1
|
Kashyap PL, Kumar S, Khanna A, Jasrotia P, Singh G. Sustainable microbial solutions for managing fungal threats in wheat: progress and future directions. World J Microbiol Biotechnol 2025; 41:79. [PMID: 40011267 DOI: 10.1007/s11274-025-04286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025]
Abstract
Biotrophic and necrotrophic fungi are responsible for causing a range of diseases in wheat, resulting in significant economic losses and a decline in quality. Effective management of these diseases generally involves a combination of resistance breeding, chemical treatments, and cultural practices. However, traditional breeding methods have made limited progress due to the slow pace of genetic improvements, the complexity of the wheat genome, and the quantitative nature of disease resistance traits, along with the constantly evolving virulence of pathogens. This situation has prompted research into more effective and eco-friendly alternatives, such as biological control. Recent studies have concentrated on using antagonistic microbes to decrease the reliance on chemical pesticides while enhancing wheat health and productivity. A comprehensive overview of current knowledge on wheat disease outbreaks is being developed, with a focus on advancements in biological control strategies. The review will first discuss the key fungal pathogens and their associated diseases, followed by a summary of biological control methods, particularly emphasizing potential microbial antagonists. Additionally, it will explore strategies to improve the efficacy of biocontrol agents, which are crucial for a holistic and sustainable approach to wheat disease management. Ultimately, the article will highlight the role of biological control in promoting more sustainable agricultural practices, particularly concerning wheat diseases, in alignment with the UN sustainable development goals.
Collapse
Affiliation(s)
- Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, Haryana, 132001, India.
| | - Sudheer Kumar
- Regional Center, ICAR-Indian Institute of Pulses Research, Bikaner, Rajasthan, 334001, India
| | - Annie Khanna
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, Haryana, 132001, India.
| | - Poonam Jasrotia
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, Haryana, 132001, India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, Haryana, 132001, India
| |
Collapse
|
2
|
Embrador D, Quill Z, Tucker JR, Shah K, Badea A, Wijekoon C. Survey of fungal endophytes in barley under Fusarium head blight infection. Can J Microbiol 2025; 71:1-16. [PMID: 40184631 DOI: 10.1139/cjm-2024-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Fusarium head blight (FHB) is a devastating fungal disease caused by Fusarium graminearum, which affects barley (Hordeum vulgare L.) and other small cereal grains. Fungal endophytes are microorganisms that reside inside tissues and considered that they may have been involved in various roles of the plants. This study involved the comparison of fungal endophytes between "non-infected/clean" and "FHB-infected" barley genotypes in various tissues collected at different plant developmental stages and were grown under different conditions (i.e., greenhouse, research field, and FHB-field nursery). We hypothesized that fungal endophytes diversity and abundance may differ between plant tissues in various barley genotypes that were non-infected and FHB-infected. The 18S-internal transcribed spacer sequencing analysis revealed a greater number of fungal operational taxonomic units (OTUs) and endophyte species in FHB-infected barley compared to clean barley. A one-way ANOVA and Tukey's pairwise comparison test (p ≤ 0.05) were performed to test significant differences. Higher seed endophyte diversity was found in FHB-infected (120 OTUs) compared to non-infected (113 OTUs) harvested in 2021. The increase in diversity of endophytes that contributes to different roles in plant protection and defense, such as biocontrol agents, may prevent the growth of Fusarium species and decrease FHB-infection.
Collapse
Affiliation(s)
- Denice Embrador
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, MB R6M 1Y5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R3C 1B2, Canada
| | - Zoe Quill
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, MB R6M 1Y5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R3C 1B2, Canada
| | - James R Tucker
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, MB R7A 5Y3, Canada
| | - Keval Shah
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, MB R7A 5Y3, Canada
| | - Ana Badea
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, MB R7A 5Y3, Canada
| | - Champa Wijekoon
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, MB R6M 1Y5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R3C 1B2, Canada
| |
Collapse
|
3
|
Meng X, Cai H, Luo Y, Zhao X, Fu Y, Zou L, Zhou Y, Tu M. Biocontrol Potential of Endophytic Bacillus velezensis LSR7 Against Rubber Red Root Rot Disease. J Fungi (Basel) 2024; 10:849. [PMID: 39728345 DOI: 10.3390/jof10120849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
To obtain an effective bacterial biocontrol strain against the fungal pathogen Ganoderma pseudoferreum, causing rubber tree red root rot disease, healthy rubber tree tissue from Baisha County, Hainan Province, was selected as the isolation source, and bacterial strains with strong antifungal effects against G. pseudoferreum were screened. The strain was identified by molecular biology, in vitro root segment tests, pot growth promotion tests, and genome detection. The strain was further evaluated by biological function tests, genome annotation analysis, and plant defense-related enzyme activity detection. The results show that strain LSR7 had good antagonistic effects against G. pseudoferreum, and the inhibition rate reached 88.49%. The strain LSR7 was identified as Bacillus velezensis by genome sequencing. In a greenhouse environment, LSR7 prevents and treats red root rot disease in rubber trees and promotes the growth of rubber tree seedlings. LSR7 secreted cell wall hydrolases (protease, glucanase, and cellulase), amylases, and siderophores. LSR7 also formed biofilms, facilitating plant colonization. Genome prediction showed that LSR7 secreted multiple antifungal lipopeptides. LSR7 enhanced rubber tree resistance to G. pseudoferreum by increasing the activity of defense enzymes. Bacillus velezensis LSR7 has biocontrol potential and is a candidate strain for controlling red root rot disease in rubber trees.
Collapse
Affiliation(s)
- Xiangjia Meng
- National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
- School of Agriculture, Yangtze University, Jingzhou 434000, China
| | - Haibin Cai
- National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Youhong Luo
- National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
- School of Agriculture, Yangtze University, Jingzhou 434000, China
| | - Xinyang Zhao
- National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
- School of Agriculture, Yangtze University, Jingzhou 434000, China
| | - Yongwei Fu
- National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Lifang Zou
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Zhou
- School of Agriculture, Yangtze University, Jingzhou 434000, China
| | - Min Tu
- National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572020, China
| |
Collapse
|
4
|
Jena R, Mukherjee AK, Khandual A, Swain H. Mechanism of betterment towards growth and induction of defense in rice (Oryza sativa L.) by biopriming with bacterial endophytes isolated from wild rice. Microb Pathog 2024; 197:106966. [PMID: 39306053 DOI: 10.1016/j.micpath.2024.106966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024]
Abstract
Utilizing beneficial microorganisms associated with plants, particularly endophytes, is becoming more and more prevalent since it supports the physiological health and evolutionary adaption of the host. The range of enhanced endophytic bacteria found in wild rice makes it a promising resource for sustainable agriculture. Current study focused on benefits of bacterial endophytes isolated from tissues of wild rice plants' roots, stems, and leaves for managing the health and development of rice (Oryza sativa L.) plants. Bacterial endophytes were characterized using 16 S rRNA. Treatments with Priestia megaterium (NRRI EB 1) and Priestia aryabhattai (NRRI EB 2) outperformed the other isolates in rice growth enhancement activities significantly. The biocontrol efficacy of bacterial endophytes was tested against Xanthomonas oryzae pv. oryzae and Rhizoctonia solani and percentage of inhibition was higher in NRRI EB 1 by 79.32-80.83 % and in NRRI EB 2 by 79.69-80.45 %. Bio-priming the seeds with specific endophytic bacterial strains led to a decrease in average germination time, an increase in seedling vigor, and total chlorophyll content. Additionally, they generated greater amounts of soluble phosphate (40.91-83.70 μg/mL) and indole acetic acid (28.10-60.18 μg/mL), which are in the midst of encouraging more plant development. Higher expressions of defense enzymes in comparison to the control, including catalase (>220 % in root and shoot), peroxidase (>200 % in shoot and root), and superoxide dismutase (>150 % in shoot and root) illustrates the rice crop's resilience to withstand stress. The activity of the mentioned enzymes was further validated through the activation of corresponding defense genes such as DEFENSIN (>2-fold), PAL (>3-fold), PR-3 (>2-fold), POX (>2-fold) and LOX (>1-fold) in relation to the untreated plants. The possibility exists to extract advantageous endophytic bacteria from wild rice species, potentially rewilding the microbiome of cultivated rice cultivars and fostering their deployment.
Collapse
Affiliation(s)
- Rupalin Jena
- Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, 753006, India; Department of Botany, Utkal University, Bhubaneswar, India
| | - Arup Kumar Mukherjee
- Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, 753006, India.
| | - Ansuman Khandual
- Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - Harekrushna Swain
- Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
| |
Collapse
|
5
|
Kimotho RN, Zheng X, Li F, Chen Y, Li X. A potent endophytic fungus Purpureocillium lilacinum YZ1 protects against Fusarium infection in field-grown wheat. THE NEW PHYTOLOGIST 2024; 243:1899-1916. [PMID: 38946157 DOI: 10.1111/nph.19935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/10/2024] [Indexed: 07/02/2024]
Abstract
Fusarium diseases pose a severe global threat to major cereal crops, particularly wheat. Existing biocontrol strains against Fusarium diseases are believed to primarily rely on antagonistic mechanisms, but not widely used under field conditions. Here, we report an endophytic fungus, Purpureocillium lilacinum YZ1, that shows promise in combating wheat Fusarium diseases. Under glasshouse conditions, YZ1 inoculation increased the survival rate of Fusarium graminearum (Fg)-infected wheat seedlings from 0% to > 60% at the seedling stage, and reduced spikelet infections by 70.8% during anthesis. In field trials, the application of YZ1 resulted in an impressive 89.0% reduction in Fg-susceptible spikelets. While a slight antagonistic effect of YZ1 against Fg was observed on plates, the induction of wheat systemic resistance by YZ1, which is distantly effective, non-specific, and long-lasting, appeared to be a key contributor to YZ1's biocontrol capabilities. Utilizing three imaging methods, we confirmed YZ1 as a potent endophyte capable of rapid colonization of wheat roots, and systematically spreading to the stem and leaves. Integrating dual RNA-Seq, photosynthesis measurements and cell wall visualization supported the link between YZ1's growth-promoting abilities and the activation of wheat systemic resistance. In conclusion, endophytes such as YZ1, which exhibits non-antagonistic mechanisms, hold significant potential for industrial-scale biocontrol applications.
