1
|
Xu Y, Sun M, Wang Z, Li X, Du Y, Jiang P. The prevalence and shedding of porcine epidemic diarrhea virus in intensive swine farms of China from 2022 to 2023. Vet Microbiol 2024; 298:110273. [PMID: 39413506 DOI: 10.1016/j.vetmic.2024.110273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
Porcine epidemic diarrhea has emerged as a significant threat to the global swine industry. The shedding and exposure status of porcine epidemic diarrhea virus (PEDV) in intensive farms is not completely understood. In this study, a total of 56,598 clinical samples collected from 256 intensive pig farms in 20 provinces in China from 2022 to 2023, were evaluated for PEDV using quantitative real-time PCR. The overall PEDV prevalence was 11.78 % and 28.45 % at the sample and farm levels, respectively, which are relatively high in Northern China and the fourth and first quarter of the year. The PEDV-positive rates and viral loads in suckling piglet herds were higher than those in growing-finishing pigs and multiparous sows. Meanwhile, 15.61 % of pig pens, 9.51 % of corridors, 9.4 % of office areas, 9.23 % of production personnel, and 8.33 % of pig cart driver samples were positive for PEDV, indicating potential biosafety gaps in intensive pig farms. In addition, 93.41 % of inguinal lymph node tissue samples contained viral nucleic acids, revealing a possible persistent infection of PEDV in pig herds. Our study presents the first report of the large-scale detection of PEDV in intensive pig farms, which constitutes indirect evidence of virus circulation in pig herds. This study provides valuable data for preventing and controlling PEDV infection in the future.
Collapse
Affiliation(s)
- Yuetao Xu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Meng Sun
- Key Laboratory of Animal Diseases Diagnostic and Immunology, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhunxuan Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaowen Li
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Shandong New Hope Liuhe Co. Ltd., Qingdao, Shandong, China.
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China.
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Wang J, Sun H, Su M, Li Z, Li L, Zhao F, Zhang Y, Bai W, Yu S, Yang X, Qi S, Yang D, Guo D, Li C, Zhu Q, Xing X, Sun D. Natural hyperoside extracted from hawthorn exhibits antiviral activity against porcine epidemic diarrhea virus in vitro and in vivo. Virology 2024; 594:110037. [PMID: 38498965 DOI: 10.1016/j.virol.2024.110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and death in piglets, resulting in significant economic losses for the pork industry. There is an urgent need for new treatment strategies. Here, we focused on optimizing the process of purifying natural hyperoside (nHYP) from hawthorn and evaluating its effectiveness against PEDV both in vitro and in vivo. Our findings demonstrated that nHYP with a purity >98% was successfully isolated from hawthorn with an extraction rate of 0.42 mg/g. Furthermore, nHYP exhibited strong inhibitory effects on PEDV replication in cells, with a selection index of 9.72. nHYP significantly reduced the viral load in the intestines of piglets and protected three of four piglets from death caused by PEDV infection. Mechanistically, nHYP could intervene in the interaction of PEDV N protein and p53. The findings implicate nHYP as having promising therapeutic potential for combating PEDV infections.
Collapse
Affiliation(s)
- Jun Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Haibo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Mingjun Su
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Linan District, Hangzhou, Zhejiang Province, 311300, China
| | - Zijian Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Lu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Feiyu Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Yongchen Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Wenfei Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Shiping Yu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xu Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Shanshan Qi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Dan Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xiaoxu Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| |
Collapse
|
3
|
Wang T, Wen Y, Qian B, Tang F, Zhang X, Xu X, Zhou Y, Dai J, Wang A, Xue F. Virological evaluation of natural and modified attapulgite against porcine epidemic diarrhoea virus. Virol J 2024; 21:120. [PMID: 38816738 PMCID: PMC11137985 DOI: 10.1186/s12985-024-02396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The Porcine Epidemic Diarrhea Virus (PEDV) has caused significant economic losses in the global swine industry. As a potential drug for treating diarrhea, the antiviral properties of attapulgite deserve further study. METHODS In this study, various methods such as RT-qPCR, Western blot, viral titer assay, Cytopathic Effect, immunofluorescence analysis and transmission electron microscopy were used to detect the antiviral activity of attapulgite and to assess its inhibitory effect on PEDV. RESULTS When exposed to the same amount of virus, there was a significant decrease in the expression of the S protein, resulting in a viral titer reduction from 10-5.613 TCID50/mL to 10-2.90 TCID50/mL, which represents a decrease of approximately 102.6 folds. Results of cytopathic effect and indirect immunofluorescence also indicate a notable decrease in viral infectivity after attapulgite treatment. Additionally, it was observed that modified materials after acidification had weaker antiviral efficacy compared to powdered samples that underwent ultrasonic disintegration, which showed the strongest antiviral effects. CONCLUSION As a result, Attapulgite powders can trap and adsorb viruses to inhibit PEDV in vitro, leading to loss of viral infectivity. This study provides new materials for the development of novel disinfectants and antiviral additives.
