1
|
Lee SY, Cho KS. Isolation of Heavy Metal-Tolerant and Anti-Phytopathogenic Plant Growth-Promoting Bacteria from Soils. J Microbiol Biotechnol 2024; 34:2252-2265. [PMID: 39468992 PMCID: PMC11637846 DOI: 10.4014/jmb.2407.07013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
In this study, multifunctional soil bacteria, which can promote plant development, resist heavy metals, exhibit anti-phytopathogenic action against plant diseaes, and produce extracellular enzymes, were isolated to improve the effectiveness of phytoremediation techniques. In order to isolate multifunctional soil bacteria, a variety of soil samples with diverse characteristics were used as sources for isolation. To look into the diversity and structural traits of the bacterial communities, we conducted amplicon sequencing of the 16S rRNA gene on five types of soils and predicted functional genes using Tax4Fun2. The isolated bacteria were evaluated for their multifunctional capabilities, including heavy metal tolerance, plant growth promotion, anti-phytopathogenic activity, and extracellular enzyme activity. The genes related to plant growth promotion and anti-phytopathogenic activity were most abundant in forest and paddy soils. Burkholderia sp. FZ3 and FZ5 demonstrated excellent heavy metal resistance (≤ 1 mM Cd and ≤ 10 mM Zn), Pantoea sp. FC24 exhibited the highest protease activity (24.90 μmol tyrosine·g-DCW-1·h-1), and Enterobacter sp. PC20 showed superior plant growth promotion, especially in siderophore production. The multifunctional bacteria isolated using traditional methods included three strains (FC24, FZ3, and FZ5) from the forest and one strain (PC20) from paddy field soil. These results indicate that, for the isolation of beneficial soil microorganisms, utilizing target gene information obtained from isolation sources and subsequently exploring target microorganisms is a valuable strategy.
Collapse
Affiliation(s)
- Soo Yeon Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Belabess Z, Gajjout B, Legrifi I, Barka EA, Lahlali R. Exploring the Antifungal Activity of Moroccan Bacterial and Fungal Isolates and a Strobilurin Fungicide in the Control of Cladosporium fulvum, the Causal Agent of Tomato Leaf Mold Disease. PLANTS (BASEL, SWITZERLAND) 2024; 13:2213. [PMID: 39204649 PMCID: PMC11360235 DOI: 10.3390/plants13162213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The causal agent of tomato leaf mold, Cladosporium fulvum, is prevalent in greenhouses worldwide, especially under high humidity conditions. Despite its economic impact, studies on antifungal agents targeting C. fulvum remain limited. This study evaluates biocontrol agents (BCAs) as alternatives to chemical controls for managing this disease, alongside the strobilurin fungicide azoxystrobin. From a Moroccan collection of potential BCAs, five bacterial isolates (Alcaligenes faecalis ACBC1, Pantoea agglomerans ACBC2, ACBP1, ACBP2, and Bacillus amyloliquefaciens SF14) and three fungal isolates (Trichoderma spp. OT1, AT2, and BT3) were selected and tested. The in vitro results demonstrated that P. agglomerans isolates reduced mycelial growth by over 60% at 12 days post-inoculation (dpi), while Trichoderma isolates achieved 100% inhibition in just 5 dpi. All bacterial isolates produced volatile organic compounds (VOCs) with mycelial inhibition rates ranging from 38.8% to 57.4%. Likewise, bacterial cell-free filtrates significantly inhibited the pathogen's mycelial growth. Greenhouse tests validated these findings, showing that all the tested isolates were effective in reducing disease incidence and severity. Azoxystrobin effectively impeded C. fulvum growth, particularly in protective treatments. Fourier transform infrared spectroscopy (FTIR) analysis revealed significant biochemical changes in the treated plants, indicating fungal activity. This study provides valuable insights into the efficacy of these BCAs and azoxystrobin, contributing to integrated management strategies for tomato leaf mold disease.
Collapse
Affiliation(s)
- Zineb Belabess
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (Z.B.); (B.G.); (I.L.)
- Plant Protection Laboratory, Regional Center of Agricultural Research of Meknes, National Institute of Agricultural Research, Km 13, Route Haj Kaddour, BP.578, Meknes 50000, Morocco
| | - Bilale Gajjout
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (Z.B.); (B.G.); (I.L.)
| | - Ikram Legrifi
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (Z.B.); (B.G.); (I.L.)
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, Route d’Imouzzer, P.O. Box 2202, Fez 30000, Morocco
| | - Essaid Ait Barka
- Induced Resistance and Plant Bio-Protection Unit-EA 4707-USC INRAE1488, Reims Champagne-Ardenne University, 51100 Reims, France;
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (Z.B.); (B.G.); (I.L.)
| |
Collapse
|
3
|
Nurzhanova AA, Mamirova A, Mursaliyeva V, Nurmagambetova AS, Zhumasheva Z, Turdiyev T, Kushnarenko S, Ismailova E. In Vitro Approbation of Microbial Preparations to Shield Fruit Crops from Fire Blight: Physio-Biochemical Parameters. PLANTS (BASEL, SWITZERLAND) 2024; 13:1431. [PMID: 38891242 PMCID: PMC11174909 DOI: 10.3390/plants13111431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
The need for the increasing geographical spread of fire blight (FB) affecting fruit crops to be addressed led to large-scale chemicalization of the environmental matrices and reduction of plant productivity. The current study aimed to assess the effects of novel biopreparations at different exposure durations on photosynthetic pigment content and antioxidant enzyme activity in leaves of apple and pear varieties with varying levels of resistance to FB. Biopreparations were formulated from a cultural broth containing Lacticaseibacillus paracasei M12 or Bacillus amyloliquefaciens MB40 isolated from apple trees' phyllosphere. Aseptic leaves from blight-resistant (endemic Malus sieversii cv. KG10), moderately resistant (Pyrus pyraster cv. Wild), and susceptible (endangered Malus domestica cv. Aport and Pyrus communis cv. Shygys) varieties were employed. The impact of biopreparations on fruit crop antioxidant systems and photosynthetic apparatuses was investigated in vitro. Study results indicated that FB-resistant varieties exhibit enhanced adaptability and oxidative stress resistance compared to susceptible ones. Plant response to biopreparations varied based on the plant's initial FB sensitivity and exposure duration. Indeed, biopreparations improved the adaptive response of the assimilation apparatus, protein synthesis, and catalase and superoxide dismutase activity in susceptible varieties, suggesting that biopreparations have the potential for future commercialization to manage FB in fruit crops.
