. This study aimed to characterize Y. lipolytica N6-glucan (Yl-glucan) and its possible role in immunological signaling pathway activation and immunoprotection against E. coli in goat leukocytes. Characterization analyses showed that Y. lipolytica content had a mix of β and α-D-glucans, molecular weight of 3301.53 kDa and low solubility after the heat treatment. The stimulation of goat leukocytes with Yl-glucan induced protection against E. coli challenge. Remarkably, Yl-glucan and E. coli interaction increased gene expression of dectin-1 and TLR-2 receptors, signaling pathway Syk/NFκB, and cytokines, such as TNF-α and IL-10. As a consequence of signaling activation, phagocytosis, and nitric oxide production enhanced killing of pathogens. Altogether, Y. lipolytica-glucan demonstrated to possess an immunoprotective potential against E. coli through innate immune response modulation in goat leukocytes.
Collapse
Affiliation(s)
- Miriam Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas Del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas Del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas Del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico.
| |
Collapse
|
14
|
Armentrout EI, Liu GY, Martins GA. T Cell Immunity and the Quest for Protective Vaccines against Staphylococcus aureus Infection. Microorganisms 2020; 8:microorganisms8121936. [PMID: 33291260 PMCID: PMC7762175 DOI: 10.3390/microorganisms8121936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a wide-spread human pathogen, and one of the top causative agents of nosocomial infections. The prevalence of antibiotic-resistant S. aureus strains, which are associated with higher mortality and morbidity rates than antibiotic-susceptible strains, is increasing around the world. Vaccination would be an effective preventive measure against S. aureus infection, but to date, every vaccine developed has failed in clinical trials, despite inducing robust antibody responses. These results suggest that induction of humoral immunity does not suffice to confer protection against the infection. Evidence from studies in murine models and in patients with immune defects support a role of T cell-mediated immunity in protective responses against S. aureus. Here, we review the current understanding of the mechanisms underlying adaptive immunity to S. aureus infections and discuss these findings in light of the recent S. aureus vaccine trial failures. We make the case for the need to develop anti-S. aureus vaccines that can specifically elicit robust and durable protective memory T cell subsets.
Collapse
Affiliation(s)
- Erin I. Armentrout
- Lung Institute, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA;
- Division of Pulmonary and Critical Care Medicine, CSMC, Los Angeles, CA 90048, USA
| | - George Y. Liu
- Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92161, USA;
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gislâine A. Martins
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute (IBIRI), CSMC, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Research Division of Immunology, CSMC, Los Angeles, CA 90048, USA
- Department of Medicine, Division of Gastroenterology, CSMC, Los Angeles, CA 90048, USA
- Correspondence:
| |
Collapse
|
15
|
Li Q, Du X, Wang L, Shi K, Li Q. TGF-β1 controls porcine granulosa cell states: A miRNA-mRNA network view. Theriogenology 2020; 160:50-60. [PMID: 33181481 DOI: 10.1016/j.theriogenology.2020.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
TGF-β1, an important multi-functional cytokine of the TGF-β signaling pathway, has been reported to be crucial for ovarian granulosa cell (GC) states and female fertility. However, the molecular mechanism underlying TGF-β1 regulation of GC states remains largely unknown. Here, we provide a comprehensive transcriptomic view on TGF-β1 regulation of cell states in porcine GCs. We first confirmed that TGF-β1 can control GC states (apoptosis and proliferation) in pig ovary. RNA-seq showed that 909 differentially expressed genes (DEGs), including 890 DEmRNAs and 19 DEmiRNAs, were identified in TGF-β1-treated porcine GCs. Functional annotation showed that these DEGs were mainly involved in regulating cell states. In addition, multiple hub genes were identified by constructing the protein-protein interaction network, DEmiRNA-DEmRNAs regulatory network, and gene-pathway-function co-expression networks, which were further found to be enriched in FoxO, TGF-β, Wnt, PIK3-Akt, p53 and Ras signaling pathways that play important roles in regulating cell states, cell cycle, proliferation, stress-responses and inflammation. The current research deeply reveals the effects of TGF-β1 on porcine GCs, and also identifies potential therapeutic RNA molecules for inhibiting and rescuing female infertility.
