1
|
Meyer F, Schmitt I, Wendisch VF, Henke NA. Response surface-based media optimization for astaxanthin production in Corynebacterium glutamicum. Front Bioeng Biotechnol 2025; 13:1516522. [PMID: 40134774 PMCID: PMC11933003 DOI: 10.3389/fbioe.2025.1516522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Introduction Astaxanthin is a C40 carotenoid that is used in animal feeds or cosmetics. Due to its high antioxidant property it is used for, e.g., anti-aging formulations and due to its intense red color it is used, e.g., in animal feed. While about 95% of commercial astaxanthin is currently chemically synthesized from fossil sources, the interest in natural and sustainable astaxanthin is growing. Corynebacterium glutamicum, an attractive host used in large-scale processes, e.g., industrial amino acid production, has been engineered for astaxanthin production. Methods Here, a design of experiment (DoE) approach was applied to optimize the standard minimal medium for astaxanthin production. The concentrations of carbon, nitrogen and phosphorus sources, magnesium, calcium, the iron chelator protocatechuic acid, the vitamin biotin, and the trace metals were varied and astaxanthin production was evaluated. Results and discussion By increasing the concentration of iron and decreasing that of manganese especially, it was possible to increase astaxanthin titers from 7.9 mg L-1-39.6 mg L-1 in a micro cultivation system and from 62 mg L-1-176 mg L-1 in a fed-batch fermentation.
Collapse
|
2
|
Čapek J, Večerek B. Why is manganese so valuable to bacterial pathogens? Front Cell Infect Microbiol 2023; 13:943390. [PMID: 36816586 PMCID: PMC9936198 DOI: 10.3389/fcimb.2023.943390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Apart from oxygenic photosynthesis, the extent of manganese utilization in bacteria varies from species to species and also appears to depend on external conditions. This observation is in striking contrast to iron, which is similar to manganese but essential for the vast majority of bacteria. To adequately explain the role of manganese in pathogens, we first present in this review that the accumulation of molecular oxygen in the Earth's atmosphere was a key event that linked manganese utilization to iron utilization and put pressure on the use of manganese in general. We devote a large part of our contribution to explanation of how molecular oxygen interferes with iron so that it enhances oxidative stress in cells, and how bacteria have learned to control the concentration of free iron in the cytosol. The functioning of iron in the presence of molecular oxygen serves as a springboard for a fundamental understanding of why manganese is so valued by bacterial pathogens. The bulk of this review addresses how manganese can replace iron in enzymes. Redox-active enzymes must cope with the higher redox potential of manganese compared to iron. Therefore, specific manganese-dependent isoenzymes have evolved that either lower the redox potential of the bound metal or use a stronger oxidant. In contrast, redox-inactive enzymes can exchange the metal directly within the individual active site, so no isoenzymes are required. It appears that in the physiological context, only redox-inactive mononuclear or dinuclear enzymes are capable of replacing iron with manganese within the same active site. In both cases, cytosolic conditions play an important role in the selection of the metal used. In conclusion, we summarize both well-characterized and less-studied mechanisms of the tug-of-war for manganese between host and pathogen.
Collapse
Affiliation(s)
- Jan Čapek
- *Correspondence: Jan Čapek, ; Branislav Večerek,
| | | |
Collapse
|
3
|
Gladysheva IV, Cherkasov SV, Khlopko YA, Plotnikov AO. Genome Characterization and Probiotic Potential of Corynebacterium amycolatum Human Vaginal Isolates. Microorganisms 2022; 10:microorganisms10020249. [PMID: 35208706 PMCID: PMC8878833 DOI: 10.3390/microorganisms10020249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022] Open
Abstract
The vaginal microbiome of healthy women contains nondiphtheria corynebacteria. The role and functions of nondiphtheria corynebacteria in the vaginal biotope are still under study. We sequenced and analysed the genomes of three vaginal C. amycolatum strains isolated from healthy women. Previous studies have shown that these strains produced metabolites that significantly increased the antagonistic activity of peroxide-producing lactic acid bacteria against pathogenic and opportunistic microorganisms and had strong antimicrobial activity against opportunistic pathogens. Analysis of the C. amycolatum genomes revealed the genes responsible for adaptation and survival in the vaginal environment, including acid and oxidative stress resistance genes. The genes responsible for the production of H2O2 and the synthesis of secondary metabolites, essential amino acids and vitamins were identified. A cluster of genes encoding the synthesis of bacteriocin was revealed in one of the annotated genomes. The obtained results allow us to consider the studied strains as potential probiotics that are capable of preventing the growth of pathogenic microorganisms and supporting colonisation resistance in the vaginal biotope.