Collapse
Affiliation(s)
- Asil A. Nurzhanova
- Institute of Plant Biology and Biotechnology, Timiryazev 45, Almaty 050040, Kazakhstan; (A.A.N.); (V.M.); (A.S.N.); (Z.Z.); (T.T.); (S.K.)
| | - Aigerim Mamirova
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan
| | - Valentina Mursaliyeva
- Institute of Plant Biology and Biotechnology, Timiryazev 45, Almaty 050040, Kazakhstan; (A.A.N.); (V.M.); (A.S.N.); (Z.Z.); (T.T.); (S.K.)
| | - Asiya S. Nurmagambetova
- Institute of Plant Biology and Biotechnology, Timiryazev 45, Almaty 050040, Kazakhstan; (A.A.N.); (V.M.); (A.S.N.); (Z.Z.); (T.T.); (S.K.)
| | - Zhadyra Zhumasheva
- Institute of Plant Biology and Biotechnology, Timiryazev 45, Almaty 050040, Kazakhstan; (A.A.N.); (V.M.); (A.S.N.); (Z.Z.); (T.T.); (S.K.)
| | - Timur Turdiyev
- Institute of Plant Biology and Biotechnology, Timiryazev 45, Almaty 050040, Kazakhstan; (A.A.N.); (V.M.); (A.S.N.); (Z.Z.); (T.T.); (S.K.)
| | - Svetlana Kushnarenko
- Institute of Plant Biology and Biotechnology, Timiryazev 45, Almaty 050040, Kazakhstan; (A.A.N.); (V.M.); (A.S.N.); (Z.Z.); (T.T.); (S.K.)
| | - Elvira Ismailova
- Scientific Production Centre of Microbiology and Virology, Bogenbai Batyr 105, Almaty 050010, Kazakhstan;
| |
Collapse
|
4
|
Zheng L, Han Z, Wang S, Gao A, Liu L, Pan H, Zhang H. Transcriptomic analysis and knockout experiments reveal the role of suhB in the biocontrol effects of Pantoea jilinensis D25 on Botrytis cinerea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170771. [PMID: 38336045 DOI: 10.1016/j.scitotenv.2024.170771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Tomato gray mold, caused by Botrytis cinerea, is an important disease in tomato. Pantoea jilinensis D25, isolated form tomato rhizosphere soil, can prevent B. cinerea infection in tomato. To determine the underlying biocontrol mechanism, the transcriptome of P. jilinensis D25 was assessed. Differential expression analysis revealed that 941 genes were upregulated and 997 genes were downregulated. Through transcriptome analysis, the suhB gene was knocked out. ΔPj-suhB exhibited lower swimming motility and colonization abilities than strain D25. After 4 days of co-cultivation, ΔPj-suhB could reduce the colony diameter, mycelial weight, and spore production of B. cinerea with the inhibitory rates of 31.72 %, 39.62 %, and 47.42 %, respectively, compared with control. However, the inhibitory rates of strain D25 were 52.91 %, 60.09 %, and 76.85 %, respectively, compared with control. Strain D25 could significantly downregulate pathogenesis-related genes in B. cinerea, whereas the expression level of these genes in B. cinerea was higher after treatment with ΔPj-suhB than after that with strain D25. In vitro experiments revealed that the lesion area and disease control efficacy were 1.520 and 0.038 cm2 and 68.7 % and 99.0 %, respectively, after ΔPj-suhB and strain D25 treatments. Pot experiments revealed that ΔPj-suhB and strain D25 could prevent tomato plants from B. cinerea infection with the disease reduction rate of 37.5 % and 75.0 %, respectively. Though the activities of defense-related enzymes and expression level of defense related genes in tomato plants were increased under ΔPj-suhB treatment, these effects were higher after strain D25 treatment. Thus, these results demonstrated that suhB was the key gene in strain D25 underlying its biocontrol effect and mobility.
Collapse
Affiliation(s)
- Lining Zheng
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Zhe Han
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Shengyi Wang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Ao Gao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Ling Liu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun 130062, PR China
| | - Hao Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
5
|
El Housni Z, Ezrari S, Radouane N, Tahiri A, Ouijja A, Errafii K, Hijri M. Evaluating Rhizobacterial Antagonists for Controlling Cercospora beticola and Promoting Growth in Beta vulgaris. Microorganisms 2024; 12:668. [PMID: 38674613 PMCID: PMC11052011 DOI: 10.3390/microorganisms12040668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Cercospora beticola Sacc. is an ascomycete pathogen that causes Cercospora leaf spot in sugar beets (Beta vulgaris L.) and other related crops. It can lead to significant yield losses if not effectively managed. This study aimed to assess rhizosphere bacteria from sugar beet soil as a biological control agent against C. beticola and evaluate their effect on B. vulgaris. Following a dual-culture screening, 18 bacteria exhibiting over 50% inhibition were selected, with 6 of them demonstrating more than 80% control. The bacteria were identified by sequencing the 16S rRNA gene, revealing 12 potential species belonging to 6 genera, including Bacillus, which was represented by 4 species. Additionally, the biochemical and molecular properties of the bacteria were characterized in depth, as well as plant growth promotion. PCR analysis of the genes responsible for producing antifungal metabolites revealed that 83%, 78%, 89%, and 56% of the selected bacteria possessed bacillomycin-, iturin-, fengycin-, and surfactin-encoding genes, respectively. Infrared spectroscopy analysis confirmed the presence of a lipopeptide structure in the bacterial supernatant filtrate. Subsequently, the bacteria were assessed for their effect on sugar beet plants in controlled conditions. The bacteria exhibited notable capabilities, promoting growth in both roots and shoots, resulting in significant increases in root length and weight and shoot length. A field experiment with four bacterial candidates demonstrated good performance against C. beticola compared to the difenoconazole fungicide. These bacteria played a significant role in disease control, achieving a maximum efficacy of 77.42%, slightly below the 88.51% efficacy attained with difenoconazole. Additional field trials are necessary to verify the protective and growth-promoting effects of these candidates, whether applied individually, combined in consortia, or integrated with chemical inputs in sugar beet crop production.
