1
|
Esmaeili H, Almasi Chegeni S, Joghataei SM, Lotfalizadeh Mehrabadi P, Shokrpoor S. Etiology and risk factors of hemorrhagic abomasitis in goat kids. Sci Rep 2025; 15:6133. [PMID: 39972071 PMCID: PMC11840130 DOI: 10.1038/s41598-025-90904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/17/2025] [Indexed: 02/21/2025] Open
Abstract
Hemorrhagic abomasitis, also known as Salivary Abomasum Disease (SAD), is a largely under-researched condition affecting young lambs and kids, often leading to high mortality rates and significant economic losses. The disease's etiopathogenesis, risk factors, and clinical features remain poorly understood. Existing studies have been limited and fragmented, leading to misdiagnoses and confusion about its true nature. Given the lack of a comprehensive investigation into SAD's incidence, risk factors, and causative agents, this study aims to provide a thorough analysis through clinical, necropsy, histopathological, microbiological, and molecular examinations. This study involved 633 kids, with 323 in the SAD group and 310 in the control group. A multifaceted approach was utilized, encompassing clinical evaluations, necropsies, histopathological assessments, risk factors, and microbiological and molecular analyses, focusing on investigating virulence genes. During the kidding season, 323 deaths were linked to SAD, with a mean disease duration of 1.34 ± 0.54 days. The highest incidence occurred in the 8-14 day age group, accounting for 51.7% of cases (p < 0.05). The dominant clinical symptoms included weakness, lethargy, depression, failure to suckle, reluctance to move, significantly reduced mobility, unsteady gait, and a withdrawn demeanor. Necropsy findings consistently showed dark hemorrhagic content in the abomasum and characteristic "coffee grain" lesions, with no abnormalities in other organs. Escherichia coli was isolated in 63% of sampled kids, significantly more than in controls (p < 0.03), and confirmed through molecular analysis. Examination of virulence genes highlighted the presence of hlyA, stx1, cnf1, stx2, and eaeA in complex combinations linked to severe abomasum damage. Poor bed and bottle hygiene were identified as the primary risk factors for SAD (p < 0.001), with risk escalating in the later stages of the kidding season as farm conditions deteriorated. This study thoroughly re-evaluates hemorrhagic abomasitis in young kids, delivering valuable and reliable insights into this fatal disease. Based on multifaceted analyses, it strongly indicates E. coli as the primary causative agent.
Collapse
Affiliation(s)
- Hossein Esmaeili
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, P.O.Box: 14155-6453, Tehran, Iran.
| | - Saba Almasi Chegeni
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, P.O.Box: 14155-6453, Tehran, Iran
| | - Seyed Mehdi Joghataei
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, P.O.Box: 14155-6453, Tehran, Iran
| | - Peyman Lotfalizadeh Mehrabadi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, P.O.Box: 14155-6453, Tehran, Iran
| | - Sara Shokrpoor
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Van Poelvoorde LAE, Karlsson EA, Dupont-Rouzeyrol M, Roosens NHCJ. Can Wastewater Surveillance Enhance Genomic Tracking of Climate-Driven Pathogens? Microorganisms 2025; 13:294. [PMID: 40005661 PMCID: PMC11858121 DOI: 10.3390/microorganisms13020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/07/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Climate change heightens the threat of infectious diseases in Europe, necessitating innovative surveillance methods. Based on 390 scientific papers, for the first time, this review associates climate-related pathogens, data related to their presence in wastewater, and associated available genomic detection methods. This deep analysis reveals a wide range of pathogens that can be tracked through methods such as quantitative and digital PCR, as well as genomic pathogen enrichment in combination with sequencing and metagenomics. Nevertheless, significant gaps remain in the development of methods, particularly for vector-borne pathogens, and in their general harmonization relating to performance criteria. By offering an overview of recent advancements while identifying critical gaps, we advocate for collaborative research and validation to integrate detection techniques into surveillance frameworks. This will enhance public health resilience against emerging infectious diseases driven by climate change.