Collapse
Affiliation(s)
- Qiqi Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingfang Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kerong Shi
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
16
|
Bi Y, Ding Y, Wu J, Miao Z, Wang J, Wang F. Staphylococcus aureus induces mammary gland fibrosis through activating the TLR/NF-κB and TLR/AP-1 signaling pathways in mice. Microb Pathog 2020; 148:104427. [PMID: 32783982 DOI: 10.1016/j.micpath.2020.104427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
To investigate the TLR-NF-κB/AP-1 pathways in S. aureus infection-induced mammary gland fibrosis, mice were infected with S. aureus isolated from the mammary glands of cows with mastitis. Lactating mice were divided into three groups: control group (CON); PBS control group (PBS) and the S. aureus-treated group (S. aureus). Pathological observations revealed that neutrophil infiltration into mammary gland tissue was obviously induced by S. aureus at the early stage of infection (1-7 d). With persistent S. aureus infection, mammary gland fibrosis developed and was characterized by infiltration and proliferation of macrophage, lymphocyte and fibroblast and ECM hyperplasia (7-21 d). Immunohistochemistry staining showed upregulation of fibrosis associated cytokines viz bFGF and PDGF-BB. Real-time qPCR and Western blot analysis revealed that transcription and translation of TLR2, TLR4, bFGF, PDGF-BB, α-SMA and COL Ⅰ α1 was significantly upregulated by S. aureus. NF-κB p65 and AP-I c-jun were translocated into the nucleus after S. aureus infection. There was no remarkable difference between the CON and PBS groups. The datas indicate that mammary gland fibrosis in mice is induced by S. aureus, which promotes cytokine release and the expression of ECM though activating the TLR/NF-κB p65 and TLR/AP-1 c-jun signaling pathways.
Collapse
Affiliation(s)
- Yannan Bi
- Department of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Zhaowuda Road 306, 010018, Hohhot, Inner Mongolia, People's Republic of China; School of Basic Medical Science and Forensic Medicine, Baotou Medical College, Jianshe Road 31, 014040, Baotou, Inner Mongolia, People's Republic of China
| | - Yulin Ding
- Department of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Zhaowuda Road 306, 010018, Hohhot, Inner Mongolia, People's Republic of China
| | - Jianmei Wu
- The Inner Mongolia Autonomous Region Comprehensive Center for Disease Control and Prevention, Erdos Street 50, 010031, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zengqiang Miao
- Department of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Zhaowuda Road 306, 010018, Hohhot, Inner Mongolia, People's Republic of China
| | - Jinling Wang
- Department of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Zhaowuda Road 306, 010018, Hohhot, Inner Mongolia, People's Republic of China
| | - Fenglong Wang
- Department of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Zhaowuda Road 306, 010018, Hohhot, Inner Mongolia, People's Republic of China.
| |
Collapse
|
17
|
Liu D, Hu Y, Wang J, Ye C, Du J. WITHDRAWN: Bisphenol S triggers the malignancy of hemangioma cells via regulation of basic fibroblast growth factor. Chem Biol Interact 2020; 315:108866. [PMID: 31669319 DOI: 10.1016/j.cbi.2019.108866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Dahai Liu
- Lymph and Vascular Surgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Yubo Hu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Junrong Wang
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Cong Ye
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.
| | - Jianshi Du
- Lymph and Vascular Surgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.
| |
Collapse
|
18
|
Kariyawasam HH, Gane SB. Allergen-induced asthma, chronic rhinosinusitis and transforming growth factor-β superfamily signaling: mechanisms and functional consequences. Expert Rev Clin Immunol 2019; 15:1155-1170. [PMID: 31549888 DOI: 10.1080/1744666x.2020.1672538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Often co-associated, asthma and chronic rhinosinusitis (CRS) are complex heterogeneous disease syndromes. Severity in both is related to tissue inflammation and abnormal repair (termed remodeling). Understanding signaling factors that can modulate, integrate the activation, and regulation of such key processes together is increasingly important. The transforming growth factor (TGF)-β superfamily of ligands comprise a versatile system of immunomodulatory molecules that are gaining recognition as having an essential function in the immunopathogenesis of asthma. Early data suggest an important role in CRS as well. Abnormal or dysregulated signaling may contribute to disease pathogenesis and severity.Areas covered: The essential biology of this complex family of growth factors in relation to the excess inflammation and remodeling that occurs in allergic asthma and CRS is reviewed. The need to understand the integration of signaling pathways together is highlighted. Studies in human airway tissue are evaluated and only selected key animal models relevant to human disease discussed given the highly context-dependent signaling and function of these ligands.Expert opinion: Abnormal or dysregulated TGF-β superfamily signaling may be central to the excess inflammation and tissue remodeling in asthma, and possibly CRS. Therefore, the TGF-β superfamily signaling pathways represent an emerging and attractive therapeutic target.