Collapse
Affiliation(s)
- Tianmin Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bingxu Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225104, China
| | - Xiulong Xu
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225104, China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- China Pharmaceutical University, Nanjing, 211198, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730099, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Li X, Wu Y, Yan Z, Li G, Luo J, Huang S, Guo X. A Comprehensive View on the Protein Functions of Porcine Epidemic Diarrhea Virus. Genes (Basel) 2024; 15:165. [PMID: 38397155 PMCID: PMC10887554 DOI: 10.3390/genes15020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Porcine epidemic diarrhea (PED) virus (PEDV) is one of the main pathogens causing diarrhea in piglets and fattening pigs. The clinical signs of PED are vomiting, acute diarrhea, dehydration, and mortality resulting in significant economic losses and becoming a major challenge in the pig industry. PEDV possesses various crucial structural and functional proteins, which play important roles in viral structure, infection, replication, assembly, and release, as well as in escaping host innate immunity. Over the past few years, there has been progress in the study of PEDV pathogenesis, revealing the crucial role of the interaction between PEDV viral proteins and host cytokines in PEDV infection. At present, the main control measure against PEDV is vaccine immunization of sows, but the protective effect for emerging virus strains is still insufficient, and there is no ideal safe and efficient vaccine. Although scientists have persistently delved their research into the intricate structure and functionalities of the PEDV genome and viral proteins for years, the pathogenic mechanism of PEDV remains incompletely elucidated. Here, we focus on reviewing the research progress of PEDV structural and nonstructural proteins to facilitate the understanding of biological processes such as PEDV infection and pathogenesis.
Collapse
Affiliation(s)
- Xin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Yiwan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Zhibin Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Gen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| |
Collapse
|
5
|
Dong B, Zhang X, Zhong X, Hu W, Lin Z, Zhang S, Deng H, Lin W. Prevalence of natural feline coronavirus infection in domestic cats in Fujian, China. Virol J 2024; 21:2. [PMID: 38172898 PMCID: PMC10765712 DOI: 10.1186/s12985-023-02273-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Only few studies have investigated the prevalence of feline coronavirus (FCoV) infection in domestic cats in Fujian, China. This is the first study to report the prevalence rate of FCoV infection in domestic cats in Fujian, China, and to analyse the epidemiological characteristics of FCoV infection in the region. A total of 112 cat faecal samples were collected from animal hospitals and catteries in the Fujian Province. RNA was extracted from faecal material for reverse transcription polymerase chain reaction (RT-PCR). The prevalence rate of FCoV infection was determined, and its epidemiological risk factors were analysed. The overall prevalence of FCoV infection in the cats, was 67.9%. We did not observe a significant association between the age, sex, or breed of the cats included in the study and the prevalence rate of the viral infection. Phylogenetic analysis showed that the four strains from Fujian were all type I FCoV. This is the first study to analyse the prevalence and epidemiological characteristics of FCoV infection in domestic cats in Fujian, China, using faecal samples. The results of this study provide preliminary data regarding the prevalence of FCoV infection in the Fujian Province for epidemiological studies on FCoV in China and worldwide. Future studies should perform systematic and comprehensive epidemiological investigations to determine the prevalence of FCoV infection in the region.
Collapse
Affiliation(s)
- Bo Dong
- College of Life Science of Longyan University, 364012, Longyan, China.
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, College of Life Science, Fujian Province University, Longyan University, Longyan, China.
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China.
| | - Xiaodong Zhang
- College of Life Science of Longyan University, 364012, Longyan, China
| | - Xiaowei Zhong
- College of Life Science of Longyan University, 364012, Longyan, China
| | - Wenqian Hu
- College of Life Science of Longyan University, 364012, Longyan, China
| | - Zhihui Lin
- College of Life Science of Longyan University, 364012, Longyan, China
| | - Shuo Zhang
- College of Life Science of Longyan University, 364012, Longyan, China
| | - Haiyan Deng
- College of Life Science of Longyan University, 364012, Longyan, China
| | - Weiming Lin
- College of Life Science of Longyan University, 364012, Longyan, China.
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, College of Life Science, Fujian Province University, Longyan University, Longyan, China.
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China.
| |
Collapse
|
6
|
Zhang Y, Zhang S, Sun Z, Liu X, Liao G, Niu Z, Kan Z, Xu S, Zhang J, Zou H, Zhang X, Song Z. Porcine epidemic diarrhea virus causes diarrhea by activating EGFR to regulates NHE3 activity and mobility on plasma membrane. Front Microbiol 2023; 14:1237913. [PMID: 38029193 PMCID: PMC10655020 DOI: 10.3389/fmicb.2023.1237913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
As part of the genus Enteropathogenic Coronaviruses, Porcine Epidemic Diarrhea Virus (PEDV) is an important cause of early diarrhea and death in piglets, and one of the most difficult swine diseases to prevent and control in the pig industry. Previously, we found that PEDV can block Na+ absorption and induce diarrhea in piglets by inhibiting the activity of the sodium-hydrogen ion transporter NHE3 in pig intestinal epithelial cells, but the mechanism needs to be further explored. The epidermal growth factor receptor (EGFR) has been proved to be one of the co-receptors involved in many viral infections and a key protein involved in the regulation of NHE3 activity in response to various pathological stimuli. Based on this, our study used porcine intestinal epithelial cells (IPEC-J2) as an infection model to investigate the role of EGFR in regulating NHE3 activity after PEDV infection. The results showed that EGFR mediated viral invasion by interacting with PEDV S1, and activated EGFR regulated the downstream EGFR/ERK signaling pathway, resulting in decreased expression of NHE3 and reduced NHE3 mobility at the plasma membrane, which ultimately led to decreased NHE3 activity. The low level of NHE3 expression in intestinal epithelial cells may be a key factor leading to PEDV-induced diarrhea in newborn piglets. This study reveals the importance of EGFR in the regulation of NHE3 activity by PEDV and provides new targets and clues for the prevention and treatment of PEDV-induced diarrhea in piglets.