Collapse
Affiliation(s)
- Zakariae El Housni
- Laboratory of Biotechnology and Molecular Biology, Department of Biology, Faculty of Science, Moulay Ismail University, Zitoune, Meknès 50050, Morocco; (Z.E.H.); (A.O.)
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, BPS 40, Meknès 50001, Morocco;
| | - Said Ezrari
- Microbiology Unit, Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Medicine and Pharmacy Oujda, University Mohammed Premier, P.O. Box 724 Hay Al Quods, Oujda 60000, Morocco;
| | - Nabil Radouane
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco; (N.R.); (K.E.)
| | - Abdessalem Tahiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, BPS 40, Meknès 50001, Morocco;
| | - Abderrahman Ouijja
- Laboratory of Biotechnology and Molecular Biology, Department of Biology, Faculty of Science, Moulay Ismail University, Zitoune, Meknès 50050, Morocco; (Z.E.H.); (A.O.)
| | - Khaoula Errafii
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco; (N.R.); (K.E.)
| | - Mohamed Hijri
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco; (N.R.); (K.E.)
- Institut de Recherche en Biologie Végétale (IRBV), Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
6
|
Derikvand F, Bazgir E, El Jarroudi M, Darvishnia M, Mirzaei Najafgholi H, Laasli SE, Lahlali R. Unleashing the Potential of Bacterial Isolates from Apple Tree Rhizosphere for Biocontrol of Monilinia laxa: A Promising Approach for Combatting Brown Rot Disease. J Fungi (Basel) 2023; 9:828. [PMID: 37623599 PMCID: PMC10455449 DOI: 10.3390/jof9080828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Monilinia laxa, a notorious fungal pathogen responsible for the devastating brown rot disease afflicting apples, wreaks havoc in both orchards and storage facilities, precipitating substantial economic losses. Currently, chemical methods represent the primary means of controlling this pathogen in warehouses. However, this study sought to explore an alternative approach by harnessing the biocontrol potential of bacterial isolates against brown rot in apple trees. A total of 72 bacterial isolates were successfully obtained from the apple tree rhizosphere and subjected to initial screening via co-cultivation with the pathogen. Notably, eight bacterial isolates demonstrated remarkable efficacy, reducing the mycelial growth of the pathogen from 68.75 to 9.25%. These isolates were subsequently characterized based on phenotypic traits, biochemical properties, and 16S rRNA gene amplification. Furthermore, we investigated these isolates' production capacity with respect to two enzymes, namely, protease and chitinase, and evaluated their efficacy in disease control. Through phenotypic, biochemical, and 16S rRNA gene-sequencing analyses, the bacterial isolates were identified as Serratia marcescens, Bacillus cereus, Bacillus sp., Staphylococcus succinus, and Pseudomonas baetica. In dual culture assays incorporating M. laxa, S. marcescens and S. succinus exhibited the most potent degree of mycelial growth inhibition, achieving 68.75 and 9.25% reductions, respectively. All the bacterial isolates displayed significant chitinase and protease activities. Quantitative assessment of chitinase activity revealed the highest levels in strains AP5 and AP13, with values of 1.47 and 1.36 U/mL, respectively. Similarly, AP13 and AP6 exhibited the highest protease activity, with maximal enzyme production levels reaching 1.3 and 1.2 U/mL, respectively. In apple disease control assays, S. marcescens and S. succinus strains exhibited disease severity values of 12.34% and 61.66% (DS), respectively, highlighting their contrasting efficacy in mitigating disease infecting apple fruits. These findings underscore the immense potential of the selected bacterial strains with regard to serving as biocontrol agents for combatting brown rot disease in apple trees, thus paving the way for sustainable and eco-friendly alternatives to chemical interventions.
Collapse
Affiliation(s)
- Fatemeh Derikvand
- Plant Pathology, Faculty of Agriculture, Lorestan University, Lorestan, Khorramabad 68151-44316, Iran; (F.D.); (M.D.); (H.M.N.)
| | - Eidi Bazgir
- Plant Pathology, Faculty of Agriculture, Lorestan University, Lorestan, Khorramabad 68151-44316, Iran; (F.D.); (M.D.); (H.M.N.)
| | - Moussa El Jarroudi
- Water, Environment and Development Unit, Department of Environmental Sciences and Management, UR SPHERES Research Unit, University of Liège, 6700 Arlon, Belgium;
| | - Mostafa Darvishnia
- Plant Pathology, Faculty of Agriculture, Lorestan University, Lorestan, Khorramabad 68151-44316, Iran; (F.D.); (M.D.); (H.M.N.)
| | - Hossein Mirzaei Najafgholi
- Plant Pathology, Faculty of Agriculture, Lorestan University, Lorestan, Khorramabad 68151-44316, Iran; (F.D.); (M.D.); (H.M.N.)