Collapse
Affiliation(s)
- Harsha H Kariyawasam
- Department of Adult Specialist Allergy and Clinical Immunology, Royal National ENT Hospital, University College London Hospitals NHS Foundation Trust, London, UK.,Department of Rhinology, Royal National ENT Hospital, University College London Hospitals NHS Foundation Trust, London, UK.,University College London, London, UK
| | - Simon B Gane
- Department of Rhinology, Royal National ENT Hospital, University College London Hospitals NHS Foundation Trust, London, UK.,University College London, London, UK
| |
Collapse
|
19
|
Shahbazi R, Salouti M, Amini B, Jalilvand A, Naderlou E, Amini A, Shams A. Highly selective and sensitive detection of Staphylococcus aureus with gold nanoparticle-based core-shell nano biosensor. Mol Cell Probes 2018; 41:8-13. [PMID: 30053513 DOI: 10.1016/j.mcp.2018.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 01/26/2023]
Abstract
Staphylococcus aureus is a gram-positive and opportunistic pathogen that is one of the most common causes of nosocomial infections; therefore, its rapid diagnosis is important and valuable. Today, the use of nanoparticles is expanding due to their unique properties. The purpose of the present study is the determination of S. aureus by a colorimetric method based on gold nanoparticles (AuNPs). Firstly, S. aureus was cultured on both LB media (broth and agar) and their chromosomal DNA was extracted. Afterwards, primers and biosensor were designed based on Protein A sequence data in the gene bank. PCR assay was performed under optimal conditions and the PCR product was electrophoresed on 2-percent agarose gel. The synthesized biosensors were conjugated with AuNPs and, eventually, a single-stranded genome was added to the conjugated AuNPs and hybridization was performed. The results were evaluated based on color change detected by the naked eye, optical spectrophotometry, and transient electron microscopy. Finally, the sensitivity and specificity of the AuNP-biosensor were determined. The results of the present study showed a 390 bp band on the agarose electrophoresis gel, which confirmed the presence of Protein A genes on the chromosome of the bacteria. The PCR and colorimetric methods were compared with each other. The sensitivity of the PCR and colorimetric methods were 30 ng μL-1 and 10 ng μL-1, respectively. The limit of detection (LOD) equaling 8.73 ng μL-1 was determined and the specificity of the method was confirmed by the DNA of other bacteria. According to the results, the present method is rapid and sensitive in detecting S. aureus.
Collapse
Affiliation(s)
- Reza Shahbazi
- Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mojtaba Salouti
- Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
| | - Bahram Amini
- Department of Biology, Faculty of Science, Zanjan University, Zanjan, Iran.
| | - Ahmad Jalilvand
- Assistant professor of Pathology, Department of Pathology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ebrahim Naderlou
- Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Ali Amini
- Department of Biology, Faculty of Science, Zanjan University, Zanjan, Iran
| | - Arash Shams
- Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
20
|
Zhang H, Wang P, Yu H, Yu K, Cao Z, Xu F, Yang X, Song M, Li Y. Aluminum trichloride-induced hippocampal inflammatory lesions are associated with IL-1β-activated IL-1 signaling pathway in developing rats. CHEMOSPHERE 2018; 203:170-178. [PMID: 29614410 DOI: 10.1016/j.chemosphere.2018.03.162] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Aluminum (Al) is a recognized environmental pollutant that causes neuroinflammatory lesions, leading to neurodegenerative diseases. Interleukin-1 (IL-1) signaling pathway is responsible for regulating inflammatory lesions. However, it remains unclear whether IL-1 signaling pathway is involved in neuroinflammatory lesions induced by Al exposure. In the present study, one hundred and twenty Wistar rats were orally exposed to 0, 50, 150 and 450 mg/kg BW/d aluminum trichloride (AlCl3) for 90 days, respectively. We found that AlCl3 exposure increased hippocampal Al concentration, reduced hippocampus coefficient, impaired cognitive ability, deteriorated microstructure of hippocampal CA1 and CA3 regions, increased reactive oxygen species (ROS) level, activated astrocytes and microglia, increased pro-inflammatory cytokines contents and mRNA expressions, and decreased anti-inflammatory cytokines contents and mRNA expressions in the hippocampus. These results indicated that AlCl3 induced the hippocampal inflammatory lesion (HIL). Moreover, AlCl3 exposure increased the mRNA and protein expression of IL-1 signaling pathway core components in the hippocampus, demonstrating that AlCl3 activated IL-1 signaling pathway. Furthermore, the correlation between interleukin-1β (IL-1β) content and HIL and activation of the IL-1 signaling pathway was analyzed. Results showed that IL-1β content was positively correlated with pro-inflammatory cytokines contents and mRNA expressions and activation of IL-1 signaling pathway, and was negatively correlated with hippocampus coefficient, anti-inflammatory cytokines contents and mRNA expressions, and the number of hippocampal neurons. The above results demonstrate that AlCl3-induced HIL is associated with IL-1 signaling pathway, in which IL-1β is a link.
Collapse
Affiliation(s)
- Haiyang Zhang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Peiyan Wang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hongyan Yu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Kaiyuan Yu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zheng Cao
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Feibo Xu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xu Yang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|