Collapse
Affiliation(s)
| | - Erik A. Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh 120210, Cambodia
| | | | | |
Collapse
|
3
|
Ren K, Duan M, Su T, Ying D, Wu S, Wang Z, Duan N. A colorimetric and SERS dual-mode aptasensor for the detection of Shiga toxin type II based on Mn/Fe-MIL(53)@AuNSs. Talanta 2024; 270:125636. [PMID: 38211356 DOI: 10.1016/j.talanta.2024.125636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Shiga toxin type II (Stx2), the major virulence component of enterohemorrhagic Escherichia coli, is strongly associated with the life-threatening hemolytic uremic syndrome thus posing a substantial risk to food safety and human health. In this work, a dual-mode aptasensor with colorimetric and surface-enhanced Raman scattering was developed for Stx2 specific detection based on noble metal nanoparticles and Raman reporter loaded metal-organic framework (Mn/Fe-MIL(53)@AuNSs-MBA). The Mn/Fe-MIL(53)@AuNSs could catalyze the H2O2-mediated oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), thereby enabling visual detection. Meanwhile, the SERS signal from MBA can be enhanced by the decorated AuNSs. Under optimal conditions, a linear range of 0.05-500 ng/mL with limit of detection (LOD) of 26 pg/mL was achieved in colorimetric mode and a linear range of 5-1000 ng/mL with LOD of 0.82 ng/mL in SERS mode, in which the dual-mode results complement each other, widening the linear range, increasing the accuracy and reliability of the detection. The method was further applied to the detection of Stx2 in milk with average recovery of 101.1 %, demonstrating its superior potential for bacterial toxin monitoring.
Collapse
Affiliation(s)
- Kexin Ren
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Mengxia Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Tingting Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Dichen Ying
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
4
|
Mohamed MYI, Habib I. Pathogenic E. coli in the Food Chain across the Arab Countries: A Descriptive Review. Foods 2023; 12:3726. [PMID: 37893619 PMCID: PMC10606471 DOI: 10.3390/foods12203726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Foodborne bacterial infections caused by pathogens are a widespread problem in the Middle East, leading to significant economic losses and negative impacts on public health. This review aims to offer insights into the recent literature regarding the occurrence of harmful E. coli bacteria in the food supply of Arab countries. Additionally, it aims to summarize existing information on health issues and the state of resistance to antibiotics. The reviewed evidence highlights a lack of a comprehensive understanding of the extent to which harmful E. coli genes are present in the food supply of Arab countries. Efforts to identify the source of harmful E. coli in the Arab world through molecular characterization are limited. The Gulf Cooperation Council (GCC) countries have conducted few surveys specifically targeting harmful E. coli in the food supply. Despite having qualitative data that indicate the presence or absence of harmful E. coli, there is a noticeable absence of quantitative data regarding the actual numbers of harmful E. coli in chicken meat supplies across all Arab countries. While reports about harmful E. coli in animal-derived foods are common, especially in North African Arab countries, the literature emphasized in this review underscores the ongoing challenge that harmful E. coli pose to food safety and public health in Arab countries.
Collapse
Affiliation(s)
- Mohamed-Yousif Ibrahim Mohamed
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab of Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| | - Ihab Habib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab of Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
- Department of Environmental Health, High Institute of Public Health, Alexandria University, Alexandria P.O. Box 21511, Egypt
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
5
|
Hounkpe EC, Sessou P, Farougou S, Daube G, Delcenserie V, Azokpota P, Korsak N. Prevalence, antibiotic resistance, and virulence gene profile of Escherichia coli strains shared between food and other sources in Africa: A systematic review. Vet World 2023; 16:2016-2028. [PMID: 38023276 PMCID: PMC10668556 DOI: 10.14202/vetworld.2023.2016-2028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Aim Foodborne diseases caused by Escherichia coli are prevalent globally. Treatment is challenging due to antibiotic resistance in bacteria, except for foodborne infections due to Shiga toxin-producing E. coli, for which treatment is symptomatic. Several studies have been conducted in Africa on antibiotic resistance of E. coli isolated from several sources. The prevalence and distribution of resistant pathogenic E. coli isolated from food, human, and animal sources and environmental samples and their virulence gene profiles were systematically reviewed. Materials and Methods Bibliographic searches were performed using four databases. Research articles published between 2000 and 2022 on antibiotic susceptibility and virulence gene profile of E. coli isolated from food and other sources were selected. Results In total, 64 articles were selected from 14 African countries: 45% of the studies were conducted on food, 34% on animal samples, 21% on human disease surveillance, and 13% on environmental samples. According to these studies, E. coli is resistant to ~50 antimicrobial agents, multidrug-resistant, and can transmit at least 37 types of virulence genes. Polymerase chain reaction was used to characterize E. coli and determine virulence genes. Conclusion A significant variation in epidemiological data was noticed within countries, authors, and sources (settings). These results can be used as an updated database for monitoring E. coli resistance in Africa. More studies using state-of-the-art equipment are needed to determine all resistance and virulence genes in pathogenic E. coli isolated in Africa.