Collapse
Affiliation(s)
- Roy Njoroge Kimotho
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zheng
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Furong Li
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Yijun Chen
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofang Li
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| |
Collapse
|
6
|
Meng X, Luo Y, Zhao X, Fu Y, Zou L, Cai H, Zhou Y, Tu M. Isolation, Identification, and Biocontrol Mechanisms of Endophytic Burkholderia arboris DHR18 from Rubber Tree against Red Root Rot Disease. Microorganisms 2024; 12:1793. [PMID: 39338468 PMCID: PMC11433949 DOI: 10.3390/microorganisms12091793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Red root rot disease is a devastating fungal disease of rubber trees caused by Ganoderma pseudoferreum (Wakef). Biocontrols using beneficial microorganisms are safe and sustainable. We isolated a DHR18 endophytic bacterium from a healthy rubber tree to obtain a new efficient antagonistic bacterium for red root rot disease affecting rubber trees and evaluated the mechanism of action involved using a double culture assay, genome annotation analysis, and the ethyl acetate extraction method. The results revealed that the DHR18 strain inhibits G. pseudoferreum growth and has broad-spectrum antifungal activity by secreting cell wall hydrolases (proteases and chitinases), indole-3-acetic acid, and siderophores. Furthermore, it fixes nitrogen and is involved in biofilm formation and phosphate solubilisation, improving disease resistance and tree growth. The results showed that the antifungal substances secreted by DHR18 are mainly lipopeptides. Simultaneously, DHR18 enhanced the rubber tree resistance to G. pseudoferreum by increasing the activities of defence enzymes superoxide dismutase, phenylalanine ammonia lyase, peroxidase, catalase, and polyphenol oxidase. The results indicate that B. arboris DHR18 has biocontrol potential and could be used as a candidate strain for the control of red root rot disease in rubber trees.
Collapse
Affiliation(s)
- Xiangjia Meng
- National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (X.M.); (Y.L.); (X.Z.); (Y.F.); (H.C.)
- School of Agriculture, Yangtze University, Jingzhou 434000, China
| | - Youhong Luo
- National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (X.M.); (Y.L.); (X.Z.); (Y.F.); (H.C.)
- School of Agriculture, Yangtze University, Jingzhou 434000, China
| | - Xinyang Zhao
- National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (X.M.); (Y.L.); (X.Z.); (Y.F.); (H.C.)
- School of Agriculture, Yangtze University, Jingzhou 434000, China
| | - Yongwei Fu
- National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (X.M.); (Y.L.); (X.Z.); (Y.F.); (H.C.)
| | - Lifang Zou
- Shanghai Collaborative Innovation Centre of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Haibin Cai
- National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (X.M.); (Y.L.); (X.Z.); (Y.F.); (H.C.)
| | - Yi Zhou
- School of Agriculture, Yangtze University, Jingzhou 434000, China
| | - Min Tu
- National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (X.M.); (Y.L.); (X.Z.); (Y.F.); (H.C.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572020, China
| |
Collapse
|
7
|
Ramírez C, Cardozo M, López Gastón M, Galdeano E, Collavino M. Plant growth promoting activities of endophytic bacteria from Melia azedarach (Meliaceae) and their influence on plant growth under gnotobiotic conditions. Heliyon 2024; 10:e35814. [PMID: 39170558 PMCID: PMC11337034 DOI: 10.1016/j.heliyon.2024.e35814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Bacteria that live asymptomatically within plant tissues are known as endophytes. Because of the close relation with the plant host, they have been a matter of interest for application as plant growth promoters. Melia azedarach is a widely distributed medicinal tree with proven insecticidal, antimicrobial, and antiviral activity. The aim of this study was to isolate and characterize endophytic bacteria from M. azedarach and analyze their plant growth promoting activities for the potential application as biological products. Bacteria were isolated from roots and leaves of trees growing in two locations of Northeastern Argentina. The isolates were characterized by repetitive extragenic palindromic sequence PCR and 16S rDNA sequence analysis. The plant growth-promoting activities were assayed in vitro, improvement of plant growth of selected isolates was tested on M. azedarach plantlets, and the effect of selected ACC deaminase producing isolates was tested on tomato seedlings under salt-stress conditions. The highest endophytic bacterial abundance and diversity were obtained from the roots. All isolates had at least one of the assayed plant growth-promoting activities and 80 % of them had antagonistic activity. The most efficient bacteria were Pseudomonas monteilii, Pseudomonas farsensis, Burkholderia sp. and Cupriavidus sp. for phosphate solubilization (2064 μg P ml-1), IAA production (94.7 μg ml-1), siderophore production index (5.5) and ACC deaminase activity (1294 nmol α-ketobutyrate mg-1 h-1). M. azedarach inoculation assays revealed the bacterial growth promotion potential, with Pseudomonas monteilii, Pseudomonas farsensis and Cupriavidus sp. standing out for their effect on leaf area, leaf dry weight, specific leaf area, and total Chl, Mg and N content, with increases of up to 149 %, 58 %, 65 %, 178 %, 76 % and 97.7 %, respectively, compared to NI plants. Efficient ACC deaminase-producing isolates increased stress tolerance of tomato plants under saline condition. Overall, these findings indicate the potential of the endophytic isolates as biostimulant and biocontrol agents.
Collapse
Affiliation(s)
- C. Ramírez
- Instituto de Botánica del Nordeste (IBONE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste-CONICET, Corrientes, Argentina
| | - M. Cardozo
- Instituto de Botánica del Nordeste (IBONE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste-CONICET, Corrientes, Argentina
| | - M. López Gastón
- Instituto de Botánica del Nordeste (IBONE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste-CONICET, Corrientes, Argentina
| | - E. Galdeano
- Instituto de Botánica del Nordeste (IBONE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste-CONICET, Corrientes, Argentina
| | - M.M. Collavino
- Instituto de Botánica del Nordeste (IBONE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste-CONICET, Corrientes, Argentina
| |
Collapse
|
8
|
Abdelsalam SSH, Mugwanya M, Gad AG, Basyony ABA. Deciphering the wheat seed core mycobiome of two Egyptian cultivars (Giza 171 and Sids 14) by using high throughput amplicon sequencing of the ITS2 region. JOURNAL OF PLANT PATHOLOGY 2024; 106:1325-1334. [DOI: 10.1007/s42161-024-01689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 05/29/2024] [Indexed: 01/06/2025]
Abstract
AbstractWheat (Triticum aestivum L.) is an important food crop throughout the world. The seed mycobiome is the primary inoculum affecting the overall health and productivity of wheat plants. Seed-borne fungi can have an impact on the production of wheat and cause health complications upon consumption. Therefore, for durable and sustainable wheat production, it is imperative to characterise the wheat mycobiome. The rationale of this study was to investigate the wheat seed mycobiome of two Egyptian wheat cultivars (Sids 14 and Giza 171) using a culture-independent technique. The fungal community in 6 wheat seed samples was identified by high-throughput amplicon sequencing of the ITS2 region using the Illumina MiSeq platform. A total of 162 genera, 111 families, 55 orders and 25 classes have been identified. The fungal communities detected varied between seed samples, with a higher abundance of Ascomycota followed by Basidiomycota. Potential beneficial and pathogenic genera could be detected. Interestingly, a higher abundance of Vishniacozyma, Epicoccum, Cladosporium, Blumeria, Stymphylium, Fusarium, Filobasidium, and Alternaria was observed in the samples. Both Anthracocystis and Nigrospora were detected exclusively in T. aestivum cv. Giza 171. These results open new avenues for further investigation on the role of the mycobiome in Egyptian wheat cultivars. Ultimately, precise identification of both beneficial and pathogenic fungal genera could be accomplished.
Collapse
|
9
|
Cui Y, Zhu Y, Dong G, Li Y, Xu J, Cheng Z, Li L, Gong G, Yu X. Evaluation of the control efficacy of antagonistic bacteria from V-Ti magnetite mine tailings on kiwifruit brown spots in pot and field experiments. Front Microbiol 2024; 15:1280333. [PMID: 38533328 PMCID: PMC10963537 DOI: 10.3389/fmicb.2024.1280333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Seemingly barren heavy-metal-polluted vanadium (V) and titanium (Ti) magnetite mine tailings contain various functional microbes, yet it is unclear whether this includes microbial resources relevant to the biological control of plant diseases. Kiwifruit brown leaf spot disease, caused by Corynespora cassiicola, can seriously reduce kiwifruit yield. To discover effective control measures for kiwifruit leaf spot, 18 bacteria strains among 136 tailing-isolated bacteria from V-Ti magnetite mine tailings were identified as inhibiting C. cassiicola by the confrontation plate method, indicating that antagonistic bacteria surviving in the V-Ti magnetite mine tailings were present at a low level. The 18 antagonistic strains could be divided into two BOX-A1R clusters. The 13 representative strains that were selected for phylogenetic tree construction based on their 16S rRNA sequences belonged to the Bacillus genus. Five predominant strains exhibited different toxin-production times and intensities, with four of them initiating toxin production at 32 h. Among them, Bacillus sp. KT-10 displayed the highest bacteriostatic rate (100%), with a 37.5% growth inhibition rate and an antagonistic band of 3.2 cm against C. cassiicola. Bacillus sp. KT10 also showed a significant inhibitory effect against the expansion speed of kiwifruit brown spots in the pot. The relative control effect was 78.48 and 83.89% at 7 days after the first and last spraying of KT-10 dilution, respectively, confirming a good effect of KT-10 on kiwifruit brown leaf spots in the field. This study demonstrated for the first time that there are some antagonistic bacteria to pathogenic C. cassiicola in V-Ti magnetite mine tailings, and Bacillus sp. KT10 was found to have a good control effect on kiwifruit brown leaf spots in pots and fields, which provided an effective biological control measurement for kiwifruit brown leaf spots.
