1
|
Guo CY, Wang Y, Feng Q, Sun LJ, Feng YM, Dong YH, Xu CX. Umbilical Cord Mesenchymal Stem Cells Could Reduce Lung Damage Caused by H1N1 Influenza Virus Infection. J Med Virol 2025; 97:e70214. [PMID: 39949186 DOI: 10.1002/jmv.70214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/02/2025] [Accepted: 01/19/2025] [Indexed: 05/09/2025]
Abstract
Influenza A virus infection can cause acute respiratory distress syndrome (ARDS), and to date, viral pneumonia has been the main cause of ARDS. Bone marrow mesenchymal stem cells have shown promise for treating lung injury caused by avian influenza virus infection. At present, studies of the use of other stem cell types to treat human influenza virus-mediated lung damage are sparse. We assessed the use of umbilical cord mesenchymal stem cells (UC-MSCs) to treat damage from serious H1N1 influenza virus infections in cell and animal-based experiments. Maximum viral titers, inflammatory factor expression levels, differential expression of alveolar cell-related proteins, animal weight and survival rate, lung histopathology, and other indicators were evaluated. Compared with the control group, in cellular experiments, UC-MSCs could effectively inhibit H1N1 influenza viral replication and repair damaged host cells. In animal experiments, UC-MSCs reduced expression of pro-inflammatory cytokines, reduced entry of inflammatory cells into the lungs, alleviated lung inflammation, significantly reduced the extent of lung injury in mice, and improved lung histopathology, improving overall survival. A positive role of umbilical cord-derived mesenchymal stem cells in treating lung injury caused by H1N1 influenza virus infection that is worthy of clinical promotion has been demonstrated.
Collapse
Affiliation(s)
- Chun Yan Guo
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yi Wang
- Department of Hematology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Qing Feng
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Li Jun Sun
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yang Meng Feng
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yi Han Dong
- School of Medicine, Yan'an University, Yan'an, Shaanxi, China
| | - Cui Xiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Li L, Xu J, Yuan J, Zhang R, Xu T. TRPM2 deficiency ameliorated H9N2 influenza virus-induced acute lung injury in mice. Microb Pathog 2025; 199:107183. [PMID: 39615704 DOI: 10.1016/j.micpath.2024.107183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
Oxidative stress is involved in lung damage induced by the influenza virus. The transient receptor potential melastatin-2 (TRPM2) cation channel, a Ca2+ permeable non-selective cation channel, is implicated in the mediation of multiple tissue injuries induced by oxidative stress. The role of TRPM2 in several diseases has been widely studied, but there have been few studies on the involvement of TRPM2 in lung injury induced by the H9N2 influenza virus. We investigated the effects of TRPM2 on pathological alterations, oxidative stress, apoptosis, and inflammation in mice infected with H9N2 virus. TRPM2 knockout (TRPM2-/-) mice and wild-type (WT) mice were infected separately with H9N2 influenza virus. Pulmonary oedema, lung permeability, Ca2+ concentration, redox imbalance, apoptosis, and levels of inflammatory factors (IL-1β, IL-6, TNF-α) were increased in WT mice infected with H9N2 virus. However, these effects were diminished by TRPM2 knockout. Our results emphasised the significance of TRPM2 knockdown in mitigating pathological lung alterations, maintaining Ca2+ homeostasis, reducing oxidative damage, preventing apoptosis, and suppressing the production of inflammatory cytokines in H9N2 virus-infected mice. Therefore, inhibition of TRPM2 activation is a potentially important therapeutic strategy for treating lung injury.
Collapse
Affiliation(s)
- Longfei Li
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075000, Hebei, PR China
| | - Jiupeng Xu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075000, Hebei, PR China
| | - Jiaxin Yuan
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075000, Hebei, PR China
| | - Ruihua Zhang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075000, Hebei, PR China
| | - Tong Xu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075000, Hebei, PR China.