Collapse
Affiliation(s)
- YiLing Zhang
- School of Animal Medicine, Southwest University Rongchang Campus, Chongqing, China
- Department of Animal Science and Technology, Three Gorges Vocational College, Chongqing, China
| | - Shujuan Zhang
- School of Animal Medicine, Southwest University Rongchang Campus, Chongqing, China
| | - Zhiwei Sun
- School of Animal Medicine, Southwest University Rongchang Campus, Chongqing, China
| | - Xiangyang Liu
- School of Animal Medicine, Southwest University Rongchang Campus, Chongqing, China
- Department of Preventive Veterinary Medicine, College of Animal Medicine, Xinjiang Agricultural University, Xinjiang, China
| | - Guisong Liao
- School of Animal Medicine, Southwest University Rongchang Campus, Chongqing, China
| | - Zheng Niu
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Shanxi, China
| | - ZiFei Kan
- School of Animal Medicine, Southwest University Rongchang Campus, Chongqing, China
- School of Medicine, University of Electronic Science and Technology, Chengdu, China
| | - ShaSha Xu
- School of Animal Medicine, Southwest University Rongchang Campus, Chongqing, China
| | - JingYi Zhang
- School of Animal Medicine, Southwest University Rongchang Campus, Chongqing, China
| | - Hong Zou
- School of Animal Medicine, Southwest University Rongchang Campus, Chongqing, China
| | - Xingcui Zhang
- School of Animal Medicine, Southwest University Rongchang Campus, Chongqing, China
| | - ZhenHui Song
- School of Animal Medicine, Southwest University Rongchang Campus, Chongqing, China
- Immunology Research Center, Institute of Medical Research, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Su K, Wang Y, Yuan C, Zhang Y, Li Y, Li T, Song Q. Intranasally inoculated bacterium-like particles displaying porcine epidemic diarrhea virus S1 protein induced intestinal mucosal immune response in mice. Front Immunol 2023; 14:1269409. [PMID: 37790942 PMCID: PMC10544335 DOI: 10.3389/fimmu.2023.1269409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes acute watery diarrhea and high mortality in newborn piglets. Activation of intestinal mucosal immunity is crucial to anti-PEDV infection. To develop a vaccine capable of stimulating intestinal mucosal immunity, we prepared a bacterium (Lactococcus lactis)-like particle (BLP) vaccine (S1-BLPs) displaying the S1 protein, a domain of PEDV spike protein (S), based on gram-positive enhancer matrix (GEM) particle display technology. We further compared the effects of different vaccination routes on mucosal immune responses in mice induced by S1-BLPs. The specific IgG titer in serum of intramuscularly immunized mice with S1-BLPs was significantly higher than that of the intranasally administered. The specific IgA antibody was found in the serum and intestinal lavage fluid of mice vaccinated intranasally, but not intramuscularly. Moreover, the intranasally inoculated S1-BLPs induced higher levels of IFN-γ and IL-4 in serum than the intramuscularly inoculated. In addition, the ratio of serum IgG2a/IgG1 of mice inoculated intramuscularly was significantly higher with S1-BLPs compared to that of with S1 protein, suggesting that the immune responses induced by S1-BLPs was characterized by helper T (Th) cell type 1 immunity. The results indicated that S1-BLPs induced systemic and local immunity, and the immunization routes significantly affected the specific antibody classes and Th immune response types. The intranasally administered S1-BLPs could effectively stimulate intestinal mucosal specific secretory IgA response. S1-BLPs have the potential to be developed as PEDV mucosal vaccine.
Collapse
Affiliation(s)
- Kai Su
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Hebei Veterinary Biotechnology Innovation Center, Baoding, Hebei, China
| | - Yawen Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Veterinary Biotechnology Innovation Center, Baoding, Hebei, China
| | - Chen Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Hebei Veterinary Biotechnology Innovation Center, Baoding, Hebei, China
| | - Yanan Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Veterinary Biotechnology Innovation Center, Baoding, Hebei, China
| | - Yanrui Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Veterinary Biotechnology Innovation Center, Baoding, Hebei, China
| | - Tanqing Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Veterinary Biotechnology Innovation Center, Baoding, Hebei, China
| | - Qinye Song
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Hebei Veterinary Biotechnology Innovation Center, Baoding, Hebei, China
| |
Collapse
|
8
|
Zhang B, Qing J, Yan Z, Shi Y, Wang Z, Chen J, Li J, Li S, Wu W, Hu X, Li Y, Zhang X, Wu L, Zhu S, Yan Z, Wang Y, Guo X, Yu L, Li X. Investigation and analysis of porcine epidemic diarrhea cases and evaluation of different immunization strategies in the large-scale swine farming system. Porcine Health Manag 2023; 9:36. [PMID: 37537653 PMCID: PMC10401829 DOI: 10.1186/s40813-023-00331-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Porcine epidemic diarrhea (PED) is a contagious intestinal disease caused by porcine epidemic diarrhea virus (PEDV) characterized by vomiting, diarrhea, anorexia, and dehydration, which has caused huge economic losses around the world. However, it is very hard to find completely valid approaches to control the transmission of PEDV. At present, vaccine immunity remains the most effective method. To better control the spread of PED and evaluate the validity of different immunization strategies, 240 PED outbreak cases from 577 swine breeding farms were collected and analyzed. The objective of the present study was to analyze the epidemic regularity of PEDV and evaluate two kinds of different immunization strategies for controlling PED. RESULTS The results showed that the main reasons which led to the outbreak of PED were the movement of pig herds between different pig farms (41.7%) and delaying piglets from the normal production flow (15.8%). The prevalence of PEDV in the hot season (May to October) was obviously higher than that in the cold season (January to April, November to December). Results of different vaccine immunity cases showed that immunization with the highly virulent live vaccine (NH-TA2020 strain) and the commercial inactivated vaccine could significantly decrease the frequency of swine breeding farms (5.9%), the duration of PED epidemic (1.70 weeks), and the week batches of dead piglets (0.48 weeks weaned piglets), compared with immunization with commercial attenuated vaccines and inactivated vaccine of PED. Meanwhile, immunization with the highly virulent live vaccine and the commercial inactivated vaccine could bring us more cash flows of Y̶275,274 per year than immunization with commercial live attenuated vaccine and inactivated vaccine in one 3000 sow pig farm within one year. CONCLUSION Therefore, immunization with highly virulent live vaccine and inactivated vaccine of PED is more effective and economical in the prevention and control of PED in the large-scale swine farming system.