Collapse
Affiliation(s)
- Yongliang Cui
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
- Wild Plants Sharing and Service Platform of Sichuan Province, Chengdu, China
| | - Yuhang Zhu
- College of Resources and College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Guanyong Dong
- Kiwifruit Industry Development Bureau of Cangxi, Guangyuan, China
| | - Yanmei Li
- College of Resources and College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jing Xu
- College of Resources and College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Zuqiang Cheng
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
- Wild Plants Sharing and Service Platform of Sichuan Province, Chengdu, China
| | - Lijun Li
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Guoshu Gong
- College of Resources and College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xiumei Yu
- College of Resources and College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Muhammad M, Basit A, Ali K, Ahmad H, Li WJ, Khan A, Mohamed HI. A review on endophytic fungi: a potent reservoir of bioactive metabolites with special emphasis on blight disease management. Arch Microbiol 2024; 206:129. [PMID: 38416214 DOI: 10.1007/s00203-023-03828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/30/2023] [Indexed: 02/29/2024]
Abstract
Phytopathogenic microorganisms have caused blight diseases that present significant challenges to global agriculture. These diseases result in substantial crop losses and have a significant economic impact. Due to the limitations of conventional chemical treatments in effectively and sustainably managing these diseases, there is an increasing interest in exploring alternative and environmentally friendly approaches for disease control. Using endophytic fungi as biocontrol agents has become a promising strategy in recent years. Endophytic fungi live inside plant tissues, forming mutually beneficial relationships, and have been discovered to produce a wide range of bioactive metabolites. These metabolites demonstrate significant potential for fighting blight diseases and provide a plentiful source of new biopesticides. In this review, we delve into the potential of endophytic fungi as a means of biocontrol against blight diseases. We specifically highlight their significance as a source of biologically active compounds. The review explores different mechanisms used by endophytic fungi to suppress phytopathogens. These mechanisms include competing for nutrients, producing antifungal compounds, and triggering plant defense responses. Furthermore, this review discusses the challenges of using endophytic fungi as biocontrol agents in commercial applications. It emphasizes the importance of conducting thorough research to enhance their effectiveness and stability in real-world environments. Therefore, bioactive metabolites from endophytic fungi have considerable potential for sustainable and eco-friendly blight disease control. Additional research on endophytes and their metabolites will promote biotechnology solutions.
Collapse
Affiliation(s)
- Murad Muhammad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Abdul Basit
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Korea
| | - Kashif Ali
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Haris Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ayesha Khan
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
11
|
Matušinsky P, Florová V, Sedláková B, Mlčoch P, Bleša D. Colonization dynamic and distribution of the endophytic fungus Microdochium bolleyi in plants measured by qPCR. PLoS One 2024; 19:e0297633. [PMID: 38271444 PMCID: PMC10810448 DOI: 10.1371/journal.pone.0297633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
Microdochium bolleyi is a fungal endophyte of cereals and grasses proposed as an ideal model organism for studying plant-endophyte interactions. A qPCR-based diagnostic assay was developed to detect M. bolleyi in wheat and Brachypodium distachyon tissues using the species-specific primers MbqITS derived from the ITS of the ribosomal gene. Specificity was tested against 20 fungal organisms associated with barley and wheat. Colonization dynamics, endophyte distribution in the plant, and potential of the seed transmission were analyzed in the wheat and model plant B. distachyon. The colonization of plants by endophyte starts from the germinating seed, where the seed coats are first strongly colonized, then the endophyte spreads to the adjacent parts, crown, roots near the crown, and basal parts of the stem. While in the lower distal parts of roots, the concentration of M. bolleyi DNA did not change significantly in successive samplings (30, 60, 90, 120, and 150 days after inoculation), there was a significant increase over time in the roots 1 cm under crown, crowns and stem bases. The endophyte reaches the higher parts of the base (2-4 cm above the crown) 90 days after sowing in wheat and 150 days in B. distachyon. The endophyte does not reach both host species' leaves, peduncles, and ears. Regarding the potential for seed transmission, endophyte was not detected in harvested grains of plants with heavily colonized roots. Plants grown from seeds derived from parental plants heavily colonized by endophyte did not exhibit any presence of the endophyte, so transmission by seeds was not confirmed. The course of colonization dynamics and distribution in the plant was similar for both hosts tested, with two differences: the base of the wheat stem was colonized earlier, but B. distachyon was occupied more intensively and abundantly than wheat. Thus, the designed species-specific primers could detect and quantify the endophyte in planta.
Collapse
Affiliation(s)
- Pavel Matušinsky
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
- Department of Plant Pathology, Agrotest Fyto, Ltd, Kroměříž, Czech Republic
| | - Vendula Florová
- Department of Plant Pathology, Agrotest Fyto, Ltd, Kroměříž, Czech Republic
| | - Božena Sedláková
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Patrik Mlčoch
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Dominik Bleša
- Department of Plant Pathology, Agrotest Fyto, Ltd, Kroměříž, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
12
|
Wang JY, Jayasinghe H, Cho YT, Tsai YC, Chen CY, Doan HK, Ariyawansa HA. Diversity and Biocontrol Potential of Endophytic Fungi and Bacteria Associated with Healthy Welsh Onion Leaves in Taiwan. Microorganisms 2023; 11:1801. [PMID: 37512973 PMCID: PMC10386586 DOI: 10.3390/microorganisms11071801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Foliar diseases caused by Stemphylium and Colletotrichum species are among the major biotic factors limiting Welsh onion production in Taiwan. Owing to concerns about the environment and the development of pathogen resistance to existing fungicides, biological control using endophytes is emerging as an eco-friendly alternative to chemical control. The aim of the present study was to isolate endophytes from healthy Welsh onion leaves and investigate their antagonistic potential against the major phytopathogenic fungi associated with Welsh onion plants in Taiwan. A total of 109 bacterial and 31 fungal strains were isolated from healthy Welsh onion leaves and assigned to 16 bacterial and nine fungal genera using morphological and molecular characterization based on DNA sequence data obtained from nuclear internal transcribed spacer (nrITS) (fungi) and 16S rRNA (bacteria). Evaluation of these endophytic isolates for biocontrol activity against leaf blight pathogens Colletotrichum spaethianum strain SX15-2 and Stemphylium vesicarium strain SX20-2 by dual culture assay and greenhouse experiments resulted in the identification of two bacterial isolates (GFB08 and LFB28) and two fungal isolates (GFF06 and GFF08) as promising antagonists to leaf blight pathogens. Among the four selected isolates, Bacillus strain GFB08 exhibited the highest disease control in the greenhouse study. Therefore, Bacillus strain GFB08 was further evaluated to understand the mechanism underlying its biocontrol efficacy. A phylogenetic analysis based on six genes identified Bacillus strain GFB08 as B. velezensis. The presence of antimicrobial peptide genes (baer, bamC, bmyB, dfnA, fenD, ituC, mlna, and srfAA) and the secretion of several cell wall degrading enzymes (CWDEs), including cellulase and protease, confirmed the antifungal nature of B. velezensis strain GFB08. Leaf blight disease suppression by preventive and curative assays indicated that B. velezensis strain GFB08 has preventive efficacy on C. spaethianum strain SX15-2 and both preventive and curative efficacy on S. vesicarium strain SX20-2. Overall, the current study revealed that healthy Welsh onion leaves harbour diverse bacterial and fungal endophytes, among which the endophytic bacterial strain, B. velezensis strain GFB08, could potentially be used as a biocontrol agent to manage the leaf blight diseases of Welsh onion in Taiwan.
Collapse
Affiliation(s)
- Jian-Yuan Wang
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106319, Taiwan
| | - Himanshi Jayasinghe
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106319, Taiwan
| | - Yi-Tun Cho
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106319, Taiwan
| | - Yi-Chen Tsai
- Hualien District Agricultural Research and Extension Station, Hualien 973044, Taiwan
| | - Chao-Ying Chen
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106319, Taiwan
| | - Hung Kim Doan
- Small Farms & Specialty Crops Advisor, University of California Cooperative Extension, 2980 Washington Street, Riverside, CA 92504, USA
| | - Hiran A Ariyawansa
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106319, Taiwan
| |
Collapse
|
13
|
Sun X, Sharon O, Sharon A. Distinct Features Based on Partitioning of the Endophytic Fungi of Cereals and Other Grasses. Microbiol Spectr 2023; 11:e0061123. [PMID: 37166321 PMCID: PMC10269846 DOI: 10.1128/spectrum.00611-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023] Open
Abstract
Endophytic fungi form a significant part of the plant mycobiome. Defining core members is crucial to understanding the assembly mechanism of fungal endophytic communities (FECs) and identifying functionally important community members. We conducted a meta-analysis of FECs in stems of wheat and five wild cereal species and generated a landscape of the fungal endophytic assemblages in this group of plants. The analysis revealed that several Ascomycota members and basidiomycetous yeasts formed an important compartment of the FECs in these plants. We observed a weak spatial autocorrelation at the regional scale and high intrahost variations in the FECs, suggesting a space-related heterogeneity. Accordingly, we propose that the heterogeneity among subcommunities should be a criterion to define the core endophytic members. Analysis of the subcommunities and meta-communities showed that the core and noncore members had distinct roles in various assembly processes, such as stochasticity, universal dynamics, and network characteristics, within each host. The distinct features identified between the community partitions of endophytes aid in understanding the principles that govern the assembly and function of natural communities. These findings can assist in designing synthetic microbiomes. IMPORTANCE This study proposes a novel method for diagnosing core microbiotas based on prevalence of community members in a meta-community, which could be determined and supported statistically. Using this approach, the study found stratification in community assembly processes within fungal endophyte communities (FECs) in the stems of wheat and cereal-related wild species. The core and noncore partitions of the FECs exhibited certain degrees of determinism from different aspects. Further analysis revealed abundant and consistent interactions between rare taxa, which might contribute to the determinism process in noncore partitions. Despite minor differences in FEC compositions, wheat FECs showed distinct patterns in community assembly processes compared to wild species, suggesting the effects of domestication on FECs. Overall, our study provided a new approach for identifying core microbiota and provides insights into the community assembly processes within FECs in wheat and related wild species.