| |
Collapse
|
3
|
Tan W, Qi L, Tan Z. Animal models of infection-induced acute lung injury. Exp Lung Res 2024; 50:221-241. [PMID: 39558475 DOI: 10.1080/01902148.2024.2428939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/19/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
Aim: Acute lung injury (ALI) is characterized by severe hypoxemia, reduced lung elasticity, and notable pulmonary edema, often caused by infections and potentially progressing to ARDS. This article explores animal models of ALI and clarifies its main pathogenic mechanisms. Materials and Methods: we reviewed 20 years of ALI animal model advancements via PubMed, assessing clinical symptoms, histopathology, and reproducibility, and provided guidance on selecting models aligned with ALI pathogenesis. Results: key proinflammatory mediators and interleukins play a significant role in ALI development, though their interactions are not fully understood. Preclinical models are essential for investigating ALI causes and testing treatments. Animal models mimic ALI from sources such as infections, drugs, and I/R events, but differences between mouse and human lungs necessitate careful validation of these findings. Conclusions: A comprehensive strategy is essential to address clinical treatment and drug R&D challenges to prevent severe complications and reduce mortality rates.
Collapse
Affiliation(s)
- Wanying Tan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lingjun Qi
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan academy of Chinese Medicine Sciences, Chengdu, China
| | - Zhenghuai Tan
- Affiliated Sichuan Gem Flower Hospital of North Sichuan Medical College, Chengdu, China
| |
Collapse
|
4
|
Zhang K, Yang XM, Sun H, Cheng ZS, Peng J, Dong M, Chen F, Shen H, Zhang P, Li JF, Zhang Y, Jiang C, Huang J, Chan JFW, Yuan S, Luo YS, Shen XC. Modulating apoptosis as a novel therapeutic strategy against Respiratory Syncytial Virus infection: insights from Rotenone. Antiviral Res 2024; 231:106007. [PMID: 39299548 DOI: 10.1016/j.antiviral.2024.106007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Respiratory syncytial virus (RSV) is a significant cause of acute lower respiratory tract infections, particularly in vulnerable populations such as neonates, infants, young children, and the elderly. Among infants, RSV is the primary cause of bronchiolitis and pneumonia, contributing to a notable proportion of child mortality under the age of 5. In this study, we focused on investigating the pathogenicity of a lethal RSV strain, GZ08-18, as a model for understanding mechanisms of hypervirulent RSV. Our findings indicate that the heightened pathogenicity of GZ08-18 stems from compromised activation of intrinsic apoptosis, as evidenced by aberration of mitochondrial membrane depolarization in host cells. We thus hypothesized that enhancing intrinsic apoptosis could potentially attenuate the virulence of RSV strains and explored the effects of Rotenone, a natural compound known to stimulate the intrinsic apoptosis pathway, on inhibiting RSV infection. Our results demonstrate that Rotenone treatment significantly improved mouse survival rates and mitigated lung pathology following GZ08-18 infection. These findings suggest that modulating the suppressed apoptosis induced by RSV infection represents a promising avenue for antiviral intervention strategies.
Collapse
Affiliation(s)
- Ke Zhang
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Virology Institute, Department of Human Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Xiao-Meng Yang
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Virology Institute, Department of Human Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Haoran Sun
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518000, China
| | - Zhong-Shan Cheng
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, United States
| | - Jianqing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Minjun Dong
- Department of Surgical Oncology, Sir Run Run Shaw Hospital Affiliated to Zhejiang University, School of Medicine, Hangzhou, 310000, China
| | - Fang Chen
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Virology Institute, Department of Human Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Huyan Shen
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Virology Institute, Department of Human Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Pingping Zhang
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Virology Institute, Department of Human Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Jin-Fu Li
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Virology Institute, Department of Human Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130000, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130000, China
| | - Jiandong Huang
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518000, China
| | - Shuofeng Yuan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518000, China.
| | - Yu-Si Luo
- Department of Emergency ICU, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; Department of Emergency, Liupanshui Hospital of the Affiliated Hospital of Guizhou Medical University, Liupanshui, 553000, China.
| | - Xiang-Chun Shen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China.