| | - Salah-Eddine Laasli
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco;
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco;
- Plant Pathology Laboratory, AgroBioSciences, College of Sustainable Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| |
Collapse
|
7
|
Lyousfi N, Legrifi I, Ennahli N, Blenzar A, Amiri S, Laasli SE, Handaq N, Belabess Z, Ait Barka E, Lahlali R. Evaluating Food Additives Based on Organic and Inorganic Salts as Antifungal Agents against Monilinia fructigena and Maintaining Postharvest Quality of Apple Fruit. J Fungi (Basel) 2023; 9:762. [PMID: 37504750 PMCID: PMC10381578 DOI: 10.3390/jof9070762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
A set of commonly used food additives was evaluated for their antifungal activity against the brown rot disease of fruits caused by the fungal pathogen Monilinia fructigena, which is one of the most economically important agents, causing important damage to pome fruits, such as pears and apples. The radial mycelial growth of the fungal pathogen was assessed in PDA amended with different concentrations (0.5, 2, 2.5, and 5%) of each additive. The results underlined that most of the additives displayed a significant inhibition of mycelial growth, with the extent of inhibition varying depending on the specific additive and concentration used. Five food additives showed high inhibition rates (above 88%), of which sodium bicarbonate, sodium carbonate, copper sulphate, and sodium hydroxide were the most effective, whereas ammonium carbonate, magnesium chlorite, and citric acid were the least effective. Interestingly, the coatings containing sodium bicarbonate, copper sulphate, and ammonium bicarbonate significantly reduced the incidence of brown rot disease in apples, but other additives were not effective, such as ammonium carbonate and magnesium sulphate. The anhydrous sodium sulphate used at a concentration of 2%, was found to be one of the least effective additives, with a reduction rate of 20%. Subsequently, food additives showing good growth inhibition rates and reduction in disease severity were then tested in semi-commercial trials at temperatures of 4 °C and 22 °C. The results indicated that these additives demonstrate effectiveness in controlling M. fructigena at specific concentrations, and lower temperatures (4 °C) can improve the efficiency of the control measures. In addition, the selected food additives exhibited significant antimicrobial activity against M. fructigena, suggesting their application as a promising alternative for managing brown rot disease in apple fruits.
Collapse
Affiliation(s)
- Nadia Lyousfi
- Phytopathology Unit, Department of Plant Protection, Ecole National d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
- Laboratory of Plant Protection and Environment, Faculty of Sciences, Moulay Ismail University, Zitoune, Meknès 11201, Morocco
| | - Ikram Legrifi
- Phytopathology Unit, Department of Plant Protection, Ecole National d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, Route d'Imouzzer, Fez 30000, Morocco
| | - Nabil Ennahli
- Phytopathology Unit, Department of Plant Protection, Ecole National d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
| | - Abdelali Blenzar
- Laboratory of Plant Protection and Environment, Faculty of Sciences, Moulay Ismail University, Zitoune, Meknès 11201, Morocco
| | - Said Amiri
- Phytopathology Unit, Department of Plant Protection, Ecole National d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
| | - Salah-Eddine Laasli
- Phytopathology Unit, Department of Plant Protection, Ecole National d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
| | - Nadia Handaq
- Equipe de Recherche, Valorization et Protection des Plantes, Laboratoire de Biologie d'Environnement et Developpement Durable, Ecole Normale Supérieure de Tétouan, Abdelmalek Essaadi University, Tetouan BP 209 Martil, Martil 93150, Morocco
| | - Zineb Belabess
- Plant Protection Laboratory, Regional Center of Agricultural Research of Meknes, National Institute of Agricultural Research, Km 13, Route Haj Kaddour, BP.578, Meknes 50001, Morocco
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et BioProtection des Plantes-EA 4707-USC INRAe1488, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, 51687 Reims, France
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole National d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
- Plant Pathology Laboratory, AgroBioSciences, College of Sustainable Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| |
Collapse
|
8
|
Grahovac J, Pajčin I, Vlajkov V. Bacillus VOCs in the Context of Biological Control. Antibiotics (Basel) 2023; 12:antibiotics12030581. [PMID: 36978448 PMCID: PMC10044676 DOI: 10.3390/antibiotics12030581] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
A contemporary agricultural production system relying on heavy usage of agrochemicals represents a questionable outlook for sustainable food supply in the future. The visible negative environmental impacts and unforeseen consequences to human and animal health have been requiring a shift towards the novel eco-friendly alternatives for chemical pesticides for a while now. Microbial-based biocontrol agents have shown a promising potential for plant disease management. The bacteria of the genus Bacillus have been among the most exploited microbial active components due to several highly efficient mechanisms of action against plant pathogens, as well as a palette of additional plant-beneficial mechanisms, together with their suitable properties for microbial biopesticide formulations. Among other bioactive metabolites, volatile organic compounds (VOCs) have been investigated for their biocontrol applications, exhibiting the main advantage of long-distance effect without the necessity for direct contact with plants or pathogens. The aim of this study is to give an overview of the state-of-the-art in the field of Bacillus-based VOCs, especially in terms of their antibacterial, antifungal, and nematicidal action as the main segments determining their potential for biocontrol applications in sustainable agriculture.
Collapse
|
9
|
Matilla MA, Evans TJ, Martín J, Udaondo Z, Lomas‐Martínez C, Rico‐Jiménez M, Reyes F, Salmond GPC. Herbicolin A production and its modulation by quorum sensing in a
Pantoea agglomerans
rhizobacterium bioactive against a broad spectrum of plant‐pathogenic fungi. Microb Biotechnol 2022. [PMID: 36528875 PMCID: PMC10364316 DOI: 10.1111/1751-7915.14193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Global population growth makes it necessary to increase agricultural production yields. However, climate change impacts and diseases caused by plant pathogens are challenging modern agriculture. Therefore, it is necessary to look for alternatives to the excessive use of chemical fertilizers and pesticides. The plant microbiota plays an essential role in plant nutrition and health, and offers enormous potential to meet future challenges of agriculture. In this context, here we characterized the antifungal properties of the rhizosphere bacterium Pantoea agglomerans 9Rz4, which is active against a broad spectrum of plant pathogenic fungi. Chemical analyses revealed that strain 9Rz4 produces the antifungal herbicolin A and its biosynthetic gene cluster was identified and characterized. We found that the only acyl-homoserine lactone-based quorum sensing system of 9Rz4 modulates herbicolin A gene cluster expression. No role of plasmid carriage in the production of herbicolin A was observed. Plant assays revealed that herbicolin A biosynthesis does not affect the root colonization ability of P. agglomerans 9Rz4. Current legislative restrictions are aimed at reducing the use of chemical pesticides in agriculture, and the results derived from this study may lay the foundations for the development of novel biopesticides from rhizosphere microorganisms.