Collapse
Affiliation(s)
- Eustache C. Hounkpe
- Communicable Diseases Research Unit, Applied Biology Research Laboratory, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 P.O Box 2009 Cotonou, Benin
- Department of Food Science, Faculty of Veterinary Medicine, FARAH-Veterinary Public Health, University of Liege, Quartier Vallée 2, 10 Avenue of Cureghem, Sart-Tilman, B-4000 Liege, Belgium
| | - Philippe Sessou
- Communicable Diseases Research Unit, Applied Biology Research Laboratory, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 P.O Box 2009 Cotonou, Benin
| | - Souaïbou Farougou
- Communicable Diseases Research Unit, Applied Biology Research Laboratory, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 P.O Box 2009 Cotonou, Benin
| | - Georges Daube
- Department of Food Science, Faculty of Veterinary Medicine, FARAH-Veterinary Public Health, University of Liege, Quartier Vallée 2, 10 Avenue of Cureghem, Sart-Tilman, B-4000 Liege, Belgium
| | - Véronique Delcenserie
- Department of Food Science, Faculty of Veterinary Medicine, FARAH-Veterinary Public Health, University of Liege, Quartier Vallée 2, 10 Avenue of Cureghem, Sart-Tilman, B-4000 Liege, Belgium
| | - Paulin Azokpota
- School of Nutrition, Food Sciences, and Technology, Faculty of Agronomic Sciences, University of Abomey-Calavi, 03 P.O Box 2819, Cotonou, Benin
| | - Nicolas Korsak
- Department of Food Science, Faculty of Veterinary Medicine, FARAH-Veterinary Public Health, University of Liege, Quartier Vallée 2, 10 Avenue of Cureghem, Sart-Tilman, B-4000 Liege, Belgium
| |
Collapse
|
6
|
Nan X, Yao X, Yang L, Cui Y. Lateral flow assay of pathogenic viruses and bacteria in healthcare. Analyst 2023; 148:4573-4590. [PMID: 37655501 DOI: 10.1039/d3an00719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Healthcare-associated pathogenic viruses and bacteria can have a serious impact on human health and have attracted widespread global attention. The lateral flow assay is a unidirectional detection based on the binding of a target analyte and a bioreceptor on the device via lateral flow. With incredible advantages over traditional chromatographic methods, such as rapid detection, ease of manufacture and cost effectiveness, these test strips are increasingly considered the ideal form for point-of-care applications. This review explores lateral flow assays for pathogenic viruses and bacteria, with a particular focus on methodologies, device components, construction methods, and applications. We anticipate that this review could provide exciting opportunities for developing new lateral flow devices for pathogens and advance related healthcare applications.
Collapse
Affiliation(s)
- Xuanxu Nan
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| | - Xuesong Yao
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| | - Li Yang
- Peking University First Hospital; Peking University Institute of Nephrology, Beijing 100034, P. R. China.
| | - Yue Cui
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| |
Collapse
|
7
|
Lactobacilli, a Weapon to Counteract Pathogens through the Inhibition of Their Virulence Factors. J Bacteriol 2022; 204:e0027222. [PMID: 36286515 PMCID: PMC9664955 DOI: 10.1128/jb.00272-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To date, several studies have reported an alarming increase in pathogen resistance to current antibiotic therapies and treatments. Therefore, the search for effective alternatives to counter their spread and the onset of infections is becoming increasingly important.
Collapse
|