| |
Collapse
|
5
|
Guo J, Zhang X, Pan R, Zheng Y, Chen W, Wang L. Liraglutide alleviates sepsis-induced acute lung injury by regulating pulmonary surfactant through inhibiting autophagy. Immunopharmacol Immunotoxicol 2024; 46:573-582. [PMID: 39112014 DOI: 10.1080/08923973.2024.2384897] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/22/2024] [Indexed: 04/09/2025]
Abstract
BACKGROUND Pulmonary surfactant (PS) plays an important role in the treatment of sepsis-induced acute lung injury (ALI). Liraglutide, a glucagon-like peptide-1 (GLP-1) analog, improves the secretion and function of PS in ALI, but the underlying mechanism remains unknown. This study aimed to investigate how liraglutide regulates PS secretion in ALI. METHODS C57BL/6 mice were injected subcutaneously with normal saline containing different concentrations of liraglutide after the establishment of the ALI model. MLE-12 cells were treated with liraglutide after LPS stimulation. The survival rate of mice, wet/dry weight ratio, inflammatory factors in bronchoalveolar lavage fluid (BALF), pulmonary injury, and apoptosis were analyzed. Cell viability, proliferation, apoptosis, the expression of SP-A, SP-B, and expression of autophagy-related proteins in cells were measured. RESULTS ALI mice showed reduced pulmonary injury, less apoptosis, and less inflammation compared to the controls. Liraglutide prolonged survival, decreased the wet/dry weight ratio, reduced inflammatory responses, and attenuated pulmonary edema compared with the ALI group. Moreover, LPS-induced cell damage and reduction of SP-A and SP-B expression were markedly reversed by liraglutide in MLE-12 cells. Furthermore, the protective effects of liraglutide were reversed by rapamycin. CONCLUSION Liraglutide alleviate sepsis-induced ALI by inhibiting autophagy and regulating PS.
Collapse
Affiliation(s)
- Junping Guo
- Rainbowfish Rehabilitation and nursing school, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Xiao Zhang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Ran Pan
- Rainbowfish Rehabilitation and nursing school, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Yueliang Zheng
- Department of Emergency Medicine, Emergency and Critical Care Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Lijun Wang
- Department of Endocrinology, Geriatric Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Mehdi SF, Pusapati S, Anwar MS, Lohana D, Kumar P, Nandula SA, Nawaz FK, Tracey K, Yang H, LeRoith D, Brownstein MJ, Roth J. Glucagon-like peptide-1: a multi-faceted anti-inflammatory agent. Front Immunol 2023; 14:1148209. [PMID: 37266425 PMCID: PMC10230051 DOI: 10.3389/fimmu.2023.1148209] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Inflammation contributes to many chronic conditions. It is often associated with circulating pro-inflammatory cytokines and immune cells. GLP-1 levels correlate with disease severity. They are often elevated and can serve as markers of inflammation. Previous studies have shown that oxytocin, hCG, ghrelin, alpha-MSH and ACTH have receptor-mediated anti-inflammatory properties that can rescue cells from damage and death. These peptides have been studied well in the past century. In contrast, GLP-1 and its anti-inflammatory properties have been recognized only recently. GLP-1 has been proven to be a useful adjuvant therapy in type-2 diabetes mellitus, metabolic syndrome, and hyperglycemia. It also lowers HbA1C and protects cells of the cardiovascular and nervous systems by reducing inflammation and apoptosis. In this review we have explored the link between GLP-1, inflammation, and sepsis.
Collapse
Affiliation(s)
- Syed Faizan Mehdi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Suma Pusapati
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Muhammad Saad Anwar
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Durga Lohana
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Parkash Kumar
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | | | - Fatima Kausar Nawaz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kevin Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Huan Yang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Derek LeRoith
- Division of Endocrinology, Diabetes & Bone Disease, Icahn School of Medicine at Mt. Sinai, New York, NY, United States
| | | | - Jesse Roth
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
7
|
Lv C, Li Y, Wang T, Zhang Q, Qi J, Sima M, Li E, Qin T, Shi Z, Li F, Wang X, Sun W, Feng N, Yang S, Xia X, Jin N, Zhou Y, Gao Y. Taurolidine improved protection against highly pathogenetic avian influenza H5N1 virus lethal-infection in mouse model by regulating the NF-κB signaling pathway. Virol Sin 2023; 38:119-127. [PMID: 36450323 PMCID: PMC10006309 DOI: 10.1016/j.virs.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Taurolidine (TRD), a derivative of taurine, has anti-bacterial and anti-tumor effects by chemically reacting with cell-walls, endotoxins and exotoxins to inhibit the adhesion of microorganisms. However, its application in antiviral therapy is seldom reported. Here, we reported that TRD significantly inhibited the replication of influenza virus H5N1 in MDCK cells with the half-maximal inhibitory concentration (EC50) of 34.45 μg/mL. Furthermore, the drug inhibited the amplification of the cytokine storm effect and improved the survival rate of mice lethal challenged with H5N1 (protection rate was 86%). Moreover, TRD attenuated virus-induced lung damage and reduced virus titers in mice lungs. Administration of TRD reduced the number of neutrophils and increased the number of lymphocytes in the blood of H5N1 virus-infected mice. Importantly, the drug regulated the NF-κB signaling pathway by inhibiting the separation of NF-κB and IκBa, thereby reducing the expression of inflammatory factors. In conclusion, our findings suggested that TRD could act as a potential anti-influenza drug candidate in further clinical studies.