Collapse
|
4
|
Moe A, Kovalova T, Król S, Yanofsky DJ, Bott M, Sjöstrand D, Rubinstein JL, Högbom M, Brzezinski P. The respiratory supercomplex from C. glutamicum. Structure 2021; 30:338-349.e3. [PMID: 34910901 DOI: 10.1016/j.str.2021.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/29/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022]
Abstract
Corynebacterium glutamicum is a preferentially aerobic gram-positive bacterium belonging to the phylum Actinobacteria, which also includes the pathogen Mycobacterium tuberculosis. In these bacteria, respiratory complexes III and IV form a CIII2CIV2 supercomplex that catalyzes oxidation of menaquinol and reduction of dioxygen to water. We isolated the C. glutamicum supercomplex and used cryo-EM to determine its structure at 2.9 Å resolution. The structure shows a central CIII2 dimer flanked by a CIV on two sides. A menaquinone is bound in each of the QN and QP sites in each CIII and an additional menaquinone is positioned ∼14 Å from heme bL. A di-heme cyt. cc subunit electronically connects each CIII with an adjacent CIV, with the Rieske iron-sulfur protein positioned with the iron near heme bL. Multiple subunits interact to form a convoluted sub-structure at the cytoplasmic side of the supercomplex, which defines a path for proton transfer into CIV.
Collapse
Affiliation(s)
- Agnes Moe
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Terezia Kovalova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Sylwia Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - David J Yanofsky
- Molecular Medicine Program, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dan Sjöstrand
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; Department of Biochemistry, The University of Toronto, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada.
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
5
|
Vachher M, Sen A, Kapila R, Nigam A. Microbial therapeutic enzymes: A promising area of biopharmaceuticals. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
6
|
The Industrial Organism Corynebacterium glutamicum Requires Mycothiol as Antioxidant to Resist Against Oxidative Stress in Bioreactor Cultivations. Antioxidants (Basel) 2020; 9:antiox9100969. [PMID: 33050339 PMCID: PMC7599745 DOI: 10.3390/antiox9100969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022] Open
Abstract
In aerobic environments, bacteria are exposed to reactive oxygen species (ROS). To avoid an excess of ROS, microorganisms are equipped with powerful enzymatic and non-enzymatic antioxidants. Corynebacterium glutamicum, a widely used industrial platform organism, uses mycothiol (MSH) as major low molecular weight (LMW) thiol and non-enzymatic antioxidant. In aerobic bioreactor cultivations, C. glutamicum becomes exposed to oxygen concentrations surpassing the air saturation, which are supposed to constitute a challenge for the intracellular MSH redox balance. In this study, the role of MSH was investigated at different oxygen levels (pO2) in bioreactor cultivations in C. glutamicum. Despite the presence of other highly efficient antioxidant systems, such as catalase, the MSH deficient ΔmshC mutant was impaired in growth in bioreactor experiments performed at pO2 values of 30%. At a pO2 level of 20%, this growth defect was abolished, indicating a high susceptibility of the MSH-deficient mutant towards elevated oxygen concentrations. Bioreactor experiments with C. glutamicum expressing the Mrx1-roGFP2 redox biosensor revealed a strong oxidative shift in the MSH redox potential (EMSH) at pO2 values above 20%. This indicates that the LMW thiol MSH is an essential antioxidant to maintain the robustness and industrial performance of C. glutamicum during aerobic fermentation processes.