Collapse
Affiliation(s)
- Xiang Sun
- School of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Or Sharon
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Amir Sharon
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Alisaac E, Mahlein AK. Fusarium Head Blight on Wheat: Biology, Modern Detection and Diagnosis and Integrated Disease Management. Toxins (Basel) 2023; 15:192. [PMID: 36977083 PMCID: PMC10053988 DOI: 10.3390/toxins15030192] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Fusarium head blight (FHB) is a major threat for wheat production worldwide. Most reviews focus on Fusarium graminearum as a main causal agent of FHB. However, different Fusarium species are involved in this disease complex. These species differ in their geographic adaptation and mycotoxin profile. The incidence of FHB epidemics is highly correlated with weather conditions, especially rainy days with warm temperatures at anthesis and an abundance of primary inoculum. Yield losses due to the disease can reach up to 80% of the crop. This review summarizes the Fusarium species involved in the FHB disease complex with the corresponding mycotoxin profiles, disease cycle, diagnostic methods, the history of FHB epidemics, and the management strategy of the disease. In addition, it discusses the role of remote sensing technology in the integrated management of the disease. This technology can accelerate the phenotyping process in the breeding programs aiming at FHB-resistant varieties. Moreover, it can support the decision-making strategies to apply fungicides via monitoring and early detection of the diseases under field conditions. It can also be used for selective harvest to avoid mycotoxin-contaminated plots in the field.
Collapse
Affiliation(s)
- Elias Alisaac
- Institute of Crop Science and Resource Conservation (INRES), Plant Diseases and Plant Protection, University of Bonn, 53115 Bonn, Germany
- Institute for Grapevine Breeding, Julius Kühn-Institut, 76833 Siebeldingen, Germany
| | | |
Collapse
|
15
|
Singh J, Chhabra B, Raza A, Yang SH, Sandhu KS. Important wheat diseases in the US and their management in the 21st century. FRONTIERS IN PLANT SCIENCE 2023; 13:1010191. [PMID: 36714765 PMCID: PMC9877539 DOI: 10.3389/fpls.2022.1010191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/28/2022] [Indexed: 05/27/2023]
Abstract
Wheat is a crop of historical significance, as it marks the turning point of human civilization 10,000 years ago with its domestication. Due to the rapid increase in population, wheat production needs to be increased by 50% by 2050 and this growth will be mainly based on yield increases, as there is strong competition for scarce productive arable land from other sectors. This increasing demand can be further achieved using sustainable approaches including integrated disease pest management, adaption to warmer climates, less use of water resources and increased frequency of abiotic stress tolerances. Out of 200 diseases of wheat, 50 cause economic losses and are widely distributed. Each year, about 20% of wheat is lost due to diseases. Some major wheat diseases are rusts, smut, tan spot, spot blotch, fusarium head blight, common root rot, septoria blotch, powdery mildew, blast, and several viral, nematode, and bacterial diseases. These diseases badly impact the yield and cause mortality of the plants. This review focuses on important diseases of the wheat present in the United States, with comprehensive information of causal organism, economic damage, symptoms and host range, favorable conditions, and disease management strategies. Furthermore, major genetic and breeding efforts to control and manage these diseases are discussed. A detailed description of all the QTLs, genes reported and cloned for these diseases are provided in this review. This study will be of utmost importance to wheat breeding programs throughout the world to breed for resistance under changing environmental conditions.
Collapse
Affiliation(s)
- Jagdeep Singh
- Department of Crop, Soil & Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Bhavit Chhabra
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Ali Raza
- College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Seung Hwan Yang
- Department of Integrative Biotechnology, Chonnam National University, Yeosu, Republic of Korea
| | | |
Collapse
|
16
|
Becker R, Ulrich K, Behrendt U, Schneck V, Ulrich A. Genomic Characterization of Aureimonas altamirensis C2P003-A Specific Member of the Microbiome of Fraxinus excelsior Trees Tolerant to Ash Dieback. PLANTS (BASEL, SWITZERLAND) 2022; 11:3487. [PMID: 36559599 PMCID: PMC9781493 DOI: 10.3390/plants11243487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Some European ash trees show tolerance towards dieback caused by the invasive pathogen Hymenoscyphus fraxineus. The microbiome of these trees harbours a range of specific bacterial groups. One of these groups belonging to the species Aureimonas altamirensis was studied in detail by genome analysis and a plant inoculation trial. The strain group was shown to be phylogenetically distinct from clinical isolates by 16S rRNA analysis and phylogenomics. Genome analysis of a representative strain C2P003 resulted in a large number of unique gene sequences in comparison to other well-studied strains of the species. A functional analysis of the genome revealed features associated with the synthesis of exopolysaccharides, protein secretion and biofilm production as well as genes for stress adaptation, suggesting the ability of C2P003 to effectively colonize ash leaves. The inoculation of ash seedlings with C2P003 showed a significant positive effect on the plant health of the seedlings that were exposed to H. fraxineus infection. This effect was maintained over a period of three years and was accompanied by a significant shift in the bacterial microbiome composition one year after inoculation. Overall, the results indicate that C2P003 may suppress H. fraxineus in or on ash leaves via colonization resistance or indirectly by affecting the microbiome.
Collapse
Affiliation(s)
- Regina Becker
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Kristina Ulrich
- Institute of Forest Genetics, Johann Heinrich von Thünen Institute, 15377 Waldsieversdorf, Germany
| | - Undine Behrendt
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Volker Schneck
- Institute of Forest Genetics, Johann Heinrich von Thünen Institute, 15377 Waldsieversdorf, Germany
| | - Andreas Ulrich
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| |
Collapse
|
17
|
Kumari M, Qureshi KA, Jaremko M, White J, Singh SK, Sharma VK, Singh KK, Santoyo G, Puopolo G, Kumar A. Deciphering the role of endophytic microbiome in postharvest diseases management of fruits: Opportunity areas in commercial up-scale production. FRONTIERS IN PLANT SCIENCE 2022; 13:1026575. [PMID: 36466226 PMCID: PMC9716317 DOI: 10.3389/fpls.2022.1026575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
As endophytes are widely distributed in the plant's internal compartments and despite having enormous potential as a biocontrol agent against postharvest diseases of fruits, the fruit-endophyte-pathogen interactions have not been studied detail. Therefore, this review aims to briefly discuss the colonization patterns of endophytes and pathogens in the host tissue, the diversity and distribution patterns of endophytes in the carposphere of fruits, and host-endophyte-pathogen interactions and the molecular mechanism of the endophytic microbiome in postharvest disease management in fruits. Postharvest loss management is one of the major concerns of the current century. It is considered a critical challenge to food security for the rising global population. However, to manage the postharvest loss, still, a large population relies on chemical fungicides, which affect food quality and are hazardous to health and the surrounding environment. However, the scientific community has searched for alternatives for the last two decades. In this context, endophytic microorganisms have emerged as an economical, sustainable, and viable option to manage postharvest pathogens with integral colonization properties and eliciting a defense response against pathogens. This review extensively summarizes recent developments in endophytic interactions with harvested fruits and pathogens-the multiple biocontrol traits of endophytes and colonization and diversity patterns of endophytes. In addition, the upscale commercial production of endophytes for postharvest disease treatment is discussed.