Collapse
Affiliation(s)
- Chaoxiang Lv
- College of Life Sciences, Northeast Normal University, Changchun, Jilin, 130021, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China
| | - Yuanguo Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China; College of Animal Medicine, Jilin University, Changchun, 130000, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China
| | - Qiqi Zhang
- College of Life Sciences, Northeast Normal University, Changchun, Jilin, 130021, China
| | - Jing Qi
- College of Life Sciences, Northeast Normal University, Changchun, Jilin, 130021, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China
| | - Mingwei Sima
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China; College of Basic Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Entao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China
| | - Tian Qin
- College of Life Sciences, Northeast Normal University, Changchun, Jilin, 130021, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China
| | - Zhuangzhuang Shi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130033, China
| | - Fangxu Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China; College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xuefeng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China
| | - Weiyang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China
| | - Ningyi Jin
- College of Life Sciences, Northeast Normal University, Changchun, Jilin, 130021, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China; College of Basic Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130033, China.
| | - Yifa Zhou
- College of Life Sciences, Northeast Normal University, Changchun, Jilin, 130021, China.
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China; College of Basic Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130033, China; College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
8
|
Bai Y, Liu D, He Q, Liu J, Mao Q, Liang Z. Research progress on circular RNA vaccines. Front Immunol 2023; 13:1091797. [PMID: 36713460 PMCID: PMC9878156 DOI: 10.3389/fimmu.2022.1091797] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023] Open
Abstract
Owing to the success of linear mRNA coronavirus disease 2019 (COVID-19) vaccines, biopharmaceutical companies and research teams worldwide have attempted to develop more stable circular RNA (circRNA) vaccines and have achieved some preliminary results. This review aims to summarize key findings and important progress made in circRNA research, the in vivo metabolism and biological functions of circRNAs, and research progress and production process of circRNA vaccines. Further, considerations regarding the quality control of circRNA vaccines are highlighted herein, and the main challenges and problem-solving strategies in circRNA vaccine development and quality control are outlined to provide a reference for circRNA vaccine-related research.
Collapse
Affiliation(s)
- Yu Bai
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Dong Liu
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Qian He
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Jianyang Liu
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Qunying Mao
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Zhenglun Liang
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
9
|
Balk-Møller E, Hebsgaard MMB, Lilleør NB, Møller CH, Gøtze JP, Kissow H. Glucagon-like peptide-1 stimulates acute secretion of pro-atrial natriuretic peptide from the isolated, perfused pig lung exposed to warm ischemia. FRONTIERS IN TRANSPLANTATION 2022; 1:1082634. [PMID: 38994393 PMCID: PMC11235333 DOI: 10.3389/frtra.2022.1082634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 07/13/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) has proven to be protective in animal models of lung disease but the underlying mechanisms are unclear. Atrial natriuretic peptide (ANP) is mainly produced in the heart. As ANP possesses potent vaso- and bronchodilatory effects in pulmonary disease, we hypothesised that the protective functions of GLP-1 could involve potentiation of local ANP secretion from the lung. We examined whether the GLP-1 receptor agonist liraglutide was able to improve oxygenation in lungs exposed to 2 h of warm ischemia and if liraglutide stimulated ANP secretion from the lungs in the porcine ex vivo lung perfusion (EVLP) model. Pigs were given a bolus of 40 µg/kg liraglutide or saline 1 h prior to sacrifice. The lungs were then left in vivo for 2 h, removed en bloc and placed in the EVLP machinery. Lungs from the liraglutide treated group were further exposed to liraglutide in the perfusion buffer (1.125 mg). Main endpoints were oxygenation capacity, and plasma and perfusate concentrations of proANP and inflammatory markers. Lung oxygenation capacity, plasma concentrations of proANP or concentrations of inflammatory markers were not different between groups. ProANP secretion from the isolated perfused lungs were markedly higher in the liraglutide treated group (area under curve for the first 30 min in the liraglutide group: 635 ± 237 vs. 38 ± 38 pmol/L x min in the saline group) (p < 0.05). From these results, we concluded that liraglutide potentiated local ANP secretion from the lungs.
