1
|
Caratis F, Karaszewski B, Klejbor I, Furihata T, Rutkowska A. Differential expression and modulation of EBI2 and 7α,25-OHC synthesizing (CH25H, CYP7B1) and degrading (HSD3B7) enzymes in mouse and human brain vascular cells. PLoS One 2025; 20:e0318822. [PMID: 39999050 PMCID: PMC11856462 DOI: 10.1371/journal.pone.0318822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
The endogenous ligand for the EBI2 receptor, oxysterol 7α,25OHC, crucial for immune responses, is finely regulated by CH25H, CYP7B1 and HSD3B7 enzymes. Lymphoid stromal cells and follicular dendritic cells within T cell follicles maintain a gradient of 7α,25OHC, with stromal cells increasing and dendritic cells decreasing its concentration. This gradient is pivotal for proper B cell positioning in lymphoid tissue. In the animal model of multiple sclerosis, the experimental autoimmune encephalomyelitis, the levels of 7α,25OHC rapidly increase in the central nervous system driving the migration of EBI2 expressing immune cells through the blood-brain barrier (BBB). To explore if blood vessel cells in the brain express these enzymes, we examined normal mouse brain microvessels and studied changes in their expression during inflammation. Ebi2 was abundantly expressed in endothelial cells, pericytes/smooth muscle cells, and astrocytic endfeet. Ch25h, Cyp7b1, and Hsd3b7 were variably detected in each cell type, suggesting their active involvement in oxysterol 7α,25OHC synthesis and gradient maintenance under normal conditions. Significant species-specific differences emerged in EBI2 and the enzyme levels between mouse and human BBB-forming cells. Under acute inflammatory conditions, Ebi2 and synthesizing enzyme modulation occurred in the brain, with the magnitude and direction of change based on the enzyme. Lastly, in an in vitro astrocyte migration model, CYP7B1 inhibitor clotrimazole, as well as EBI2 antagonist, NIBR189, inhibited lipopolysaccharide-induced cell migration indicating the involvement of EBI2 and its ligand in brain cell migration under inflammatory conditions.
Collapse
Affiliation(s)
- Fionä Caratis
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
| | - Bartosz Karaszewski
- Department of Adult Neurology, Medical University of Gdansk & University Clinical Center, Gdansk, Poland
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
| | - Ilona Klejbor
- Department of Anatomy, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Aleksandra Rutkowska
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
2
|
Foo CX, Fessler MB, Ronacher K. Oxysterols in Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:125-147. [PMID: 38036878 DOI: 10.1007/978-3-031-43883-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols have emerged as important bioactive lipids in the immune response to infectious diseases. This chapter discusses our current knowledge of oxysterols and their receptors in bacterial and viral infections of the respiratory and gastrointestinal tracts. Oxysterols are produced in response to infections and have multiple roles including chemotaxis of immune cells to the site of infection and regulation of inflammation. Some oxysterols have been shown to possess antiviral or antibacterial activity.Lastly, we delve into the emerging mechanisms of action of oxysterols. Oxysterols can enhance host cell resistance via reduction of membrane accessible cholesterol, modulate membrane immune signalling, and impact inflammasome activation and efferocytosis.
Collapse
Affiliation(s)
- Cheng X Foo
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Katharina Ronacher
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Kjær VMS, Daugvilaite V, Stepniewski TM, Madsen CM, Jørgensen AS, Bhuskute KR, Inoue A, Ulven T, Benned-Jensen T, Hjorth SA, Hjortø GM, Moo EV, Selent J, Rosenkilde MM. Migration mediated by the oxysterol receptor GPR183 depends on arrestin coupling but not receptor internalization. Sci Signal 2023; 16:eabl4283. [PMID: 37014928 DOI: 10.1126/scisignal.abl4283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
The chemotactic G protein-coupled receptor GPR183 and its most potent endogenous oxysterol ligand 7α,25-dihydroxycholesterol (7α,25-OHC) are important for immune cell positioning in secondary lymphoid tissues. This receptor-ligand pair is associated with various diseases, in some cases contributing favorably and in other cases adversely, making GPR183 an attractive target for therapeutic intervention. We investigated the mechanisms underlying GPR183 internalization and the role of internalization in the main biological function of the receptor, chemotaxis. We found that the C terminus of the receptor was important for ligand-induced internalization but less so for constitutive (ligand-independent) internalization. β-arrestin potentiated ligand-induced internalization but was not required for ligand-induced or constitutive internalization. Caveolin and dynamin were the main mediators of both constitutive and ligand-induced receptor internalization in a mechanism independent of G protein activation. Clathrin-mediated endocytosis also contributed to constitutive GPR183 internalization in a β-arrestin-independent manner, suggesting the existence of different pools of surface-localized GPR183. Chemotaxis mediated by GPR183 depended on receptor desensitization by β-arrestins but could be uncoupled from internalization, highlighting an important biological role for the recruitment of β-arrestin to GPR183. The role of distinct pathways in internalization and chemotaxis may aid in the development of GPR183-targeting drugs for specific disease contexts.