Collapse
Affiliation(s)
- Miguel A. Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín Consejo Superior de Investigaciones Científicas Granada Spain
- Department of Biochemistry University of Cambridge Cambridge UK
| | - Terry J. Evans
- Department of Biochemistry University of Cambridge Cambridge UK
| | - Jesús Martín
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Granada Spain
| | - Zulema Udaondo
- Department of Biomedical Informatics University of Arkansas for Medical Sciences Little Rock Arkansas USA
| | - Cristina Lomas‐Martínez
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín Consejo Superior de Investigaciones Científicas Granada Spain
| | - Míriam Rico‐Jiménez
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín Consejo Superior de Investigaciones Científicas Granada Spain
| | - Fernando Reyes
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Granada Spain
| | | |
Collapse
|
10
|
Kolytaitė A, Vaitiekūnaitė D, Antanynienė R, Baniulis D, Frercks B. Monilinia fructigena Suppressing and Plant Growth Promoting Endophytic Pseudomonas spp. Bacteria Isolated from Plum. Microorganisms 2022; 10:microorganisms10122402. [PMID: 36557655 PMCID: PMC9781308 DOI: 10.3390/microorganisms10122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Brown rot caused by Monilinia spp. fungi causes substantial losses in stone and pome fruit production. Reports suggest that up to 90% of the harvest could be lost. This constitutes an important worldwide issue in the food chain that cannot be solved by the use of chemical fungicides alone. Biocontrol agents (BCAs) based on microorganisms are considered a potential alternative to chemical fungicides. We hypothesized that endophytic bacteria from Prunus domestica could exhibit antagonistic properties towards Monilinia fructigena, one of the main causative agents of brown rot. Among the bacteria isolated from vegetative buds, eight isolates showed antagonistic activity against M. fructigena, including three Pseudomonas spp. isolates that demonstrated 34% to 90% inhibition of the pathogen's growth when cultivated on two different media in vitro. As the stimulation of plant growth could contribute to the disease-suppressing activity of the potential BCAs, plant growth promoting traits (PGPTs) were assessed for bacterial isolates with M. fructigena-suppressing activity. While all isolates were capable of producing siderophores and indole-3-acetic acid (IAA), fixating nitrogen, mineralizing organic phosphate, and solubilizing inorganic phosphate and potassium, only the Pseudomonas spp. isolates showed 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. Overall, our study paves the way for the development of an eco-friendly strategy for managing M. fructigena pathogens by using BCAs including Pseudomonas spp. bacteria, which could also serve as growth stimulators.
Collapse
Affiliation(s)
- Augustina Kolytaitė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, 54333 Babtai, Kaunas reg., Lithuania
| | - Dorotėja Vaitiekūnaitė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepu Str. 1, 53101 Girionys, Kaunas reg., Lithuania
| | - Raminta Antanynienė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, 54333 Babtai, Kaunas reg., Lithuania
| | - Danas Baniulis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, 54333 Babtai, Kaunas reg., Lithuania
- Correspondence:
| | - Birutė Frercks
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, 54333 Babtai, Kaunas reg., Lithuania
| |
Collapse
|
11
|
Legrifi I, Al Figuigui J, El Hamss H, Lazraq A, Belabess Z, Tahiri A, Amiri S, Barka EA, Lahlali R. Potential for Biological Control of Pythium schmitthenneri Root Rot Disease of Olive Trees ( Olea europaea L.) by Antagonistic Bacteria. Microorganisms 2022; 10:1635. [PMID: 36014053 PMCID: PMC9412840 DOI: 10.3390/microorganisms10081635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Several diseases affect the productivity of olive trees, including root rot disease caused by Pythium genera. Chemical fungicides, which are often used to manage this disease, have harmful side effects on humans as well as environmental components. Biological management is a promising control approach that has shown its great potential as an efficient eco-friendly alternative to treating root rot diseases. In the present study, the antagonistic activity of ten bacterial isolates was tested both in vitro and in planta against Pythium schmitthenneri, the causal agent of olive root rot disease. These bacterial isolates belonging to the genera Alcaligenes, Pantoea, Bacillus, Sphingobacterium, and Stenotrophomonas were chosen for their potential antimicrobial effects against many pathogens. Results of the in vitro confrontation bioassay revealed a high reduction of mycelial growth exceeding 80%. The antifungal effect of the volatile organic compounds (VOCs) was observed for all the isolates, with mycelial inhibition rates ranging from 28.37 to 70.32%. Likewise, the bacterial cell-free filtrates showed important inhibition of the mycelial growth of the pathogen. Overall, their efficacy was substantially affected by the nature of the bacterial strains and their modes of action. A greenhouse test was then carried out to validate the in vitro results. Interestingly, two bacterial isolates, Alcaligenes faecalis ACBC1 and Bacillus amyloliquefaciens SF14, were the most successful in managing the disease. Our findings suggested that these two antagonistic bacterial isolates have promising potential as biocontrol agents of olive root rot disease.
Collapse
Affiliation(s)
- Ikram Legrifi
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco
| | - Jamila Al Figuigui
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco
| | - Hajar El Hamss
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
| | - Abderrahim Lazraq
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco
| | - Zineb Belabess
- Plant Protection Laboratory, Regional Center of Agricultural Research of Oujda, National Institute of Agricultural Research, Avenue Mohamed VI, BP428 Oujda, Oujda 60000, Morocco
| | - Abdessalem Tahiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
| | - Said Amiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
| |
Collapse
|
12
|
Itkina DL, Suleimanova AD, Sharipova MR. Isolation, Purification, and Identification of the Secretion Compound Pantoea brenneri AS3 with Fungicidal Activity. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s000368382204007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Gao XY, Xie W, Liu Y, Ma L, Liu ZP. Alcaligenes ammonioxydans HO-1 antagonizes Bacillus velezensis via hydroxylamine-triggered population response. Front Microbiol 2022; 13:920052. [PMID: 35935184 PMCID: PMC9355588 DOI: 10.3389/fmicb.2022.920052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Antagonism is a common behavior seen between microbes in nature. Alcaligenes ammonioxydans HO-1 converts ammonia to nitrogen under aerobic conditions, which leads to the accumulation of extracellular hydroxylamine (HA), providing pronounced growth advantages against many bacterial genera, including Bacillus velezensis V4. In contrast, a mutant variant of A. ammonioxydans, strain 2-29, that cannot produce HA fails to antagonize other bacteria. In this article, we demonstrate that cell-free supernatants derived from the antagonistic HO-1 strain were sufficient to reproduce the antagonistic behavior and the efficiency of this inhibition correlated strongly with the HA content of the supernatant. Furthermore, reintroducing the capacity to produce HA to the 2-29 strain or supplementing bacterial co-cultures with HA restored antagonistic behavior. The HA-mediated antagonism was dose-dependent and affected by the temperature, but not by pH. HA caused a decline in biomass, cell aggregation, and hydrolysis of the cell wall in exponentially growing B. velezensis bulk cultures. Analysis of differential gene expression identified a series of genes modulating multicellular behavior in B. velezensis. Genes involved in motility, chemotaxis, sporulation, polypeptide synthesis, and non-ribosomal peptide synthesis were all significantly downregulated in the presence of HA, whereas autolysis-related genes showed upregulation. Taken together, these findings indicate that HA affects the population response of coexisting strains and also suggest that A. ammonioxydans HO-1 antagonize other bacteria by producing extracellular HA that, in turn, acts as a signaling molecule.