Collapse
Affiliation(s)
- Emilie Balk-Møller
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mathilde M. B. Hebsgaard
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nikolaj B. Lilleør
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian H. Møller
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jens P. Gøtze
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Lombardi A, Agarwal S, Schechter C, Tomer Y. In-Hospital Hyperglycemia Is Associated With Worse Outcomes in Patients Admitted With COVID-19. Diabetes Care 2022; 45:2683-2688. [PMID: 36041197 PMCID: PMC9679263 DOI: 10.2337/dc22-0708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/08/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Diabetes and the outpatient diabetes treatment regimen have been identified as risk factors for poor outcomes in patients with sepsis. However, little is known about the effect of tight inpatient glycemic control in the setting of coronavirus disease 2019 (COVID-19). Therefore, we examined the effect of hyperglycemia in patients with diabetes hospitalized because of COVID-19. RESEARCH DESIGN AND METHODS We analyzed data from 1,938 COVID-19 patients with diabetes hospitalized for COVID-19 from March to May 2020 at a large academic medical center in New York City. Patients were divided into two groups based on their inpatient glycemic values, and a Cox proportional hazards regression model was used to assess the independent association of inpatient glucose levels with mortality (primary outcome) and the risk of requiring mechanical ventilation (MV) (secondary outcome). RESULTS In our analysis, 32% of the patients were normoglycemic and 68% hyperglycemic. Moreover, 31% of the study subjects died during hospitalization, and 14% required MV, with inpatient hyperglycemia being significantly associated with both mortality and the requirement for MV. Additionally, in the Cox regression analysis, after adjustment for potential confounders, including age, sex, race, BMI, HbA1c, comorbidities, inflammatory markers, and corticosteroid therapy, patients with uncontrolled hyperglycemia had a higher risk of dying (hazard ratio [HR] 1.54, 95% CI 1.00-2.36, P = 0.049) and of requiring MV (HR 4.41, 95% CI 1.52-2.81, P = 0.006) than those with normoglycemia. CONCLUSIONS A tight control of inpatient hyperglycemia may be an effective method for improving outcomes in patients with diabetes hospitalized for COVID-19.
Collapse
Affiliation(s)
- Angela Lombardi
- Einstein-Mount Sinai Diabetes Research Center, The Norman Fleischer Institute for Diabetes and Metabolism, Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY
| | - Shivani Agarwal
- Einstein-Mount Sinai Diabetes Research Center, The Norman Fleischer Institute for Diabetes and Metabolism, Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY
| | - Clyde Schechter
- Department of Family and Social Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY
| | - Yaron Tomer
- Einstein-Mount Sinai Diabetes Research Center, The Norman Fleischer Institute for Diabetes and Metabolism, Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY
| |
Collapse
|
11
|
B.1.351 SARS-CoV-2 Variant Exhibits Higher Virulence but Less Viral Shedding than That of the Ancestral Strain in Young Nonhuman Primates. Microbiol Spectr 2022; 10:e0226322. [PMID: 36069561 PMCID: PMC9603226 DOI: 10.1128/spectrum.02263-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We investigated the distribution, virulence, and pathogenic characteristics of mutated SARS-CoV-2 to clarify the association between virulence and the viral spreading ability of current and future circulating strains. Chinese rhesus macaques were infected with ancestral SARS-CoV-2 strain GD108 and Beta variant B.1.351 (B.1.351) and assessed for clinical signs, viral distribution, pathological changes, and pulmonary inflammation. We found that GD108 replicated more efficiently in the upper respiratory tract, whereas B.1.351 replicated more efficiently in the lower respiratory tract and lung tissue, implying a reduced viral shedding and spreading ability of B.1.351 compared with that of GD108. Importantly, B.1.351 caused more severe lung injury and dramatically elevated the level of inflammatory cytokines compared with those observed after infection with GD108. Moreover, both B.1.351 and GD108 induced spike-specific T-cell responses at an early stage of infection, with higher levels of interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) in the B.1.351 group and higher levels of interleukin 17 (IL-17) in the GD108 