Collapse
Affiliation(s)
- Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (R.S.R.C.), Division of Biological and Environmental Sciences and Engineering (B.E.S.E.), King Abdullah University of Science and Technology (K.A.U.S.T.), Thuwal, Saudi Arabia
| | - James White
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sandeep Kumar Singh
- Division of Microbiology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Vijay Kumar Sharma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Gerardo Puopolo
- Center Agriculture Food Environment, University of Trento, Trentino, TN, Italy
| | - Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| |
Collapse
|
18
|
Diversity and Exploration of Endophytic Bacilli for the Management of Head Scab ( Fusarium graminearum) of Wheat. Pathogens 2022; 11:pathogens11101088. [PMID: 36297145 PMCID: PMC9609341 DOI: 10.3390/pathogens11101088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Fusarium graminearum causing head scab (HS) or head blight (HB) disease in wheat is one of the nasty fungi reported to cause significant grain quality and yield loss. Biological control using endophytic bacteria has emerged as a prospective option for containing fungal diseases in an environmentally benevolent, durable, and sustainable manner. In this regard, 112 endophytic bacilli were isolated from the anthesis stage (Zadok’s growth stage 65) from five different wheat genotypes with an aim to identify prospective antagonistic strains against F. graminearum. The molecular identity of the strains was confirmed by matching 16S rRNA sequences of bacterial strains with the gene sequences of type strains available in the National Center for Biotechnology Information database and reported 38 different species of Bacillus in all the five wheat cultivars. Further, it has been observed that only fourteen strains (B. clarus NOK09, B. mojavensis NOK16, B. subtilis NOK33, B. rugosus NOK47, B. mojavensis NOK52, B. clarus NOK59, B. coahuilensis NOK72, B. cabrialesii NOK78, B. cabrialesii NOK82, B. rugosus NOK85, B. amyloliquefaciens NOK89, B. australimaris NOK95, B. pumilus NOK103, and B. amyloliquefaciens NOK109) displayed in-vitro antagonistic effect against Fusarium graminearum fungus. Furthermore, the three endophytic Bacillus strains showing the strongest antagonistic effect (>70% of growth inhibition of fungal mycelium) under in-vitro antagonistic assay were selected for field experiments. In a two-year consecutive field study, a combination of three strains (B. clarus NOK09 + B. subtilis NOK33 + B. amyloliquefaciens NOK109) displayed a remarkable reduction in HS disease index by 81.47% and 77.85%, respectively. Polymerase chain reaction assay detected three genes (ituD, bmyC, and srfA) involved in antibiotic biosynthesis pathways. Additional attributes such as potassium solubilization, siderophore release, and hydrolytic enzyme (protease, lipase, amylase, chitinase, and pectinase) synthesis have been observed in these strains. Overall, the present study was successful in profiling endophytic bacilli and selecting the combination of effective antagonistic endophytic Bacillus strains that could be the best alternative for the sustainable and ecological sound management of HS disease in wheat under field conditions.
Collapse
|
19
|
Byrne MB, Thapa G, Doohan FIM, Burke JI. Lactic Acid Bacteria as Potential Biocontrol Agents for Fusarium Head Blight Disease of Spring Barley. Front Microbiol 2022; 13:912632. [PMID: 35935224 PMCID: PMC9355582 DOI: 10.3389/fmicb.2022.912632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Fusarium head blight (FHB) is a devastating disease encountered by spring-grown barley. Traditionally, synthetic chemicals have been used to control this disease on small grain cereals. A move toward biological control agents as part of sustainable agriculture is pertinent due to the evolutionary mechanisms employed by fungal diseases to circumvent current protection strategies. This study evaluated the effect of six lactic acid bacteria isolates on the development of FHB under in vitro and glasshouse conditions. The relative expression of Fusarium marker genes and transcription factors under Fusarium infection was examined. Dual-culture assays observed inhibition zones of up to 10 and 17% of total plate area for L. amylovorus FST 2.11 and L. brevis R2Δ, respectively. Detached leaf assays validated the antifungal activity and showed the potential of all test isolates to significantly inhibit sporulation of Fusarium culmorum and Fusarium graminearum strains. Spray inoculation of lactic acid bacteria to barley spikelets prior to Fusarium spore application significantly reduced disease severity for five candidates (P < 0.05) under glasshouse conditions. Mycotoxin analysis revealed the ability of L. amylovorus DSM20552 to significantly reduce deoxynivalenol content in spikelets (P < 0.05). A preliminary gene expression study showed the positive influence of lactic acid bacteria on the expression of important defense-related marker genes and transcription factors upon FHB. These results indicate the potential of lactic acid bacteria to be included as part of an integrated pest management strategy for the management of FHB disease. This strategy will reduce FHB severity and deoxynivalenol (DON) contamination of spring barley, leading to high acceptance in the grain market.
Collapse
Affiliation(s)
- Micheal B. Byrne
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Ganesh Thapa
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - FIona M. Doohan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - James I. Burke
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Gu H, Zhang S, Liu L, Yang Z, Zhao F, Tian Y. Antimicrobial Potential of Endophytic Fungi From Artemisia argyi and Bioactive Metabolites From Diaporthe sp. AC1. Front Microbiol 2022; 13:908836. [PMID: 35814687 PMCID: PMC9260665 DOI: 10.3389/fmicb.2022.908836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Endophytic fungi of medicinal plants are important sources of active natural products. In this study, 26 fungi were isolated from Artemisia argyi, which were belonging to eight genera, namely, Alternaria, Fusarium, Chaetomium, Phoma, Diaporthe, Trichoderma, Gibberella, and Colletotrichum. The antimicrobial activities of all fungal extracts were tested by using the cup-plate method against Staphylococcus aureus, Salmonella enteritidis, and Fusarium graminearum. The results demonstrated that 25 extracts (96%) exhibited inhibitory activity against at least one of the tested pathogenic microorganisms. The strain Diaporthe sp. AC1, which showed good antimicrobial activity and high yield of crude extract from fermentation, was selected for the study of secondary metabolites. The crude extract of strain AC1 was purified by silica gel column chromatography, Sephadex LH-20 gel column chromatography, and HPLC, and finally, a new compound phomopsolide G (1), together with three known phomopsolides (2–4) and four other known compounds (5–8), was obtained. The structures of the compounds were elucidated by NMR and/or HR-MS spectroscopy. Microdilution method and MTT colorimetry were used to determine the bioactivity of the compounds. The study demonstrated that the new compound 1 had moderate antifungal activity against F. graminearum, Fusarium moniliforme, and Botrytis cinerea and weak antibacterial activity against Staphylococcus aureus. Compound 1 also showed weak cytotoxicity against HepG2, A549, and MDA-MB-231, with IC50 values of 89.91, 107.65, and 53.97 μM. Additionally, other compounds also exhibited antimicrobial and/or cytotoxic activities. The findings provided the basis for searching drug and agricultural lead compounds from A. argyi-associated fungi resources.
Collapse
Affiliation(s)
- Haiping Gu
- Key Laboratory for Agriculture Microbiology, Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Shikai Zhang
- Key Laboratory for Agriculture Microbiology, Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Lin Liu
- Key Laboratory for Agriculture Microbiology, Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Zhengyou Yang
- Key Laboratory for Agriculture Microbiology, Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian, China
- *Correspondence: Zhengyou Yang,
| | - Fengchun Zhao
- Key Laboratory for Agriculture Microbiology, Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian, China
- Fengchun Zhao,
| | - Yuan Tian
- College of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- Yuan Tian,
| |
Collapse
|
21
|
Dutilloy E, Oni FE, Esmaeel Q, Clément C, Barka EA. Plant Beneficial Bacteria as Bioprotectants against Wheat and Barley Diseases. J Fungi (Basel) 2022; 8:jof8060632. [PMID: 35736115 PMCID: PMC9225584 DOI: 10.3390/jof8060632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023] Open
Abstract
Wheat and barley are the main cereal crops cultivated worldwide and serve as staple food for a third of the world's population. However, due to enormous biotic stresses, the annual production has significantly reduced by 30-70%. Recently, the accelerated use of beneficial bacteria in the control of wheat and barley pathogens has gained prominence. In this review, we synthesized information about beneficial bacteria with demonstrated protection capacity against major barley and wheat pathogens including Fusarium graminearum, Zymoseptoria tritici and Pyrenophora teres. By summarizing the general insights into molecular factors involved in plant-pathogen interactions, we show to an extent, the means by which beneficial bacteria are implicated in plant defense against wheat and barley diseases. On wheat, many Bacillus strains predominantly reduced the disease incidence of F. graminearum and Z. tritici. In contrast, on barley, the efficacy of a few Pseudomonas, Bacillus and Paraburkholderia spp. has been established against P. teres. Although several modes of action were described for these strains, we have highlighted the role of Bacillus and Pseudomonas secondary metabolites in mediating direct antagonism and induced resistance against these pathogens. Furthermore, we advance a need to ascertain the mode of action of beneficial bacteria/molecules to enhance a solution-based crop protection strategy. Moreover, an apparent disjoint exists between numerous experiments that have demonstrated disease-suppressive effects and the translation of these successes to commercial products and applications. Clearly, the field of cereal disease protection leaves a lot to be explored and uncovered.
Collapse
|
22
|
Quach QN, Thrasher T, Kowalski KP, Clay K. Fungal endophyte effects on invasive Phragmites australis performance in field and growth chamber environments. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Biocontrol of Wheat Crown Rot Using Bacillus halotolerans QTH8. Pathogens 2022; 11:pathogens11050595. [PMID: 35631116 PMCID: PMC9143084 DOI: 10.3390/pathogens11050595] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Fusarium pseudograminearum causes crown rot in wheat. This study aimed to assess the effects of the bacterial strain QTH8 isolated from Cotinus coggygria rhizosphere soil against F. pseudograminearum. Bacterial strain QTH8 was identified as Bacillus halotolerans in accordance with the phenotypic traits and the phylogenetic analysis of 16S rDNA and gyrB gene sequence. Culture filtrates of bacterial strain QTH8 inhibited the mycelial growth of F. pseudograminearum and resulted in mycelial malformation such as tumor formation, protoplast condensation, and mycelial fracture. In addition, bacterial strain QTH8 also inhibited the mycelial growth of Hainesia lythri, Pestalotiopsis sp., Botrytis cinerea, Curvularia lunata, Phyllosticta theaefolia, Fusarium graminearum, Phytophthora nicotianae, and Sclerotinia sclerotiorum. The active compounds produced by bacterial strain QTH8 were resistant to pH, ultraviolet irradiation, and low temperature, and were relatively sensitive to high temperature. After 4 h exposure, culture filtrates of bacterial strain QTH8—when applied at 5%, 10%, 15%, 20%, 25%, and 30%—significantly reduced conidial germination of F. pseudograminearum. The coleoptile infection assay proved that bacterial strain QTH8 reduced the disease index of wheat crown rot. In vivo application of QTH8 to wheat seedlings decreased the disease index of wheat crown rot and increased root length, plant height, and fresh weight. Iturin, surfactin, and fengycin were detected in the culture extract of bacterial strain QTH8 by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Bacterial strain QTH8 was identified for the presence of the ituC, bacA, bmyB, spaS, srfAB, fend, and srfAA genes using the specific polymerase chain reaction primers. B. halotolerans QTH8 has a vital potential for the sustainable biocontrol of wheat crown rot.