Collapse
Affiliation(s)
- Xi-Yan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Xie
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lan Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Combination of Sodium Bicarbonate (SBC) with Bacterial Antagonists for the Control of Brown Rot Disease of Fruit. J Fungi (Basel) 2022; 8:jof8060636. [PMID: 35736119 PMCID: PMC9225446 DOI: 10.3390/jof8060636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Simultaneous treatment with antagonistic bacteria Bacillus amylolquefaciens (SF14), Alcaligenes faecalis (ACBC1), and the food additive sodium bicarbonate (SBC) to control post-harvest brown rot disease caused by Monilinia fructigena, and their effect on the post-harvest quality of nectarines were evaluated. Four concentrations of SBC (0.5, 2, 3.5, and 5%) were tested. Results showed that bacterial antagonists displayed remarkable compatibility with different concentrations of SBC and that their viability was not affected. The results obtained in vitro and in vivo bioassays showed a strong inhibitory effect of all treatments. The combination of each bacterial antagonist with SBC revealed a significant improvement in their biocontrol efficacies. The inhibition rates of mycelial growth ranged from 60.97 to 100%. These results also indicated that bacterial antagonists (SF14 or ACBC1) used at 1 × 108 CFU/ mL in combination with 2, 3.5, or 5% SBC significantly improved the control of M. fructigina by inhibiting the germination of spores. Interestingly, disease incidence and lesion diameter in fruits treated with SF14, ACBC1 alone, or in combination with SBC were significantly lower than those in the untreated fruits. In vivo results showed a significant reduction in disease severity ranging from 9.27 to 64.83% compared to the untreated control, while maintaining the appearance, firmness, total soluble solids (TSS), and titratable acidity (TA) of fruits. These results suggested that the improved disease control by the two antagonistic bacteria was more likely due to the additional inhibitory effects of SBC on the mycelial growth and spore germination of the pathogenic fungus. Overall, the combination of both bacteria with SBC provided better control of brown rot disease. Therefore, a mixture of different management strategies can effectively control brown rot decay on fruits.
Collapse
|
15
|
Wang SY, Herrera-Balandrano DD, Wang YX, Shi XC, Chen X, Jin Y, Liu FQ, Laborda P. Biocontrol Ability of the Bacillus amyloliquefaciens Group, B. amyloliquefaciens, B. velezensis, B. nakamurai, and B. siamensis, for the Management of Fungal Postharvest Diseases: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6591-6616. [PMID: 35604328 DOI: 10.1021/acs.jafc.2c01745] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Bacillus amyloliquefaciens group, composed of B. amyloliquefaciens, B. velezensis, B. nakamurai, and B. siamensis, has recently emerged as an interesting source of biocontrol agents for the management of pathogenic fungi. In this review, all the reports regarding the ability of these species to control postharvest fungal diseases have been covered for the first time. B. amyloliquefaciens species showed various antifungal mechanisms, including production of antifungal lipopeptides and volatile organic compounds, competition for nutrients, and induction of disease resistance. Most reports discussed their use for the control of fruit diseases. Several strains were studied in combination with additives, improving their inhibitory efficacies. In addition, a few strains have been commercialized. Overall, studies showed that B. amyloliquefaciens species are a suitable environmentally friendly alternative for the control of postharvest diseases. However, there are still crucial knowledge gaps to improve their efficacy and host range.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | | | - Yan-Xia Wang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Xin Chen
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Yan Jin
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Feng-Quan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| |
Collapse
|
16
|
The rhizosphere of Sulla spinosissima growing in abandoned mining soils is a reservoir of heavy metals tolerant plant growth-promoting rhizobacteria. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
In Vitro and In Vivo Antifungal Activities of Nine Commercial Essential Oils against Brown Rot in Apples. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
After harvest, numerous plant pathogenic fungi can infect fresh fruits during transit and storage. Although synthetic fungicides are often used to manage postharvest fruit diseases, their application may lead to problems such as the development of fungicide resistance and residues on fruits. In the present study, the antifungal potential of nine commercial essential oils (EOs) extracted from Eucalyptus radiata ssp. radiata, Mentha pulegium, Rosmarinus officinalis, Origanum compactum, Lavandula angustifolia, Syzygium aromaticum, Thymus vulgaris, Citrus aurantium, and Citrus sinensis were tested against the apple brown rot fungi Monilinia laxa and Monilinia fructigena at different concentrations in vitro (against mycelial growth and spore germination) and in vivo (on detached apple fruit and in semi-commercial postharvest conditions). In addition, fruit quality parameters were evaluated and the composition of the EOs was characterized by Fourier transform infrared (FT-IR) spectroscopy. In vitro results showed significant antifungal activity of all tested EOs on both fungal species. EOs from S. aromaticum were the most effective, whereby inhibition percentages ranged from 64.0 to 94.7% against M. laxa and from 63.9 to 94.4% against M. fructigena for the concentrations 12.5 and 100 µL/mL, respectively, with an EC50 of 6.74 µL/mL for M. laxa and 10.1 µL/mL for M. fructigena. The higher concentrations tested of S. aromaticum, T. vulgaris, C. aurantium, and C. sinensis EOs significantly reduced spore germination, brown rot incidence, and lesion diameter. Evaluation of the treatments during storage for 20 days at 4 °C on apple fruit quality parameters demonstrated the preservation of the fruit quality characteristics studied (weight loss, total soluble solids, titratable acidity, firmness, and maturity index). FT-IR spectra obtained from all tested EO samples presented characteristic peaks and a high diversity of functional groups such as O–H groups, C–H bonds, and C–C stretching. The EOs examined here may have the potential for controlling postharvest fungal diseases of fruit such as brown rot.