Collapse
Affiliation(s)
- Bingzhou Zhang
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Jie Qing
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Zhong Yan
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Yuntong Shi
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Zewei Wang
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Jing Chen
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Junxian Li
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Shuangxi Li
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Weisheng Wu
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Xiaofang Hu
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Yang Li
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Xiaoyang Zhang
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Lili Wu
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Shouyue Zhu
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Zheng Yan
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Yongquan Wang
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China
| | - Xiaoli Guo
- Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ligen Yu
- Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Xiaowen Li
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China.
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Dezhou, 253200, China.
- China Agriculture Research System-Yangling Comprehensive test Station, Xianyang, 712100, China.
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, China.
| |
Collapse
|
9
|
Li M, Pan Y, Xi Y, Wang M, Zeng Q. Insights and progress on epidemic characteristics, genotyping, and preventive measures of PEDV in China: A review. Microb Pathog 2023; 181:106185. [PMID: 37269880 DOI: 10.1016/j.micpath.2023.106185] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Porcine Epidemic Diarrhoea (PED) is an acute, extremely infectious intestinal disease of pigs caused by the Porcine Epidemic Diarrhoea Virus (PEDV). The virus can affect pigs of all breeds and age groups and shows varying degrees of symptoms, with piglets, in particular, being infected with mortality rates of up to 100%. PEDV was first identified in China in the 1980s and in October 2010 a large-scale PED outbreak caused by a variant of PEDV occurred in China, resulting in huge economic losses. Initially, vaccination can effectively prevent the classical strain, but since December 2010, the PEDV variant has caused "persistent diarrhoea" with severe vomiting, watery diarrhoea, and high morbidity and mortality in newborn piglets as the dominant clinical features, with a significant increase in morbidity and mortality. This indicates that PEDV strains have mutated during evolution and that traditional vaccines no longer provide effective cross-immune protection, so it is necessary to optimize immunization programs and find effective treatments through epidemiological surveys of PEDV to reduce the economic losses caused by infections with mutated strains. This article reviews the progress of research on the aetiology, epidemiological characteristics, genotyping, pathogenesis, transmission routes, and comprehensive control of PEDV infection in China.
Collapse
Affiliation(s)
- Mei Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Yao Xi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
10
|
Zhang Y, Tian J, Wang C, Wu T, Yi D, Wang L, Zhao D, Hou Y. N-Acetylcysteine Administration Improves the Redox and Functional Gene Expression Levels in Spleen, Mesenteric Lymph Node and Gastrocnemius Muscle in Piglets Infected with Porcine Epidemic Diarrhea Virus. Animals (Basel) 2023; 13:ani13020262. [PMID: 36670802 PMCID: PMC9854467 DOI: 10.3390/ani13020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Our previous study reported that N-acetylcysteine (NAC) administration improved the function of intestinal absorption in piglets infected with porcine epidemic diarrhea virus (PEDV). However, the effects of NAC administration on the functions of other tissues and organs in PEDV-infected piglets have not been reported. In this study, the effects of NAC on the liver, spleen, lung, lymph node, and gastrocnemius muscle in PEDV-infected piglets were investigated. Thirty-two 7-day-old piglets with similar body weights were randomly divided into one of four groups: Control group, NAC group, PEDV group, and PEDV+NAC group (eight replicates per group and one pig per replicate). The trial had a 2 × 2 factorial design consisting of oral administration of 0 or 25 mg/kg body weight NAC and oral administration of 0 or 1.0 × 104.5 TCID50 PEDV. The trial lasted 12 days. All piglets were fed a milk replacer. On days 5-9 of the trial, piglets in the NAC and PEDV + NAC groups were orally administered NAC once a day; piglets in the control and PEDV groups were orally administered the same volume of saline. On day 9 of trial, piglets in the PEDV and PEDV+NAC groups were orally administrated 1.0 × 104.5 TCID50 PEDV, and the piglets in the control and NAC groups were orally administrated the same volume of saline. On day 12 of trial, samples, including of the liver, spleen, lung, lymph node, and gastrocnemius muscle, were collected. PEDV infection significantly increased catalase activity but significantly decreased the mRNA levels of Keap1, Nrf2, HMOX2, IFN-α, MX1, IL-10, TNF-α, S100A12, MMP3, MMP13, TGF-β, and GJA1 in the spleens of piglets. NAC administration ameliorated abnormal changes in measured variables in the spleens of PEDV-infected piglets. In addition, NAC administration also enhanced the antioxidant capacity of the mesenteric lymph nodes and gastrocnemius muscles in PEDV-infected piglets. Collectively, these novel results revealed that NAC administration improved the redox and functional gene expression levels in the spleen, mesenteric lymph nodes, and gastrocnemius muscle in PEDV-infected piglets.