Collapse
|
7
|
Emergence of metal selectivity and promiscuity in metalloenzymes. J Biol Inorg Chem 2019; 24:517-531. [DOI: 10.1007/s00775-019-01667-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/13/2019] [Indexed: 01/27/2023]
|
8
|
Nantapong N, Murata R, Trakulnaleamsai S, Kataoka N, Yakushi T, Matsushita K. The effect of reactive oxygen species (ROS) and ROS-scavenging enzymes, superoxide dismutase and catalase, on the thermotolerant ability of Corynebacterium glutamicum. Appl Microbiol Biotechnol 2019; 103:5355-5366. [PMID: 31041469 DOI: 10.1007/s00253-019-09848-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 01/01/2023]
Abstract
The function of two reactive oxygen species (ROS) scavenging enzymes, superoxide dismutase (SOD) and catalase, on the thermotolerant ability of Corynebacterium glutamicum was investigated. In this study, the elevation of the growth temperature was shown to lead an increased intracellular ROS for two strains of Corynebacterium glutamicum, the wild-type (KY9002) and the temperature-sensitive mutant (KY9714). In order to examine the effects of ROS-scavenging enzymes on cell growth, either the SOD or the catalase gene was disrupted or overexpressed in KY9002 and KY9714. In the case of the KY9714 strain, it was shown that the disruption of SOD and catalase disturbs cell growth, while the over-productions of both the enzymes enhances cell growth with a growth temperature of 30 °C and 33 °C. Whereas, in the relatively thermotolerant KY9002 strain, the disruption of both enzymes exhibited growth defects more intensively at higher growth temperatures (37 °C or 39 °C), while the overexpression of at least SOD enhanced the cell growth at higher temperatures. Based on the correlation between the cell growth and ROS level, it was suggested that impairment of cell growth in SOD or catalase-disrupted strains could be a result of an increased ROS level. In contrast, the improvement in cell growth for strains with overexpressed SOD or catalase resulted from a decrease in the ROS level, especially at higher growth temperatures. Thus, SOD and catalase might play a crucial role in the thermotolerant ability of C. glutamicum by reducing ROS-induced temperature stress from higher growth temperatures.
Collapse
Affiliation(s)
- Nawarat Nantapong
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 3000, Thailand.
| | - Ryutarou Murata
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Sarvitr Trakulnaleamsai
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Naoya Kataoka
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Toshiharu Yakushi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Kazunobu Matsushita
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan
| |
Collapse
|
9
|
Shen J, Chen J, Jensen PR, Solem C. Development of a novel, robust and cost-efficient process for valorizing dairy waste exemplified by ethanol production. Microb Cell Fact 2019; 18:51. [PMID: 30857537 PMCID: PMC6410493 DOI: 10.1186/s12934-019-1091-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Delactosed whey permeate (DWP) is a side stream of whey processing, which often is discarded as waste, despite of its high residual content of lactose, typically 10-20%. Microbial fermentation is one of the most promising approaches for valorizing nutrient rich industrial waste streams, including those generated by the dairies. Here we present a novel microbial platform specifically designed to generate useful compounds from dairy waste. As a starting point we use Corynebacterium glutamicum, an important workhorse used for production of amino acids and other important compounds, which we have rewired and complemented with genes needed for lactose utilization. To demonstrate the potential of this novel platform we produce ethanol from lactose in DWP. RESULTS First, we introduced the lacSZ operon from Streptococcus thermophilus, encoding a lactose transporter and a β-galactosidase, and achieved slow growth on lactose. The strain could metabolize the glucose moiety of lactose, and galactose accumulated in the medium. After complementing with the Leloir pathway (galMKTE) from Lactococcus lactis, co-metabolization of galactose and glucose was accomplished. To further improve the growth and increase the sugar utilization rate, the strain underwent adaptive evolution in lactose minimal medium for 100 generations. The outcome was strain JS95 that grew fast in lactose mineral medium. Nevertheless, JS95 still grew poorly in DWP. The growth and final biomass accumulation were greatly stimulated after supplementation with NH4+, Mn2+, Fe2+ and trace minerals. In only 24 h of cultivation, a high cell density (OD600 of 56.8 ± 1.3) was attained. To demonstrate the usefulness of the platform, we introduced a plasmid expressing pyruvate decarboxylase and alcohol dehydrogenase, and managed to channel the metabolic flux towards ethanol. Under oxygen-deprived conditions, non-growing suspended cells could convert 100 g/L lactose into 46.1 ± 1.4 g/L ethanol in DWP, a yield of 88% of the theoretical. The resting cells could be re-used at least three times, and the ethanol productivities obtained were 0.96 g/L/h, 2.2 g/L/h, and 1.6 g/L/h, respectively. CONCLUSIONS An efficient process for producing ethanol from DWP, based on C. glutamicum, was demonstrated. The results obtained clearly show a great potential for this newly developed platform for producing value-added chemicals from dairy waste.