Collapse
|
18
|
Zheng L, Zhang C, Wu X, Liu L, Zhang H. Efficacy assessment of Pantoea jilinensis D25 fermentation broth against Botrytis cinerea. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Casals C, Guijarro B, De Cal A, Torres R, Usall J, Perdrix V, Hilscher U, Ladurner E, Smets T, Teixidó N. Field validation of biocontrol strategies to control brown rot on stone fruit in several European countries. PEST MANAGEMENT SCIENCE 2021; 77:2502-2511. [PMID: 33442935 DOI: 10.1002/ps.6281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Brown rot caused by Monilinia spp. is the most significant disease of stone fruit. New approaches to fruit production have necessitated the development of control strategies that are more eco- and consumer-friendly. An efficient field strategy to control brown rot was previously designed based on the application of two biocontrol agents (BCAs), Bacillus amyloliquefaciens CPA-8 (CPA-8) or Penicillium frequentans 909 (Pf909), with calendar-based treatment. In the present study, the strategy was validated on different stone fruit hosts in four producing countries over two seasons. RESULTS The results obtained were reported according to three different scenarios: Scenario 1, in which there was no presence of disease in the field; Scenario 2, in which high disease pressure occurred in the field and treatments (biologicals or chemicals) were not effective; and Scenario 3, with low or medium to high disease presence. The results were successful because, in general, BCA strategies were shown to control brown rot to a similar extent as chemicals strategies. We found that most of the trials conducted in this study were classed under Scenario 3 (62.5%), with only 12.5% and 25% of the trials classed under Scenarios 1 and 2, respectively. CONCLUSION These novel findings allowed the formulation of CPA-8 and Pf909 as valuable tools for farmers to produce stone fruits more competitively and meet consumer demand for safer and more environmentally friendly products. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Carla Casals
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Lleida, Spain
| | - Belén Guijarro
- INIA, Plant Protection Department, Carretera de La Coruña km 7, 28040, Madrid, Spain
| | - Antonieta De Cal
- INIA, Plant Protection Department, Carretera de La Coruña km 7, 28040, Madrid, Spain
| | - Rosario Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Lleida, Spain
| | - Josep Usall
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Lleida, Spain
| | | | - Ulrike Hilscher
- Bayer CropScience Biologics GmbH, Metkenberg 6, 23970 Wismar, Germany
| | - Edith Ladurner
- CBC (Europe) S.r.l. - BIOGARD Division, , Via Calcinaro 2085/int. 7, 47521 Cesena (FC), Italy
| | - Tom Smets
- PCfruit npo, Fruittuinweg 1, 3800, Sint-Truiden, Belgium
| | - Neus Teixidó
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Lleida, Spain
| |
Collapse
|
20
|
Bacillus amyloliquefaciens ALB65 Inhibits the Growth of Listeria monocytogenes on Cantaloupe Melons. Appl Environ Microbiol 2020; 87:AEM.01926-20. [PMID: 33097500 DOI: 10.1128/aem.01926-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that causes high rates of hospitalization and mortality in people infected. Contamination of fresh, ready to eat produce by this pathogen is especially troubling because of the ability of this bacterium to grow on produce under refrigeration temperatures. In this study, we created a library of over 8,000 plant phyllosphere-associated bacteria and screened them for the ability to inhibit the growth of L. monocytogenes in an in vitro fluorescence-based assay. One isolate, later identified as Bacillus amyloliquefaciens ALB65, was able to inhibit the fluorescence of L. monocytogenes by >30-fold in vitro. B. amyloliquefaciens ALB65 was also able to grow, persist, and reduce the growth of L. monocytogenes by >1.5 log CFU on cantaloupe melon rinds inoculated with 5 × 103 CFU at 30°C and was able to completely inhibit its growth at temperatures below 8°C. DNA sequence analysis of the B. amyloliquefaciens ALB65 genome revealed six gene clusters that are predicted to encode genes for antibiotic production; however, no plant or human virulence factors were identified. These data suggest that B. amyloliquefaciens ALB65 is an effective and safe biological control agent for the reduction of L. monocytogenes growth on intact cantaloupe melons and possibly other types of produce.IMPORTANCE Listeria monocytogenes is estimated by the Centers for Disease Control and Prevention and the U.S. Food and Drug Administration to cause disease in approximately 1,600 to 2,500 people in the United States every year. The largest known outbreak of listeriosis in the United States was associated with intact cantaloupe melons in 2011, resulting in 147 hospitalizations and 33 deaths. In this study, we demonstrated that Bacillus amyloliquefaciens ALB65 is an effective biological control agent for the reduction of L. monocytogenes growth on intact cantaloupe melons under both pre- and postharvest conditions. Furthermore, we demonstrated that B. amyloliquefaciens ALB65 can completely inhibit the growth of L. monocytogenes during cold storage (<8°C).