Collapse
|
11
|
Shen Y, Yang Y, Zhao J, Geng N, Liu K, Zhao Y, Wang F, Liu S, Li N, Meng F, Liu M. Molecular epidemiological survey of porcine epidemic diarrhea in some areas of Shandong and genetic evolutionary analysis of S gene. Front Vet Sci 2022; 9:1015717. [PMID: 36246337 PMCID: PMC9562854 DOI: 10.3389/fvets.2022.1015717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Responsible for the acute infectious disease porcine epidemic diarrhea (PED), PED virus (PEDV) induces severe diarrhea and high mortality in infected piglets and thus severely harms the productivity and economic efficiency of pig farms. In our study, we aimed to investigate and analyze the recent status and incidence pattern of PEDV infection in some areas of Shandong Province, China. We collected 176 clinical samples of PED from pig farms in different regions of Shandong Province during 2019–2021. PEDV, TGEV, and PORV were detected using RT-PCR. The full-length sequences of positive PEDV S genes were amplified, the sequences were analyzed with MEGA X and DNAStar, and a histopathological examination of typical PEDV-positive cases was performed. RT-PCR revealed positivity rates of 37.5% (66/176) for PEDV, 6.82% (12/176) for transmissible gastroenteritis virus, and 3.98% (7/176) for pig rotavirus. The test results for the years 2019, 2020, and 2021 were counted separately, PEDV positivity rates for the years were 34.88% (15/43), 39.33% (35/89), and 36.36% (16/44), respectively. Histopathological examination revealed atrophied, broken, and detached duodenal and jejunal intestinal villi, as typical of PED, and severe congestion of the intestinal submucosa. Moreover, the results of our study clearly indicate that the G2 subtype is prevalent as the dominant strain of PEDV in Shandong Province, where its rates of morbidity and mortality continue to be high. Based on a systematic investigation and analysis of PEDV's molecular epidemiology across Shandong Province, our results enrich current epidemiological data regarding PEDV and provide some scientific basis for preventing and controlling the disease.
Collapse
Affiliation(s)
- Yesheng Shen
- School of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Yudong Yang
- School of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Jun Zhao
- School of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Ningwei Geng
- School of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Kuihao Liu
- School of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Yiran Zhao
- School of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Fangkun Wang
- School of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Sidang Liu
- School of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Ning Li
- School of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
- *Correspondence: Ning Li
| | - Fanliang Meng
- School of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
- Huayun (Shandong) Inspection and Quarantine Service Co., Tai'an, China
- Fanliang Meng
| | - Mengda Liu
- Division of Zoonoses Surveillance, China Animal Health and Epidemiology Center, Qingdao, China
- Mengda Liu
| |
Collapse
|
12
|
Genetic Characteristics and Pathogenicity of a Novel Porcine Epidemic Diarrhea Virus with a Naturally Occurring Truncated ORF3 Gene. Viruses 2022; 14:v14030487. [PMID: 35336894 PMCID: PMC8955810 DOI: 10.3390/v14030487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is the major pathogen that causes diarrhea and high mortality in newborn piglets, with devastating impact on the pig industry. To further understand the molecular epidemiology and genetic diversity of PEDV field strains, in this study the complete genomes of four PEDV variants (HN2021, CH-HNYY-2018, CH-SXWS-2018, and CH-HNKF-2016) obtained from immunized pig farms in central China between 2016 to 2021 were characterized and analyzed. Phylogenetic analysis of the genome and S gene showed that the four strains identified in the present study had evolved into the subgroup G2a, but were distant from the vaccine strain CV777. Additionally, it was noteworthy that a new PEDV strain (named HN2021) belonging to the G2a PEDV subgroup was successfully isolated in vitro and it was further confirmed by RT-PCR that this isolate had a large natural deletion at 207–373 nt of the ORF3 gene, which has never been reported before. Particularly, in terms of pathogenicity evaluation, colostrum deprivation piglets challenged with PEDV HN2021 showed severe diarrhea and high mortality, confirming that PEDV HN2021 was a virulent strain. Hence, PEDV strain HN2021 of subgroup G2a presents a promising vaccine candidate for the control of recurring porcine epidemic diarrhea (PED) in China. This study lays the foundation for better understanding of the genetic evolution and molecular pathogenesis of PEDV.