Collapse
Affiliation(s)
- Viktoria M S Kjær
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Viktorija Daugvilaite
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tomasz M Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)-Pompeu Fabra University (UPF), Barcelona 08003, Spain
- InterAx Biotech AG, Villigen 5234, Switzerland
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw 02-089, Poland
| | - Christian M Madsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid S Jørgensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaustubh R Bhuskute
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Trond Ulven
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tau Benned-Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Siv A Hjorth
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gertrud M Hjortø
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ee Von Moo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)-Pompeu Fabra University (UPF), Barcelona 08003, Spain
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Conlon TM, Yildirim AÖ. Oxysterol metabolism dictates macrophage influx during SARS-CoV-2 infection. Eur Respir J 2023; 61:13993003.02417-2022. [PMID: 36858446 DOI: 10.1183/13993003.02417-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Affiliation(s)
- Thomas M Conlon
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ali Önder Yildirim
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
5
|
Rapid GPR183-mediated recruitment of eosinophils to the lung after Mycobacterium tuberculosis infection. Cell Rep 2022; 40:111144. [PMID: 35905725 PMCID: PMC9460869 DOI: 10.1016/j.celrep.2022.111144] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/19/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
Influx of eosinophils into the lungs is typically associated with type II responses during allergy and fungal and parasitic infections. However, we previously reported that eosinophils accumulate in lung lesions during type I inflammatory responses to Mycobacterium tuberculosis (Mtb) in humans, macaques, and mice, in which they support host resistance. Here we show eosinophils migrate into the lungs of macaques and mice as early as one week after Mtb exposure. In mice this influx is CCR3 independent and instead requires cell-intrinsic expression of the oxysterol receptor GPR183, which is highly expressed on human and macaque eosinophils. Murine eosinophils interact directly with bacilli-laden alveolar macrophages, which upregulate the oxysterol-synthesizing enzyme Ch25h, and eosinophil recruitment is impaired in Ch25h-deficient mice. Our findings show that eosinophils are among the earliest cells from circulation to sense and respond to Mtb infection of alveolar macrophages and reveal a role for GPR183 in the migration of eosinophils into lung tissue. Eosinophils are usually associated with allergy or type II responses. Here, Bohrer et al. show that eosinophils are rapidly recruited to the lungs after respiratory infection with the intracellular pathogen Mycobacterium tuberculosis through the oxysterol sensor GPR183.
Collapse
|
6
|
Oxysterols in the Immune Response to Bacterial and Viral Infections. Cells 2022; 11:cells11020201. [PMID: 35053318 PMCID: PMC8773517 DOI: 10.3390/cells11020201] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 02/08/2023] Open
Abstract
Oxidized cholesterols, the so-called oxysterols, are widely known to regulate cholesterol homeostasis. However, more recently oxysterols have emerged as important lipid mediators in the response to both bacterial and viral infections. This review summarizes our current knowledge of selected oxysterols and their receptors in the control of intracellular bacterial growth as well as viral entry into the host cell and viral replication. Lastly, we briefly discuss the potential of oxysterols and their receptors as drug targets for infectious and inflammatory diseases.
Collapse
|
7
|
Kjær VMS, Ieremias L, Daugvilaite V, Lückmann M, Frimurer TM, Ulven T, Rosenkilde MM, Våbenø J. Discovery of GPR183 Agonists Based on an Antagonist Scaffold. ChemMedChem 2021; 16:2623-2627. [PMID: 34270165 PMCID: PMC8518411 DOI: 10.1002/cmdc.202100301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/30/2021] [Indexed: 11/15/2022]
Abstract
The G protein-coupled receptor GPR183/EBI2, which is activated by oxysterols, is a therapeutic target for inflammatory and metabolic diseases where both antagonists and agonists are of potential interest. Using the piperazine diamide core of the known GPR183 antagonist (E)-3-(4-bromophenyl)-1-(4-(4-methoxybenzoyl)piperazin-1-yl)prop-2-en-1-one (NIBR189) as starting point, we identified and sourced 79 structurally related compounds that were commercially available. In vitro screening of this compound collection using a Ca2+ mobilization assay resulted in the identification of 10 compounds with agonist properties. To enable establishment of initial structure-activity relationship trends, these were supplemented with five in-house compounds, two of which were also shown to be GPR183 agonists. Taken together, our findings suggest that the agonist activity of this compound series is dictated by the substitution pattern of one of the two distal phenyl rings, which functions as a molecular efficacy-switch.