group, indicating a divergent pattern in the T-cell-mediated inflammatory "cytokine storm." This study provides a basis for exploring the pathogenesis of SARS-CoV-2 variants of concern (VOCs) and establishes an applicable animal model for evaluating the efficacy and safety of vaccines and drugs. IMPORTANCE One of the priorities of the current SARS-CoV-2 vaccine and drug research strategy is to determine the changes in transmission ability, virulence, and pathogenic characteristics of SARS-CoV-2 variants. In addition, nonhuman primates (NHPs) are suitable animal models for the study of the pathogenic characteristics of SARS-CoV-2 and could contribute to the understanding of pathogenicity and transmission mechanisms. As SARS-CoV-2 variants continually emerge and the viral biological characteristics change frequently, the establishment of NHP infection models for different VOCs is urgently needed. In the study, the virulence and tissue distribution of B.1.351 and GD108 were comprehensively studied in NHPs. We concluded that the B.1.351 strain was more virulent but exhibited less viral shedding than the latter. This study provides a basis for determining the pathogenic characteristics of SARS-CoV-2 and establishes an applicable animal model for evaluating the efficacy and safety of vaccines and drugs.
Collapse
|
12
|
Sazgarnejad S, Yazdanpanah N, Rezaei N. Anti-inflammatory effects of GLP-1 in patients with COVID-19. Expert Rev Anti Infect Ther 2022; 20:373-381. [PMID: 34348067 PMCID: PMC8425436 DOI: 10.1080/14787210.2021.1964955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Understanding the pathogenesis and risk factors to control the coronavirus disease 2019 (COVID-19) is necessary. Due to the importance of the inflammatory pathways in the pathogenesis of COVID-19 patients, evaluating the effects of anti-inflammatory medications is important. Glucagon-like peptide 1 receptor agonist (GLP-1 RA) is awell-known glucose-lowering agent with anti-inflammatory effects. AREAS COVERED Resources were extracted from the PubMed database, using keywords such as glucagon-like peptide-1, GLP-1 RA, SARS-CoV-2, COVID-19, inflammation, in April2021. In this review, the effects of GLP-1RA in reducing inflammation and modifying risk factors of COVID-19 severe complications are discussed. However, GLP-1 is degraded by DPP-4 with aplasma half-life of about 2-5 minutes, which makes it difficult to measure GLP-1 plasma level in clinical settings. EXPERT OPINION Since no definitive treatment is available for COVID-19 so far, determining promising targets to design and/or repurpose effective medications is necessary.
Collapse
Affiliation(s)
- Saharnaz Sazgarnejad
- School Of Medicine, Tehran University Of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University Of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (Niima), Universal Scientific Education and Research Network (Usern), Tehran, Iran
| | - Niloufar Yazdanpanah
- School Of Medicine, Tehran University Of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (Niima), Universal Scientific Education and Research Network (Usern), Tehran, Iran
- Research Center For Immunodeficiencies, Children’s Medical Center, Tehran University Of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (Niima), Universal Scientific Education and Research Network (Usern), Tehran, Iran
- Research Center For Immunodeficiencies, Children’s Medical Center, Tehran University Of Medical Sciences, Tehran, Iran
- Department Of Immunology, School Of Medicine, Tehran University Of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Nyland JE, Raja-Khan NT, Bettermann K, Haouzi PA, Leslie DL, Kraschnewski JL, Parent LJ, Grigson PS. Diabetes, Drug Treatment, and Mortality in COVID-19: A Multinational Retrospective Cohort Study. Diabetes 2021; 70:2903-2916. [PMID: 34580086 PMCID: PMC8660979 DOI: 10.2337/db21-0385] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