Collapse
|
13
|
Dong B, Zhang G, Zhang X, Chen X, Zhang M, Li L, Lin W. Development of an Indirect ELISA Based on Spike Protein to Detect Antibodies against Feline Coronavirus. Viruses 2021; 13:v13122496. [PMID: 34960764 PMCID: PMC8707903 DOI: 10.3390/v13122496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Feline coronavirus (FCoV) is a pathogenic virus commonly found in cats that causes a benign enteric illness and fatal systemic disease, feline infectious peritonitis. The development of serological diagnostic tools for FCoV is helpful for clinical diagnosis and epidemiological investigation. Therefore, this study aimed to develop an indirect enzyme-linked immunosorbent assay (iELISA) to detect antibodies against FCoV using histidine-tagged recombinant spike protein. FCoV S protein (1127–1400 aa) was expressed and used as an antigen to establish an ELISA. Mice and rabbits immunized with the protein produced antibodies that were recognized and bound to the protein. The intra-assay coefficient of variation (CV) was 1.15–5.04% and the inter-assay CV was 4.28–15.13%, suggesting an acceptable repeatability. iELISA did not cross-react with antisera against other feline viruses. The receiver operating characteristic curve analysis revealed an 86.7% sensitivity and 93.3% specificity for iELISA. Serum samples (n = 107) were tested for anti-FCoV antibodies, and 70.09% of samples were positive for antibodies against FCoV. The iELISA developed in our study can be used to measure serum FCoV antibodies due to its acceptable repeatability, sensitivity, and specificity. Additionally, field sample analysis data demonstrated that FCoV is highly prevalent in cat populations in Fujian province, China.
Collapse
Affiliation(s)
- Bo Dong
- Department of Veterinary Medicine and Animal Science, College of Life Science of Longyan University, Longyan 364012, China; (G.Z.); (X.Z.); (X.C.); (M.Z.); (L.L.)
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan 364012, China
- Correspondence: (W.L.); (B.D.); Tel.: +86-597-279-7255 (B.D. & W.L.)
| | - Gaoqiang Zhang
- Department of Veterinary Medicine and Animal Science, College of Life Science of Longyan University, Longyan 364012, China; (G.Z.); (X.Z.); (X.C.); (M.Z.); (L.L.)
| | - Xiaodong Zhang
- Department of Veterinary Medicine and Animal Science, College of Life Science of Longyan University, Longyan 364012, China; (G.Z.); (X.Z.); (X.C.); (M.Z.); (L.L.)
| | - Xufei Chen
- Department of Veterinary Medicine and Animal Science, College of Life Science of Longyan University, Longyan 364012, China; (G.Z.); (X.Z.); (X.C.); (M.Z.); (L.L.)
| | - Meiling Zhang
- Department of Veterinary Medicine and Animal Science, College of Life Science of Longyan University, Longyan 364012, China; (G.Z.); (X.Z.); (X.C.); (M.Z.); (L.L.)
| | - Linglin Li
- Department of Veterinary Medicine and Animal Science, College of Life Science of Longyan University, Longyan 364012, China; (G.Z.); (X.Z.); (X.C.); (M.Z.); (L.L.)
| | - Weiming Lin
- Department of Veterinary Medicine and Animal Science, College of Life Science of Longyan University, Longyan 364012, China; (G.Z.); (X.Z.); (X.C.); (M.Z.); (L.L.)
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan 364012, China
- Correspondence: (W.L.); (B.D.); Tel.: +86-597-279-7255 (B.D. & W.L.)
| |
Collapse
|
14
|
Development of an accurate lateral flow immunoassay for PEDV detection in swine fecal samples with a filter pad design. ANIMAL DISEASES 2021; 1:27. [PMID: 34778887 PMCID: PMC8572657 DOI: 10.1186/s44149-021-00029-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), as the main causative pathogen of viral diarrhea in pigs, has been reported to result in high morbidity and mortality in neonatal piglets and cause significant economic losses to the swine industry. Rapid diagnosis methods are essential for preventing outbreaks and transmission of this disease. In this study, a paper-based lateral flow immunoassay for the rapid diagnosis of PEDV in swine fecal samples was developed using stable color-rich latex beads as the label. Under optimal conditions, the newly developed latex bead-based lateral flow immunoassay (LBs-LFIA) attained a limit of detection (LOD) as low as 103.60 TCID50/mL and no cross-reactivity with other related swine viruses. To solve swine feces impurity interference, by adding a filtration unit design of LFIA without an additional pretreatment procedure, the LBs-LFIA gave good agreement (92.59%) with RT-PCR results in the analysis of clinical swine fecal samples (n = 108), which was more accurate than previously reported colloidal gold LFIA (74.07%) and fluorescent LFIA (86.67%). Moreover, LBs-LFIA showed sufficient accuracy (coefficient of variance [CV] < 15%) and stable (room temperature storage life > 56 days) performance for PEDV detection, which is promising for on-site analysis and user-driven testing in pig production system.
Collapse
|
15
|
Wang PH, Li YQ, Pan YQ, Guo YY, Guo F, Shi RZ, Xing L. The spike glycoprotein genes of porcine epidemic diarrhea viruses isolated in China. Vet Res 2021; 52:87. [PMID: 34130762 PMCID: PMC8205199 DOI: 10.1186/s13567-021-00954-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/17/2021] [Indexed: 11/23/2022] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) causes a highly contagious disease in pigs, which is one of the most devastating viral diseases of swine in the world. In China, PEDV was first confirmed in 1984 and PEDV infections occurred sporadically from 1984 to early 2010. From late 2010 until present, PEDV infections have swept every province or region in China. In this study, we analyzed a total of 186 full-length spike genes and deduced proteins of all available complete genomes of PEDVs isolated in China during 2007–2019. A total of 28 potential recombination events were identified in the spike genes of PEDVs in China. Spike gene recombination not only expanded the genetic diversity of PEDVs in the GII genogroup, but also resulted in the emergence of a new evolutional branch GI-c during 2016–2018. In addition, comparative analysis of spike proteins between GI-a prototype virulent CV777 and GII strain AJ1102 reveals that the amino acid variations could affect 20 potential linear B cell epitopes, demonstrating a dramatic antigen drift in the spike protein. These results provide a thorough view of the information about the genetic and antigenic diversity of PEDVs circulating in China and therefore could benefit the development of suitable strategies for disease control.