Collapse
|
24
|
Ulrich K, Becker R, Behrendt U, Kube M, Schneck V, Ulrich A. Physiological and genomic characterisation of Luteimonas fraxinea sp. nov., a bacterial species associated with trees tolerant to ash dieback. Syst Appl Microbiol 2022; 45:126333. [DOI: 10.1016/j.syapm.2022.126333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/01/2022]
|
25
|
Cobo-Díaz JF, Legrand F, Le Floch G, Picot A. Influence of Maize Residues in Shaping Soil Microbiota and Fusarium spp. Communities. MICROBIAL ECOLOGY 2022; 83:702-713. [PMID: 34169333 DOI: 10.1007/s00248-021-01797-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Fusarium head blight (FHB) is a devastating fungal disease of small grain cereals including wheat. Causal fungal agents colonize various components of the field during their life cycle including previous crop residues, soil, and grains. Although soil and residues constitute the main inoculum source, these components have received much less attention than grains. This study aimed at disentangling the role of previous crop residues in shaping soil microbiota, including Fusarium spp. communities, in fields under wheat-maize rotation. Such knowledge may contribute to better understand the complex interactions between Fusarium spp. and soil microbiota. Dynamics of bacterial and fungal communities, with a special focus on Fusarium spp., were monitored in soils at 3 time points: during wheat cultivation (April 2015 and 2017) and after maize harvest (November 2016) and in maize residues taken from fields after harvest. Shifts in microbiota were also evaluated under mesocosm experiments using soils amended with maize residues. Fusarium graminearum and F. avenaceum were predominant on maize residues but did not remain in soils during wheat cultivation. Differences in soil bacterial diversity and compositions among years were much lower than variation between fields, suggesting that bacterial communities are field-specific and more conserved over time. In contrast, soil fungal diversity and compositions were more influenced by sampling time. Maize residues, left after harvest, led to a soil enrichment with several fungal genera, including Epicoccum, Fusarium, Vishniacozyma, Papiliotrema, Sarocladium, Xenobotryosphaeria, Ramularia, Cladosporium, Cryptococcus, and Bullera, but not with bacterial genera. Likewise, under mesocosm conditions, the addition of maize residues had a stronger influence on fungal communities than on bacterial communities. In particular, addition of maize significantly increased soil fungal richness, while bacteria were much less prone to changes. Based on co-occurrence networks, OTUs negatively correlated to Fusarium spp. were identified, such as those assigned to Epicoccum and Vishniacozyma. Altogether, our results allowed to gain a deeper insight into the complex microbiota interactions in soils, with bacteria and fungi responding differently to environmental disturbances.
Collapse
Affiliation(s)
- José F Cobo-Díaz
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Université de Bretagne Occidentale, 29280, Plouzané, France.
- Department of Food Hygiene and Technology, Faculty of Veterinary, Universidad de León, León, Spain.
- Institute of Food Science and Technology, Universidad de León, León, Spain.
| | - Fabienne Legrand
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Université de Bretagne Occidentale, 29280, Plouzané, France
- Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement Et du Travail (ANSES), 94701, Maisons-Alfort, France
| | - Gaétan Le Floch
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Université de Bretagne Occidentale, 29280, Plouzané, France
| | - Adeline Picot
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Université de Bretagne Occidentale, 29280, Plouzané, France
| |
Collapse
|
26
|
Yang H, Zhao Y, Ma J, Rong Z, Chen J, Wang Y, Zheng X, Ye W. Wheat Straw Return Influences Soybean Root-Associated Bacterial and Fungal Microbiota in a Wheat-Soybean Rotation System. Microorganisms 2022; 10:microorganisms10030667. [PMID: 35336243 PMCID: PMC8951542 DOI: 10.3390/microorganisms10030667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/16/2023] Open
Abstract
Roots hold complex microbial communities at the soil–root interface, which can affect plant nutrition, growth, and health. Although the composition of plant microbiomes has been extensively described for various plant species and environments, little is known about the effect of wheat straw return (WSR) on the soybean root microbiota. We used Illumina-based 16S rRNA and ITS amplicon sequencing to track changes in bacterial and fungal microbiota in bulk soil and soybean rhizosphere, rhizoplane, s1and endosphere during the third and fourth years after implementing WSR in a wheat–soybean rotation system. The results revealed that WSR had a greater impact on fungal communities than bacterial communities, particularly in bulk soil, rhizosphere, and rhizoplane. WSR enriched the relative abundance of cellulose-degrading fungi (e.g., Acremonium, Trichoderma, and Myrmecridium, among which Trichoderma also had antimicrobial activity), saprotroph (e.g., Exophiala), and nitrogen cycling bacteria (e.g., Chryseolinea). Furthermore, WSR depleted the relative abundance of pathogenic fungi (e.g., Fusarium and Alternaria). These data revealed for the first time that WSR had diverse effects on soybean root-associated microbial community composition, not only in soil but also in the rhizosphere, rhizoplane, and endosphere.
Collapse
Affiliation(s)
- Hongjun Yang
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China
| | - Yao Zhao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaxin Ma
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenyang Rong
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Jiajia Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China
| | - Yuanchao Wang
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaobo Zheng
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwu Ye
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
27
|
Compatible interaction of Brachypodium distachyon and endophytic fungus Microdochium bolleyi. PLoS One 2022; 17:e0265357. [PMID: 35286339 PMCID: PMC8920291 DOI: 10.1371/journal.pone.0265357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
Brachypodium distachyon is a useful model organism for studying interaction of cereals with phytopathogenic fungi. The present study tested the possibility of a compatible interaction of B. distachyon with the endophytic fungus Microdochium bolleyi originated from wheat roots. There was evaluated the effect of this endophytic fungus on the intensity of the attack by pathogen Fusarium culmorum in B. distachyon and wheat, and also changes in expression of genes (in B. distachyon: BdChitinase1, BdPR1-5, BdLOX3, BdPAL, BdEIN3, and BdAOS; and in wheat: TaB2H2(chitinase), TaPR1.1, TaLOX, TaPAL, TaEIN2, and TaAOS) involved in defence against pathogens. Using light microscopy and newly developed specific primers was found to be root colonization of B. distachyon by the endophyte M. bolleyi. B. distachyon plants, as well as wheat inoculated with M. bolleyi showed significantly weaker symptoms on leaves from infection by fungus F. culmorum than did plants without the endophyte. Expression of genes BdPR1-5, BdChitinase1, and BdLOX3 in B. distachyon and of TaPR1.1 and TaB2H2 in wheat was upregulated after infection with F. culmorum. M. bolleyi-mediated resistance in B. distachyon was independent of the expression of the most tested genes. Taken together, the results of the present study show that B. distachyon can be used as a model host system for endophytic fungus M. bolleyi.
Collapse
|
28
|
Struck C, Rüsch S, Strehlow B. Control Strategies of Clubroot Disease Caused by Plasmodiophora brassicae. Microorganisms 2022; 10:620. [PMID: 35336194 PMCID: PMC8949847 DOI: 10.3390/microorganisms10030620] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/17/2022] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Abstract
The clubroot disease caused by the soil-borne pathogen Plasmodiophora brassicae is one of the most important diseases of cruciferous crops worldwide. As with many plant pathogens, the spread is closely related to the cultivation of suitable host plants. In addition, temperature and water availability are crucial determinants for the occurrence and reproduction of clubroot disease. Current global changes are contributing to the widespread incidence of clubroot disease. On the one hand, global trade and high prices are leading to an increase in the cultivation of the host plant rapeseed worldwide. On the other hand, climate change is improving the living conditions of the pathogen P. brassicae in temperate climates and leading to its increased occurrence. Well-known ways to control efficiently this disease include arable farming strategies: growing host plants in wide crop rotations, liming the contaminated soils, and using resistant host plants. Since chemical control of the clubroot disease is not possible or not ecologically compatible, more and more alternative control options are being investigated. In this review, we address the challenges for its control, with a focus on biological control options.
Collapse
Affiliation(s)
- Christine Struck
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Satower Str. 48, 18059 Rostock, Germany;
| | - Stefanie Rüsch
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Satower Str. 48, 18059 Rostock, Germany;
| | - Becke Strehlow
- Faculty of Agriculture and Food Sciences, University of Applied Sciences Neubrandenburg, Brodaer Str. 2, 17033 Neubrandenburg, Germany;
| |
Collapse
|
29
|
Tsalgatidou PC, Thomloudi EE, Baira E, Papadimitriou K, Skagia A, Venieraki A, Katinakis P. Integrated Genomic and Metabolomic Analysis Illuminates Key Secreted Metabolites Produced by the Novel Endophyte Bacillus halotolerans Cal.l.30 Involved in Diverse Biological Control Activities. Microorganisms 2022; 10:microorganisms10020399. [PMID: 35208854 PMCID: PMC8877463 DOI: 10.3390/microorganisms10020399] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
The endophytic strain Cal.l.30, isolated from the medicinal plant Calendula officinalis, was selected among seven Bacillus strains with plant growth promoting activity and strong biological potential against the postharvest fungal pathogen Botrytis cinerea. Treatment by inoculating Cal.l.30 bacterial cell culture or cell free supernatant on harvested grapes and cherry tomato fruits, significantly reduced gray mold disease severity index and disease incidence. Based on 16S rRNA sequence analysis and whole genome phylogeny, Cal.l.30 was identified as Bacillus halotolerans. Genome mining revealed that B. halotolerans Cal.l.30 is endowed with a diverse arsenal of secondary metabolite biosynthetic gene clusters (SM-BGCs) responsible for metabolite production with antimicrobial properties. A sub-set of the identified SM-BGCs (mojavensin A, ‘bacillunoic acid’) appears to be the result of recent horizontal gene transfer events. Its genome was also mined for CAZymes associated with antifungal activity. Further UHPLC-HRMS analysis indicated that Cal.l.30 synthesizes and secretes secondary metabolites with antimicrobial activity, including the lipopeptides, fengycin, surfactin and mojavensin A, bacillaene isoforms, L-dihydroanticapsin and bacillibactin. Other compounds with known antimicrobial activity were also detected, such as azelaic acid, 15- hydroxypentadecanoid acid and 2-hydroxyphenylacetic acid. The genomic and metabolomic features of the B. halotolerans Cal.l.30 provided new perspectives on the exploitation of novel Bacillus sp. as a biocontrol agent.