Collapse
Affiliation(s)
- Jing Shen
- National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Jun Chen
- National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| | - Christian Solem
- National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
10
|
Bhatia K, Mal G, Bhar R, Jyoti, Attri C, Seth A. Purification and characterization of thermostable superoxide dismutase from Anoxybacillus gonensis KA 55 MTCC 12684. Int J Biol Macromol 2018; 117:1133-1139. [DOI: 10.1016/j.ijbiomac.2018.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 12/20/2022]
|
11
|
Improvement of the intracellular environment for enhancing l-arginine production of Corynebacterium glutamicum by inactivation of H 2O 2-forming flavin reductases and optimization of ATP supply. Metab Eng 2016; 38:310-321. [PMID: 27474351 DOI: 10.1016/j.ymben.2016.07.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/12/2016] [Accepted: 07/25/2016] [Indexed: 02/05/2023]
Abstract
l-arginine, a semi essential amino acid, is an important amino acid in food flavoring and pharmaceutical industries. Its production by microbial fermentation is gaining more and more attention. In previous work, we obtained a new l-arginine producing Corynebacterium crenatum (subspecies of Corynebacterium glutamicum) through mutation breeding. In this work, we enhanced l-arginine production through improvement of the intracellular environment. First, two NAD(P)H-dependent H2O2-forming flavin reductases Frd181 (encoded by frd1 gene) and Frd188 (encoded by frd2) in C. glutamicum were identified for the first time. Next, the roles of Frd181 and Frd188 in C. glutamicum were studied by overexpression and deletion of the encoding genes, and the results showed that the inactivation of Frd181 and Frd188 was beneficial for cell growth and l-arginine production, owing to the decreased H2O2 synthesis and intracellular reactive oxygen species (ROS) level, and increased intracellular NADH and ATP levels. Then, the ATP level was further increased by deletion of noxA (encoding NADH oxidase) and amn (encoding AMP nucleosidase), and overexpression of pgk (encoding 3-phosphoglycerate kinase) and pyk (encoding pyruvate kinase), and the l-arginine production and yield from glucose were significantly increased. In fed-batch fermentation, the l-arginine production and yield from glucose of the final strain reached 57.3g/L and 0.326g/g, respectively, which were 49.2% and 34.2% higher than those of the parent strain, respectively. ROS and ATP are important elements of the intracellular environment, and l-arginine biosynthesis requires a large amount of ATP. For the first time, we enhanced l-arginine production and yield from glucose through reducing the H2O2 synthesis and increasing the ATP supply.
Collapse
|
12
|
Si M, Wang J, Xiao X, Guan J, Zhang Y, Ding W, Chaudhry MT, Wang Y, Shen X. Ohr Protects Corynebacterium glutamicum against Organic Hydroperoxide Induced Oxidative Stress. PLoS One 2015; 10:e0131634. [PMID: 26121694 PMCID: PMC4486171 DOI: 10.1371/journal.pone.0131634] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/04/2015] [Indexed: 01/19/2023] Open
Abstract
Ohr, a bacterial protein encoded by the Organic Hydroperoxide Resistance (ohr) gene, plays a critical role in resistance to organic hydroperoxides. In the present study, we show that the Cys-based thiol-dependent Ohr of Corynebacterium glutamicum decomposes organic hydroperoxides more efficiently than hydrogen peroxide. Replacement of either of the two Cys residues of Ohr by a Ser residue resulted in drastic loss of activity. The electron donors supporting regeneration of the peroxidase activity of the oxidized Ohr of C. glutamicum were principally lipoylated proteins (LpdA and Lpd/SucB). A Δohr mutant exhibited significantly decreased resistance to organic hydroperoxides and marked accumulation of reactive oxygen species (ROS) in vivo; protein carbonylation was also enhanced notably. The resistance to hydrogen peroxide also decreased, but protein carbonylation did not rise to any great extent. Together, the results unequivocally show that Ohr is essential for mediation of organic hydroperoxide resistance by C. glutamicum.