Collapse
Affiliation(s)
- Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Ya-Qian Li
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Yuan-Qing Pan
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Yan-Yan Guo
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Fan Guo
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi, China.,Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China.,Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan, 030006, China
| | - Rui-Zhu Shi
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi, China.,Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China.,Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan, 030006, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi, China. .,Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China. .,Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan, 030006, China.
| |
Collapse
|
16
|
Liang W, Zhou D, Geng C, Yang K, Duan Z, Guo R, Liu W, Yuan F, Liu Z, Gao T, Zhao L, Yoo D, Tian Y. Isolation and evolutionary analyses of porcine epidemic diarrhea virus in Asia. PeerJ 2020; 8:e10114. [PMID: 33150069 PMCID: PMC7583610 DOI: 10.7717/peerj.10114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/16/2020] [Indexed: 01/04/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a leading cause of diarrhea in pigs worldwide. Virus isolation and genetic evolutionary analysis allow investigations into the prevalence of epidemic strains and provide data for the clinical diagnosis and vaccine development. In this study, we investigated the genetic characteristics of PEDV circulation in Asia through virus isolation and comparative genomics analysis. APEDV strain designated HB2018 was isolated from a pig in a farm experiencing a diarrhea outbreak. The complete genome sequence of HB2018 was 28,138 bp in length. Phylogenetic analysis of HB2018 and 207 PEDVs in Asia showed that most PEDV strains circulating in Asia after 2010 belong to genotype GII, particularly GII-a. The PEDV vaccine strain CV777 belonged to GI, and thus, unmatched genotypes between CV777 and GII-a variants might partially explain incomplete protection by the CV777-derived vaccine against PEDV variants in China. In addition, we found the S protein of variant strains contained numerous mutations compared to the S protein of CV777, and these mutations occurred in the N-terminal domain of the S protein. These mutations may influence the antigenicity, pathogenicity, and neutralization properties of the variant strains.
Collapse
Affiliation(s)
- Wan Liang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chao Geng
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China.,College of Animal Sciences, Yangtze University, Jinzhou, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhengying Duan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Ling Zhao
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, United States of America
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
17
|
A descriptive survey of porcine epidemic diarrhea in pig populations in northern Vietnam. Trop Anim Health Prod 2020; 52:3781-3788. [PMID: 33011908 PMCID: PMC7532947 DOI: 10.1007/s11250-020-02416-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 02/02/2023]
Abstract
Porcine epidemic diarrhea (PED) virus (PEDV) is a globally emerging and re-emerging epizootic swine virus that causes massive economic losses in the swine industry, with high mortality in piglets. In Vietnam, PED first emerged in 2009 and has now developed to an endemic stage. This is the first cross-sectional survey performed to evaluate the proportion of PEDV-positive swine farms in Vietnam from January 2018 to February 2019. Fecal samples from 327 pig farms in northern Vietnam were collected and tested for PEDV infection by reverse transcription-loop-mediated isothermal amplification (RT-LAMP) method. The proportion of PEDV-positive farms was 30.9% and PEDV-positive farms were distributed throughout the study area. The highest proportion of PEDV-positive farms was 70% (7/10) among nucleus production type farms (P < 0.05). Higher proportions of PEDV-positive farms were found in the Northeast and Red River Delta areas, which are the major areas of pig production (P < 0.05). The proportion of PEDV-positive farms was higher among larger farms (P < 0.05). Our findings illustrate the high proportion of PEDV-positive farms in the Vietnamese pig population and will help to better understand the epidemiological dynamics of PED infection, to estimate impact, and establish and improve prevention and control measures.
Collapse
|
18
|
Shchelkanov MY, Popova AY, Dedkov VG, Akimkin VG, Maleyev VV. History of investigation and current classification of coronaviruses ( Nidovirales: Coronaviridae). ACTA ACUST UNITED AC 2020. [DOI: 10.15789/2220-7619-hoi-1412] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- M. Yu. Shchelkanov
- International Scientific and Educational Center for Biological Security of Rospotrebnadzor; Federal Scientific Center of East Asia Terrestrial Biodiversity, Far Eastern Branch of RAS; Center of Hygiene and Epidemiology in the Primorsky Territory
| | - A. Yu. Popova
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor); Russian Medical Academy of Continuing Professional Education
| | | | - V. G. Akimkin
- Central Research Institute of Epidemiology and Microbiology of Rospotrebnadzor
| | - V. V. Maleyev
- Central Research Institute of Epidemiology and Microbiology of Rospotrebnadzor
| |
Collapse
|
19
|
Cold Exposure-Induced Up-Regulation of Hsp70 Positively Regulates PEDV mRNA Synthesis and Protein Expression In Vitro. Pathogens 2020; 9:pathogens9040246. [PMID: 32224931 PMCID: PMC7237993 DOI: 10.3390/pathogens9040246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/14/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022] Open
Abstract
Porcine epidemic diarrhea (PED) is a highly contagious, intestinal infectious disease caused by porcine epidemic diarrhea virus (PEDV). PEDV as an emerging and re-emerging epizootic virus of swine causes substantial economic losses to the pig industry in China and other countries. In China, the occurrence of PED shows significant seasonal variations, usually outbreak during the winter season. The epidemic characteristics of PED may be highly correlated with the changes of ambient temperature. However, molecular mechanism on the seasonal occurrence of PED still remains unclear. It has been widely observed that low ambient temperature up-regulates the expression of host heat shock protein 70 (Hsp70). Here, we showed that nucleotide and protein levels of Hsp70 were up-regulated in the intestinal of cold exposed pig and cold exposed Vero E6 cells. We found that overexpression of Hsp70 could increase PEDV mRNA synthesis and protein expression in Vero E6 and IPEC-J2 cells, while the siRNAs mediated knockdown of Hsp70 and VER155008 mediated inhibition of Hsp70 resulted in inhibition of viral mRNA synthesis and protein expression in Vero E6 cells. These data suggested that Hsp70 positively regulated PEDV mRNA synthesis and protein expression, which being helpful for understanding the seasonality of PED epidemics and development of novel antiviral therapies in the future.