Patients with type 2 diabetes mellitus (T2DM) are at increased risk of severe coronavirus disease 2019 (COVID-19) outcomes possibly because of dysregulated inflammatory responses. Glucose-regulating medications, such as glucagon-like peptide 1 receptor (GLP-1R) agonists, dipeptidyl peptidase 4 (DPP-4) inhibitors, and pioglitazone, are known to have anti-inflammatory effects that may improve outcomes in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In a multinational retrospective cohort study, we used the TriNetX COVID-19 Research Network of 56 large health care organizations to examine these medications in relation to the incidence of hospital admissions, respiratory complications, and mortality within 28 days after a COVID-19 diagnosis. After matching for age, sex, race, ethnicity, BMI, and significant comorbidities, use of GLP-1R agonists and/or pioglitazone was associated with significant reductions in hospital admissions (GLP-1R: 15.7% vs. 23.5%, risk ratio [RR] 0.67 [95% CI 0.57-0.79; P < 0.001]; pioglitazone: 20.0% vs. 28.2%; RR 0.71 [95% CI 0.54-0.93; P = 0.01]). Use of GLP-1R agonists was also associated with reductions in respiratory complications (15.3% vs. 24.9%, RR 0.62 [95% CI 0.52-0.73]; P < 0.001) and incidence of mortality (1.9% vs. 3.3%, RR 0.58 [95% CI 0.35-0.97]; P = 0.04). Use of DPP-4 inhibitors was associated with a reduction in respiratory complications (24.0% vs. 29.2%, RR 0.82 [95% CI 0.74-0.90]; P < 0.001), and continued use of DPP-4 inhibitors after hospitalization was associated with a decrease in mortality compared with those who discontinued use (9% vs. 19%, RR 0.45 [95% CI 0.28-0.72]; P < 0.001). In conclusion, use of glucose-regulating medications, such as GLP-1R agonists, DPP-4 inhibitors, or pioglitazone, may improve COVID-19 outcomes for patients with T2DM; randomized clinical trials are needed to further investigate this possibility.
Collapse
Affiliation(s)
- Jennifer E Nyland
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
| | - Nazia T Raja-Khan
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
| | - Kerstin Bettermann
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
| | - Philippe A Haouzi
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
| | - Douglas L Leslie
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
| | | | - Leslie J Parent
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
| | - Patricia Sue Grigson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
| |
Collapse
|
14
|
Shin CH, Kim KH, Jeeva S, Kang SM. Towards Goals to Refine Prophylactic and Therapeutic Strategies Against COVID-19 Linked to Aging and Metabolic Syndrome. Cells 2021; 10:1412. [PMID: 34204163 PMCID: PMC8227274 DOI: 10.3390/cells10061412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) gave rise to the coronavirus disease 2019 (COVID-19) pandemic. A strong correlation has been demonstrated between worse COVID-19 outcomes, aging, and metabolic syndrome (MetS), which is primarily derived from obesity-induced systemic chronic low-grade inflammation with numerous complications, including type 2 diabetes mellitus (T2DM). The majority of COVID-19 deaths occurs in people over the age of 65. Individuals with MetS are inclined to manifest adverse disease consequences and mortality from COVID-19. In this review, we examine the prevalence and molecular mechanisms underlying enhanced risk of COVID-19 in elderly people and individuals with MetS. Subsequently, we discuss current progresses in treating COVID-19, including the development of new COVID-19 vaccines and antivirals, towards goals to elaborate prophylactic and therapeutic treatment options in this vulnerable population.
Collapse
Affiliation(s)
- Chong-Hyun Shin
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (K.-H.K.); (S.J.)
| | | | | | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (K.-H.K.); (S.J.)
| |
Collapse
|
15
|
Abstract
The increased prevalence of obesity, diabetes, and cardiovascular risk factors in people hospitalized with severe COVID-19 illness has engendered considerable interest in the metabolic aspects of SARS-CoV-2-induced pathophysiology. Here, I update concepts informing how metabolic disorders and their co-morbidities modify the susceptibility to, natural history, and potential treatment of SARS-CoV-2 infection, with a focus on human biology. New data informing genetic predisposition, epidemiology, immune responses, disease severity, and therapy of COVID-19 in people with obesity and diabetes are highlighted. The emerging relationships of metabolic disorders to viral-induced immune responses and viral persistence, and the putative importance of adipose and islet ACE2 expression, glycemic control, cholesterol metabolism, and glucose- and lipid-lowering drugs is reviewed, with attention to controversies and unresolved questions. Rapid progress in these areas informs our growing understanding of SARS-CoV-2 infection in people with diabetes and obesity, while refining the therapeutic strategies and research priorities in this vulnerable population.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, 600 University Avenue, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|