Collapse
Affiliation(s)
- Polina C. Tsalgatidou
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
| | - Eirini-Evangelia Thomloudi
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
| | - Eirini Baira
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides’ Control and Phytopharmacy, Benaki Phytopathological Institute (BPI), Kifissia, 14561 Athens, Greece;
| | | | - Aggeliki Skagia
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
| | - Anastasia Venieraki
- Laboratory of Plant Pathology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Correspondence: (A.V.); (P.K.)
| | - Panagiotis Katinakis
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
- Correspondence: (A.V.); (P.K.)
| |
Collapse
|
30
|
Podgórska-Kryszczuk I, Solarska E, Kordowska-Wiater M. Biological Control of Fusarium culmorum, Fusarium graminearum and Fusarium poae by Antagonistic Yeasts. Pathogens 2022; 11:86. [PMID: 35056034 PMCID: PMC8777846 DOI: 10.3390/pathogens11010086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
The genus Fusarium is considered to be one of the most pathogenic, phytotoxic and toxin-producing group of microorganisms in the world. Plants infected by these fungi are characterized by a reduced consumer and commercial value, mainly due to the contamination of crops with mycotoxins. Therefore, effective methods of reducing fungi of the genus Fusarium must be implemented already in the field before harvesting, especially with alternative methods to pesticides such as biocontrol. In this study we identified yeasts that inhibit the growth of the pathogenic fungi Fusarium culmorum, F. graminearum and F. poae. Tested yeasts came from different culture collections, or were obtained from organic and conventional cereals. The greater number of yeast isolates from organic cereals showed antagonistic activity against fungi of the genus Fusarium compared to isolates from the conventional cultivation system. Cryptococcus carnescens (E22) isolated from organic wheat was the only isolate that limited the mycelial growth of all three tested fungi and was the best antagonist against F. poae. Selected yeasts showed various mechanisms of action against fungi, including competition for nutrients and space, production of volatile metabolites, reduction of spore germination, production of siderophores or production of extracellular lytic enzymes: chitinase and β-1,3-glucanase. Of all the investigated mechanisms of yeast antagonism against Fusarium, competition for nutrients and the ability to inhibit spore germination prevailed.
Collapse
Affiliation(s)
- Izabela Podgórska-Kryszczuk
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| | - Ewa Solarska
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| | - Monika Kordowska-Wiater
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| |
Collapse
|
31
|
Błaszczyk L, Salamon S, Mikołajczak K. Fungi Inhabiting the Wheat Endosphere. Pathogens 2021; 10:1288. [PMID: 34684238 PMCID: PMC8539314 DOI: 10.3390/pathogens10101288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/22/2023] Open
Abstract
Wheat production is influenced by changing environmental conditions, including climatic conditions, which results in the changing composition of microorganisms interacting with this cereal. The group of these microorganisms includes not only endophytic fungi associated with the wheat endosphere, both pathogenic and symbiotic, but also those with yet unrecognized functions and consequences for wheat. This paper reviews the literature in the context of the general characteristics of endophytic fungi inhabiting the internal tissues of wheat. In addition, the importance of epigenetic regulation in wheat-fungus interactions is recognized and the current state of knowledge is demonstrated. The possibilities of using symbiotic endophytic fungi in modern agronomy and wheat cultivation are also proposed. The fact that the current understanding of fungal endophytes in wheat is based on a rather small set of experimental conditions, including wheat genotypes, plant organs, plant tissues, plant development stage, or environmental conditions, is recognized. In addition, most of the research to date has been based on culture-dependent methods that exclude biotrophic and slow-growing species and favor the detection of fast-growing fungi. Additionally, only a few reports of studies on the entire wheat microbiome using high-throughput sequencing techniques exist. Conducting comprehensive research on the mycobiome of the endosphere of wheat, mainly in the context of the possibility of using this knowledge to improve the methods of wheat management, mainly the productivity and health of this cereal, is needed.
Collapse
Affiliation(s)
- Lidia Błaszczyk
- Department of Plant Microbiomics, Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszyńska Street, 60-479 Poznań, Poland; (S.S.); (K.M.)
| | | | | |
Collapse
|
32
|
Analysis of Stored Wheat Grain-Associated Microbiota Reveals Biocontrol Activity among Microorganisms against Mycotoxigenic Fungi. J Fungi (Basel) 2021; 7:jof7090781. [PMID: 34575819 PMCID: PMC8470753 DOI: 10.3390/jof7090781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 02/01/2023] Open
Abstract
Wheat grains are colonized by complex microbial communities that have the potential to affect seed quality and susceptibility to disease. Some of the beneficial microbes in these communities have been shown to protect plants against pathogens through antagonism. We evaluated the role of the microbiome in seed health: in particular, against mycotoxin-producing fungi. Amplicon sequencing was used to characterize the seed microbiome and determine if epiphytes and endophytes differ in their fungal and bacterial diversity and community composition. We then isolated culturable fungal and bacterial species and evaluated their antagonistic activity against mycotoxigenic fungi. The most prevalent taxa were found to be shared between the epiphytic and endophytic microbiota of stored wheat seeds. Among the isolated bacteria, Bacillus strains exhibited strong antagonistic properties against fungal pathogens with noteworthy fungal load reduction in wheat grain samples of up to a 3.59 log10 CFU/g compared to untreated controls. We also found that a strain of the yeast, Rhodotorula glutinis, isolated from wheat grains, degrades and/or metabolizes aflatoxin B1, one of the most dangerous mycotoxins that negatively affects physiological processes in animals and humans. The mycotoxin level in grain samples was significantly reduced up to 65% in the presence of the yeast strain, compared to the untreated control. Our study demonstrates that stored wheat grains are a rich source of bacterial and yeast antagonists with strong inhibitory and biodegradation potential against mycotoxigenic fungi and the mycotoxins they produce, respectively. Utilization of these antagonistic microorganisms may help reduce fungal and mycotoxin contamination, and potentially replace traditionally used synthetic chemicals.
Collapse
|
33
|
Screening of Antagonistic Bacteria from Endophytes against Walnut Blight Pathogen Xanthomonas arboricola pv. juglandis. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Walnut blight caused by Xanthomonas arboricola pv. juglandis (Xaj) is the most important bacterial disease in walnut production worldwide. To seek biocontrol agents against Xaj, we screened 152 endophytic bacteria isolated from 87 plants. Through dual-culture method screening, we obtained four antagonistic bacteria, ATE17, BME17, CIE17, and OFE17 which were isolated from Amaranthus tricolor, Bambusa multiplex, Canna indica, and Osmanthus fragrans plants respectively. The inhibition ratios of ATE18, BME17, CIE18, and OFE17 against Xaj on plates were 1.5, 1.6, 1.3, and 1.6, respectively. These indicated they have good biocontrol potential for walnut bacterial blight. Subsequently, the four endophytic bacteria were identified by morphology, Gram staining, Microbial Identification System (fatty acid methyl ester analysis), as well as 16S rDNA and gyrB sequencing. It turns out that all four strains were identified as Bacillus sp. Furthermore, the two strains BME17 and OFE17 can suppress multiple plant fungal pathogens and bacterial pathogens on plates.
Collapse
|
34
|
Biocontrol Agents Reduce Progression and Mycotoxin Production of Fusarium graminearum in Spikelets and Straws of Wheat. Toxins (Basel) 2021; 13:toxins13090597. [PMID: 34564602 PMCID: PMC8470793 DOI: 10.3390/toxins13090597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to evaluate the interactions between wheat plant (spikelets and straws), a strain of mycotoxigenic pathogen Fusarium graminearum and commercial biocontrol agents (BCAs). The ability of BCAs to colonize plant tissue and inhibit the pathogen or its toxin production was observed throughout two phases of the life cycle of pathogens in natural conditions (colonization and survival). All evaluated BCAs showed effective reduction capacities of pathogenic traits. During establishment and the expansion stage, BCAs provoked an external growth reduction of F. graminearum (77–93% over the whole kinetic studied) and mycotoxin production (98–100% over the whole kinetic studied). Internal growth of pathogen was assessed with digital droplet polymerase chain reaction (ddPCR) and showed a very strong reduction in the colonization of the internal tissues of the spikelet due to the presence of BCAs (98% on average). During the survival stage, BCAs prevented the formation of conservation perithecia of the pathogen on wheat straw (between 88 and 98% of perithecia number reduction) and showed contrasting actions on the ascospores they contain, or perithecia production (−95% on average) during survival form. The mechanisms involved in these different interactions between F. graminearum and BCAs on plant matrices at different stages of the pathogen’s life cycle were based on a reduction of toxins, nutritional and/or spatial competition, or production of anti-microbial compounds.