Collapse
|
20
|
Tan L, Li Y, He J, Hu Y, Cai X, Liu W, Liu T, Wang J, Li Z, Yuan X, Zhan Y, Yang L, Deng Z, Wang N, Yang Y, Wang A. Epidemic and genetic characterization of porcine epidemic diarrhea virus strains circulating in the regions around Hunan, China, during 2017-2018. Arch Virol 2020; 165:877-889. [PMID: 32056002 PMCID: PMC7223731 DOI: 10.1007/s00705-020-04532-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022]
Abstract
Outbreaks of porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV) infection have caused high mortality of piglets and significant economic losses to the Chinese swine industry. In the current study, 184 specimens from pigs with or without signs of diarrhea were collected from 39 farms across eight provinces, mainly around Hunan, People's Republic of China, in 2017 to 2018 in order to obtain epidemiological information on PEDV infections in these regions. The results indicated an average PEDV-positive rate of 38.04% (70/184) and more-pronounced disease severity in diarrheic pigs (48.76%; 59/121) than in non-diarrheic pigs (17.46%; 11/63). Phylogenetic and sequence analysis demonstrated that 14 representative PEDV strains from 14 swine farms belonged to the G2 group (G2-a and G2-b subgroups) and displayed a high degree of genetic variation. In particular, two out of the 14 PEDV strains were found to have unique indels in the S1 gene. The strain HN-SY-2017-Oct had a 9-nucleotide (T1152GAAGCCAAT1160T) insertion, and the strain ZJ-2018-May had a 3-nucleotide (AAA) deletion at position 1126 in the S1 gene. A three-dimensional structural prediction revealed that these unique insertions might lengthen the loop on the surface or increase the likelihood of the surface protein being phosphorylated at 388Y, thereby affecting the virulence or pathogenicity of PEDV. Collectively, the data show that PED remains a severe threat to the pig industry and that variant PEDV stains are circulating in China. The updated PEDV epidemiological data will facilitate the design of PEDV vaccines and the application of effective measures for PED prevention.
Collapse
Affiliation(s)
- Lei Tan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Yalan Li
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Jiayi He
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Yi Hu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People's Republic of China
| | - Wei Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Tanbing Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Jiaoshun Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Zhoumian Li
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Xiaoming Yuan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Yang Zhan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Lingchen Yang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Zhibang Deng
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Naidong Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Yi Yang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Aibing Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China. .,PCB Biotechnology LLC, Rockville, MD, 20852, USA.
| |
Collapse
|
21
|
Yang D, Su M, Li C, Zhang B, Qi S, Sun D, Yin B. Isolation and characterization of a variant subgroup GII-a porcine epidemic diarrhea virus strain in China. Microb Pathog 2019; 140:103922. [PMID: 31838173 PMCID: PMC7126716 DOI: 10.1016/j.micpath.2019.103922] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/01/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023]
Abstract
Background Highly virulent variants of porcine epidemic diarrhea virus (PEDV) have been closely associated with recent outbreaks of porcine epidemic diarrhea (PED) in China, which have resulted in severe economic losses to the pork industry. Methods In the current study, the variant PEDV strain HM2017 was isolated and purified and a viral growth curve was constructed according to the median tissue culture infective dose (TCID50). HM2017 were amplify with RT-PCR and analyzed by phylogeny analysis. Animal pathogenicity experiment was carried to evaluate the HM2017 clinical assessment. Results Genome-based phylogenetic analysis revealed that PEDV strain HM2017 was clustered into the variant subgroup GII-a that is currently circulating in pig populations in China. The highest median tissue culture infectious dose of strain HM2017 after 15 passages in Vero cells was 1.33 × 107 viral particles/mL. Strain HM2017 was highly virulent to suckling piglets, which exhibited clinical symptoms at 12 h post-infection (hpi) (i.e., weight loss at 12–84 hpi, increased body temperatures at 24–48 hpi, high viral loads in the jejunum and ileum, and 100% mortality by 84 hpi). Conclusion The present study reports a variant subgroup GII-a PEDV HM2017 strain in China and characterize its pathogenicity. PEDV strain HM2017 of subgroup GII-a presents a promising vaccine candidate for the control of PED outbreaks in China. A variant subgroup GII-a PEDV strain HM2017 was successfully isolated in China. PEDV strain HM2017 appeared to be highly virulent in suckling piglets. PEDV strain HM2017 was well adapted to Vero cells, as evidenced by the rapid growth.
Collapse
Affiliation(s)
- Dan Yang
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mingjun Su
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chunqiu Li
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bei Zhang
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shanshan Qi
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongbo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China.
| | - Baishuang Yin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China.
| |
Collapse
|