Collapse
Affiliation(s)
- Meiru Si
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Jianbo Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Xiao Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Jingyuan Guan
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yaoling Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Wei Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Muhammad Tausif Chaudhry
- Environmental Analytical Laboratory, National Physical & Standards Laboratory, PCSIR, Islamabad, Pakistan
| | - Yao Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- * E-mail: (XS); (YW)
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- * E-mail: (XS); (YW)
| |
Collapse
|
13
|
Baumgart M, Frunzke J. The manganese-responsive regulator MntR represses transcription of a predicted ZIP family metal ion transporter in Corynebacterium glutamicum. FEMS Microbiol Lett 2014; 362:1-10. [PMID: 25790484 DOI: 10.1093/femsle/fnu001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Manganese is an important trace element required as an enzyme cofactor and for protection against oxidative stress. In this study, we characterized the DtxR-type transcriptional regulator MntR (cg0741) of Corynebacterium glutamicum ATCC 13032 as a manganese-dependent repressor of the predicted ZIP family metal transporter Cg1623. Comparative transcriptome analysis of a ΔmntR strain and the wild type led to the identification of cg1623 as potential target gene of MntR which was about 50-fold upregulated when cells were grown in glucose minimal medium. Using electrophoretic mobility shift assays, a conserved 18 bp inverted repeat (TGTTCAATGCGTTGAACA) was identified as binding motif of MntR in the cg1623 promoter and confirmed by mutational analysis. Promoter fusion of Pcg1623 to eyfp confirmed that the MntR-dependent repression is only abolished in the absence of manganese. However, neither deletion of mntR nor cg1623 resulted in a significant growth phenotype in comparison to the wild type--strongly suggesting the presence of further manganese uptake and efflux systems in C. glutamicum. The control of cg1623 by the DtxR-type regulator MntR represents the first example of a predicted ZIP family protein that is regulated in a manganese-dependent manner in bacteria.
Collapse
Affiliation(s)
- Meike Baumgart
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
14
|
Matsushita K. Respiratory Chain and Energy Metabolism of Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Kim JS, Holmes RK. Characterization of OxyR as a negative transcriptional regulator that represses catalase production in Corynebacterium diphtheriae. PLoS One 2012; 7:e31709. [PMID: 22438866 PMCID: PMC3306370 DOI: 10.1371/journal.pone.0031709] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/11/2012] [Indexed: 11/19/2022] Open
Abstract
Corynebacterium diphtheriae and Corynebacterium glutamicum each have one gene (cat) encoding catalase. In-frame Δcat mutants of C. diphtheriae and C. glutamicum were hyper-sensitive to growth inhibition and killing by H(2)O(2). In C. diphtheriae C7(β), both catalase activity and cat transcription decreased ~2-fold during transition from exponential growth to early stationary phase. Prototypic OxyR in Escherichia coli senses oxidative stress and it activates katG transcription and catalase production in response to H(2)O(2). In contrast, exposure of C. diphtheriae C7(β) to H(2)O(2) did not stimulate transcription of cat. OxyR from C. diphtheriae and C. glutamicum have 52% similarity with E. coli OxyR and contain homologs of the two cysteine residues involved in H(2)O(2) sensing by E. coli OxyR. In-frame ΔoxyR deletion mutants of C. diphtheriae C7(β), C. diphtheriae NCTC13129, and C. glutamicum were much more resistant than their parental wild type strains to growth inhibition by H(2)O(2). In the C. diphtheriae C7(β) ΔoxyR mutant, cat transcripts were about 8-fold more abundant and catalase activity was about 20-fold greater than in the C7(β) wild type strain. The oxyR gene from C. diphtheriae or C. glutamicum, but not from E. coli, complemented the defect in ΔoxyR mutants of C. diphtheriae and C. glutamicum and decreased their H(2)O(2) resistance to the level of their parental strains. Gel-mobility shift, DNaseI footprint, and primer extension assays showed that purified OxyR from C. diphtheriae C7(β) bound, in the presence or absence of DTT, to a sequence in the cat promoter region that extends from nucleotide position -55 to -10 with respect to the +1 nucleotide in the cat ORF. These results demonstrate that OxyR from C. diphtheriae or C. glutamicum functions as a transcriptional repressor of the cat gene by a mechanism that is independent of oxidative stress induced by H(2)O(2).
Collapse
Affiliation(s)
| | - Randall K. Holmes
- Dept of Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
16
|
El Shafey HM, Ghanem S, Guyonvarch A. Cloning of recA gene of Corynebacterium glutamicum and phenotypic complementation of Escherichia coli recombinant deficient strain. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9900-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|