Collapse
|
21
|
Khan S, Shahid M, Khan MS, Syed A, Bahkali AH, Elgorban AM, Pichtel J. Fungicide-Tolerant Plant Growth-Promoting Rhizobacteria Mitigate Physiological Disruption of White Radish Caused by Fungicides Used in the Field Cultivation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7251. [PMID: 33020389 PMCID: PMC7579310 DOI: 10.3390/ijerph17197251] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022]
Abstract
Excessive use of fungicides in agriculture may result in substantial accumulation of active residues in soil, which affect crop health and yield. We investigated the response of Raphanus sativus (white radish) to fungicides in soil and potential beneficial interactions of radish plants with fungicide-tolerant plant growth-promoting rhizobacteria (PGPR). The PGPR were isolated from cabbage and mustard rhizospheres. Morphological and biochemical characteristics measured using standard methods, together with analysis of partial 16S rRNA gene sequences, revealed that fungicide-tolerant PGPR, isolates PS3 and AZ2, were closely related to Pseudomonas spp. These PGPR survived in the presence of high fungicide concentrations i.e., up to 2400 μg mL-1 carbendazim (CBZM) and 3200 μg mL-1 hexaconazole (HEXA). Bacterial isolates produced plant growth stimulants even under fungicide stress, though fungicides induced surface morphological distortion and alteration in membrane permeability of these bacteria, which was proved by a set of microscopic observations. Fungicides considerably affected the germination efficiency, growth, and physiological development of R. sativus, but these effects were relieved when inoculated with PGPR isolates. For instance, CBZM at 1500 mg kg-1 decreased whole dry biomass by 71%, whole plant length by 54%, total chlorophyll by 50%, protein content by 61%, and carotenoid production by 29%. After applying isolate AZ2 for white radish grown in CBZM (10 mg kg-1)-amended soil, it could improve plant growth and development with increased whole plant dry weight (10%), entire plant length (13%) and total chlorophyll content (18%). Similarly, isolate PS3 enhanced plant survival by relieving plant stress with declined biomarkers, i.e., proline (12%), malondialdehyde (3%), ascorbate peroxidase (6.5%), catalase (18%), and glutathione reductase (4%). Application of isolates AZ2 and PS3 could be effective for remediation of fungicide-contaminated soil and for improving the cultivation of radish plants while minimizing inputs of fungicides.
Collapse
Affiliation(s)
- Sadaf Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (M.S.K.)
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (M.S.K.)
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (M.S.K.)
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.); (A.M.E.)
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.); (A.M.E.)
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.); (A.M.E.)
| | - John Pichtel
- Natural Resources and Environmental Management, Ball State University, Muncie, IN 47306, USA;
| |
Collapse
|
22
|
Mina D, Pereira JA, Lino-Neto T, Baptista P. Screening the Olive Tree Phyllosphere: Search and Find Potential Antagonists Against Pseudomonas savastanoi pv. savastanoi. Front Microbiol 2020; 11:2051. [PMID: 32983037 PMCID: PMC7477298 DOI: 10.3389/fmicb.2020.02051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/05/2020] [Indexed: 02/02/2023] Open
Abstract
Olive knot (OK) is a widespread bacterial disease, caused by Pseudomonas savastanoi pv. savastanoi (Pss), which currently has not effective control methods. The use of naturally occurring microbial antagonists, such as bacteria, as biocontrol agents could be a strategy to manage this disease. The objective of this work was to select bacteria from olive tree phyllosphere able to antagonize Pss using in vitro and in planta experiments. The elucidation of their modes of action and the potential relationship between antagonism and bacteria origin has been investigated, as well. To this end, 60 bacterial isolates obtained from the surface and inner tissues of different organs (leaves, twigs, and knots), from two olive cultivars of varying susceptibilities to OK, were screened for their in vitro antagonistic effect against Pss. A total of 27 bacterial strains were able to significantly inhibit Pss growth, being this effect linked to bacteria origin. Strains from OK-susceptible cultivar and colonizing the surface of plant tissues showed the strongest antagonistic potential. The antagonistic activity was potentially due to the production of volatile compounds, siderophores and lytic enzymes. Bacillus amyloliquefaciens P41 was the most effective antagonistic strain and their capacity to control OK disease was subsequently assayed using in planta experiments. This strain significantly reduces OK disease severity (43.7%), knots weight (55.4%) and population size of Pss (26.8%), while increasing the shoot dry weight (55.0%) and root water content (39.6%) of Pss-infected olive plantlets. Bacterial isolates characterized in this study, in particular B. amyloliquefaciens P41, may be considered as promising biocontrol candidates for controlling OK disease.
Collapse
Affiliation(s)
- Diogo Mina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Teresa Lino-Neto
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Braga, Portugal
| | - Paula Baptista
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
23
|
Sorokan A, Benkovskaya G, Burkhanova G, Blagova D, Maksimov I. Endophytic Strain Bacillus subtilis 26DCryChS Producing Cry1Ia Toxin from Bacillus thuringiensis Promotes Multifaceted Potato Defense against Phytophthora infestans (Mont.) de Bary and Pest Leptinotarsa decemlineata Say. PLANTS 2020; 9:plants9091115. [PMID: 32872225 PMCID: PMC7570227 DOI: 10.3390/plants9091115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/07/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Novel properties of a previously obtained Bacillus subtilis 26DCryChS strain are described. The B. subtilis 26DCryChS strain is able to produce Cry1Ia δ-endotoxin from B. thuringiensis B-5351 and to exist in internal plant tissues of potato plants in the same manner as the endophytic B. subtilis 26D source strain (487 ± 53 and 420 ± 63 CFU*103/g, respectively). B. subtilis 26DCryChS, as much as the original B. subtilis 26D strain, inhibited mycelium growth of oomycete Phytophthora infestans (Mont.) de Bary and reduced late blight symptoms development on plants by 35% compared with non-treated ones, as well as showed insecticidal activity against Leptinotarsa decemlineata. Production of the fluorescent GFP protein in the B. subtilis 26D genome allowed visualizing the endophytes around damaged sites on beetle intestines. Bacillus strains under investigation induced systemic resistance to P. infestans and L. decemlineata through the activation of the transcription of PR genes in potato plants. Thus, the B. subtilis 26DCryChS strain was able to induce transcription of jasmonate-dependent genes and acquired the ability to promote transcription of a salicylate-dependent gene (PR1) in plants infected with the late blight agent and damaged by Colorado potato beetle larvae. The B. subtilis 26DCryChS strain could be put forward as a modern approach for biocontrol agents design.
Collapse
|