Collapse
Affiliation(s)
- Viktoria M. S. Kjær
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3B2200CopenhagenDenmark
| | - Loukas Ieremias
- Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenJagtvej 1622100CopenhagenDenmark
| | - Viktorija Daugvilaite
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3B2200CopenhagenDenmark
| | - Michael Lückmann
- Novo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of Copenhagen Maersk TowerBlegdamsvej 3B2200CopenhagenDenmark
| | - Thomas M. Frimurer
- Novo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of Copenhagen Maersk TowerBlegdamsvej 3B2200CopenhagenDenmark
| | - Trond Ulven
- Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenJagtvej 1622100CopenhagenDenmark
| | - Mette M. Rosenkilde
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3B2200CopenhagenDenmark
| | - Jon Våbenø
- Helgeland Hospital TrustPrestmarkveien 18800SandnessjøenNorway
| |
Collapse
|
8
|
Misselwitz B, Wyss A, Raselli T, Cerovic V, Sailer AW, Krupka N, Ruiz F, Pot C, Pabst O. The oxysterol receptor GPR183 in inflammatory bowel diseases. Br J Pharmacol 2021; 178:3140-3156. [PMID: 33145756 DOI: 10.1111/bph.15311] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Immune cell trafficking is an important mechanism for the pathogenesis of inflammatory bowel disease (IBD). The oxysterol receptor GPR183 and its ligands, dihydroxylated oxysterols, can mediate positioning of immune cells including innate lymphoid cells. GPR183 has been mapped to an IBD risk locus, however another gene, Ubac2 is encoded on the reverse strand and associated with Behçet's disease, therefore the role of GPR183 as a genetic risk factor requires validation. GPR183 and production of its oxysterol ligands are up-regulated in human IBD and murine colitis. Gpr183 inactivation reduced severity of colitis in group 3 innate lymphoid cells-dependent colitis and in IL-10 colitis but not in dextran sodium sulphate colitis. Irrespectively, Gpr183 knockout strongly reduced accumulation of intestinal lymphoid tissue in health and all colitis models. In conclusion, genetic, translational and experimental studies implicate GPR183 in IBD pathogenesis and GPR183-dependent cell migration might be a therapeutic drug target for IBD. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Benjamin Misselwitz
- Gastroenterology, University Hospital of Visceral Surgery and Medicine, Inselspital Bern and Bern University, Bern, Switzerland
| | - Annika Wyss
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tina Raselli
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Andreas W Sailer
- Disease Area X, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Niklas Krupka
- Gastroenterology, University Hospital of Visceral Surgery and Medicine, Inselspital Bern and Bern University, Bern, Switzerland
| | - Florian Ruiz
- Service of Neurology, University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Caroline Pot
- Service of Neurology, University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Bartlett S, Gemiarto AT, Ngo MD, Sajiir H, Hailu S, Sinha R, Foo CX, Kleynhans L, Tshivhula H, Webber T, Bielefeldt-Ohmann H, West NP, Hiemstra AM, MacDonald CE, Christensen LVV, Schlesinger LS, Walzl G, Rosenkilde MM, Mandrup-Poulsen T, Ronacher K. GPR183 Regulates Interferons, Autophagy, and Bacterial Growth During Mycobacterium tuberculosis Infection and Is Associated With TB Disease Severity. Front Immunol 2020; 11:601534. [PMID: 33240287 PMCID: PMC7677584 DOI: 10.3389/fimmu.2020.601534] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Oxidized cholesterols have emerged as important signaling molecules of immune function, but little is known about the role of these oxysterols during mycobacterial infections. We found that expression of the oxysterol-receptor GPR183 was reduced in blood from patients with tuberculosis (TB) and type 2 diabetes (T2D) compared to TB patients without T2D and was associated with TB disease severity on chest x-ray. GPR183 activation by 7α,25-dihydroxycholesterol (7α,25-OHC) reduced growth of Mycobacterium tuberculosis (Mtb) and Mycobacterium bovis BCG in primary human monocytes, an effect abrogated by the GPR183 antagonist GSK682753. Growth inhibition was associated with reduced IFN-β and IL-10 expression and enhanced autophagy. Mice lacking GPR183 had significantly increased lung Mtb burden and dysregulated IFNs during early infection. Together, our data demonstrate that GPR183 is an important regulator of intracellular mycobacterial growth and interferons during mycobacterial infection.
Collapse
MESH Headings
- Animals
- Autophagy
- Bacterial Load
- Case-Control Studies
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/metabolism
- Disease Models, Animal
- Female
- Host-Pathogen Interactions
- Humans
- Interferons/metabolism
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/microbiology
- Lung/immunology
- Lung/metabolism
- Lung/microbiology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mycobacterium bovis/growth & development
- Mycobacterium bovis/immunology
- Mycobacterium bovis/pathogenicity
- Mycobacterium tuberculosis/growth & development
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/pathogenicity
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Severity of Illness Index
- Signal Transduction
- THP-1 Cells
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/metabolism
- Tuberculosis, Pulmonary/microbiology
Collapse
Affiliation(s)
- Stacey Bartlett
- Translational Research Institute–Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Adrian Tandhyka Gemiarto
- Translational Research Institute–Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Minh Dao Ngo
- Translational Research Institute–Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Haressh Sajiir
- Translational Research Institute–Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Semira Hailu
- Translational Research Institute–Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Roma Sinha
- Translational Research Institute–Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Cheng Xiang Foo
- Translational Research Institute–Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Happy Tshivhula
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tariq Webber
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas P. West
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Andriette M. Hiemstra
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Candice E. MacDonald
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Larry S. Schlesinger
- Host-Pathogens Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Gerhard Walzl
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | | | - Katharina Ronacher
- Translational Research Institute–Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|