Collapse
|
35
|
Yang T, Lupwayi N, Marc SA, Siddique KH, Bainard LD. Anthropogenic drivers of soil microbial communities and impacts on soil biological functions in agroecosystems. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01521] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
36
|
Biocontrol Effects of Paecilomyces variotii against Fungal Plant Diseases. J Fungi (Basel) 2021; 7:jof7060415. [PMID: 34073454 PMCID: PMC8228970 DOI: 10.3390/jof7060415] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 11/17/2022] Open
Abstract
The genus Paecilomyces is known for its potential application in the control of pests and diseases; however, its use in agriculture is limited to few species. Research interest in new formulations based on microorganisms for the control of pathogens is growing exponentially; therefore, it is necessary to study new isolates, which may help control diseases effectively, and to examine their compatibility with established agricultural control methods. We analysed in vitro and in vivo the antagonistic capacity of Paecilomyces variotii against seven phytopathogens with a high incidence in different crops, and we examined its compatibility with 24 commercial fungicides. P. variotii was applied in the following pathosystems: B. cinereal—melon, Sclerotinia sclerotiorum—pepper, R. solani—tomato, F. solani—zucchini, P. aphanidermatum—melon, M. melonis—melon, and P. xanthii—zucchini. The results showed strong control effects on M. melonis and P. xanthii, reducing the disease severity index by 78% and 76%, respectively. The reduction in disease severity in the other pathosystems ranged from 29% to 44%. However, application of metabolites alone did not cause any significant effect on mycelial growth of phytopathogens, apart from F. solani, in which up to 12% inhibition was observed in vitro when the extract was applied at a concentration of 15% in the medium. P. variotii was compatible with most of the tested fungicides, and of the 24 fungicides tested at the maximum authorised dose, 6 acted as fungicides, 4 as fungistatics, and the remaining showed inhibition rates ranging from 18.2% to 95.8%. These results indicate that P. variotii is a potential biological control agent to be used against several aerial and soil diseases, thus it should be integrated into modern pest management strategies.
Collapse
|
37
|
Bacterial Endophytes of Spring Wheat Grains and the Potential to Acquire Fe, Cu, and Zn under Their Low Soil Bioavailability. BIOLOGY 2021; 10:biology10050409. [PMID: 34063099 PMCID: PMC8148187 DOI: 10.3390/biology10050409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary Unmasking the overall endophytic bacteria communities from wheat grains may help to identify and describe the microbial colonization of bread and emmer varieties, their link to the bioactive compounds produced, and their possible role in mineral nutrition. The possibility of using microorganisms to improve the microelemental composition of grain is an important food security concern, as approximately one-third of the human population experiences latent starvation caused by Fe (anemia), Zn, or Cu deficiency. Four wheat varieties from T. aestivum L. and T. turgidum subsp. dicoccum were grown in field conditions with low bioavailability of microelements in the soil. Varietal differences in the yield, yield characteristics, and the grain micronutrient concentrations were compared with the endophytic bacteria isolated from the grains. Twelve different bacterial isolates were obtained that represented the genera Staphylococcus, Pantoea, Sphingobium, Bacillus, Kosakonia, and Micrococcus. All studied strains were able to synthesize indole-related compounds (IRCs) with phytohormonal activity. IRCs produced by the bacterial genera Pantoea spp. and Bacillus spp. isolated from high-yielding Oksamyt myronivs’kyi and Holikovs’ka grains may be considered as one of the determinants of the yield of wheat and its nutritional characteristics. Abstract Wheat grains are usually low in essential micronutrients. In resolving the problem of grain micronutritional quality, microbe-based technologies, including bacterial endophytes, seem to be promising. Thus, we aimed to (1) isolate and identify grain endophytic bacteria from selected spring wheat varieties (bread Oksamyt myronivs’kyi, Struna myronivs’ka, Dubravka, and emmer Holikovs’ka), which were all grown in field conditions with low bioavailability of microelements, and (2) evaluate the relationship between endophytes’ abilities to synthesize auxins and the concentration of Fe, Zn, and Cu in grains. The calculated biological accumulation factor (BAF) allowed for comparing the varietal ability to uptake and transport micronutrients to the grains. For the first time, bacterial endophytes were isolated from grains of emmer wheat T. turgidum subsp. dicoccum. Generally, the 12 different isolates identified in the four varieties belonged to the genera Staphylococcus, Pantoea, Sphingobium, Bacillus, Kosakonia, and Micrococcus (NCBI accession numbers: MT302194—MT302204, MT312840). All the studied strains were able to synthesize the indole-related compounds (IRCs; max: 16.57 µg∙mL−1) detected using the Salkowski reagent. The IRCs produced by the bacterial genera Pantoea spp. and Bacillus spp. isolated from high-yielding Oksamyt myronivs’kyi and Holikovs’ka grains may be considered as one of the determinants of the yield of wheat and its nutritional characteristics.
Collapse
|
38
|
Habschied K, Krstanović V, Zdunić Z, Babić J, Mastanjević K, Šarić GK. Mycotoxins Biocontrol Methods for Healthier Crops and Stored Products. J Fungi (Basel) 2021; 7:348. [PMID: 33946920 PMCID: PMC8145935 DOI: 10.3390/jof7050348] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022] Open
Abstract
Contamination of crops with phytopathogenic genera such as Fusarium, Aspergillus, Alternaria, and Penicillium usually results in mycotoxins in the stored crops or the final products (bread, beer, etc.). To reduce the damage and suppress the fungal growth, it is common to add antifungal substances during growth in the field or storage. Many of these antifungal substances are also harmful to human health and the reduction of their concentration would be of immense importance to food safety. Many eminent researchers are seeking a way to reduce the use of synthetic antifungal compounds and to implement more eco-friendly and healthier bioweapons against fungal proliferation and mycotoxin synthesis. This paper aims to address the recent advances in the effectiveness of biological antifungal compounds application against the aforementioned fungal genera and their species to enhance the protection of ecological and environmental systems involved in crop growing (water, soil, air) and to reduce fungicide contamination of food derived from these commodities.
Collapse
Affiliation(s)
- Kristina Habschied
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Vinko Krstanović
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Zvonimir Zdunić
- Agricultural Institute Osijek, Južno predgrađe 17, 31000 Osijek, Croatia;
| | - Jurislav Babić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Krešimir Mastanjević
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Gabriella Kanižai Šarić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia;
| |
Collapse
|
39
|
Changenet V, Macadré C, Boutet-Mercey S, Magne K, Januario M, Dalmais M, Bendahmane A, Mouille G, Dufresne M. Overexpression of a Cytochrome P450 Monooxygenase Involved in Orobanchol Biosynthesis Increases Susceptibility to Fusarium Head Blight. FRONTIERS IN PLANT SCIENCE 2021; 12:662025. [PMID: 33868356 PMCID: PMC8048717 DOI: 10.3389/fpls.2021.662025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/11/2021] [Indexed: 05/28/2023]
Abstract
Fusarium Head Blight (FHB) is a cereal disease caused primarily by the ascomycete fungus Fusarium graminearum with public health issues due to the production of mycotoxins including deoxynivalenol (DON). Genetic resistance is an efficient protection means and numerous quantitative trait loci have been identified, some of them related to the production of resistance metabolites. In this study, we have functionally characterized the Brachypodium distachyon BdCYP711A29 gene encoding a cytochrome P450 monooxygenase (CYP). We showed that BdCYP711A29 belongs to an oligogenic family of five members. However, following infection by F. graminearum, BdCYP711A29 is the only copy strongly transcriptionally induced in a DON-dependent manner. The BdCYP711A29 protein is homologous to the Arabidopsis thaliana MAX1 and Oryza sativa MAX1-like CYPs representing key components of the strigolactone biosynthesis. We show that BdCYP711A29 is likely involved in orobanchol biosynthesis. Alteration of the BdCYP711A29 sequence or expression alone does not modify plant architecture, most likely because of functional redundancy with the other copies. B. distachyon lines overexpressing BdCYP711A29 exhibit an increased susceptibility to F. graminearum, although no significant changes in defense gene expression were detected. We demonstrate that both orobanchol and exudates of Bd711A29 overexpressing lines stimulate the germination of F. graminearum macroconidia. We therefore hypothesize that orobanchol is a susceptibility factor to FHB.
Collapse
Affiliation(s)
- Valentin Changenet
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Catherine Macadré
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Stéphanie Boutet-Mercey
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Kévin Magne
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Mélanie Januario
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Marion Dalmais
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Marie Dufresne
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay, Orsay, France
| |
Collapse
|
40
|
Karlsson I, Persson P, Friberg H. Fusarium Head Blight From a Microbiome Perspective. Front Microbiol 2021; 12:628373. [PMID: 33732223 PMCID: PMC7956947 DOI: 10.3389/fmicb.2021.628373] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022] Open
Abstract
The fungal genus Fusarium causes several diseases in cereals, including Fusarium head blight (FHB). A number of Fusarium species are involved in disease development and mycotoxin contamination. Lately, the importance of interactions between plant pathogens and the plant microbiome has been increasingly recognized. In this review, we address the significance of the cereal microbiome for the development of Fusarium-related diseases. Fusarium fungi may interact with the host microbiome at multiple stages during their life cycles and in different plant organs including roots, stems, leaves, heads, and crop residues. There are interactions between Fusarium and other fungi and bacteria as well as among Fusarium species. Recent studies have provided a map of the cereal microbiome and revealed how different biotic and abiotic factors drive microbiome assembly. This review synthesizes the current understanding of the cereal microbiome and the implications for Fusarium infection, FHB development, disease control, and mycotoxin contamination. Although annual and regional variations in predominant species are significant, much research has focused on Fusarium graminearum. Surveying the total Fusarium community in environmental samples is now facilitated with novel metabarcoding methods. Further, infection with multiple Fusarium species has been shown to affect disease severity and mycotoxin contamination. A better mechanistic understanding of such multiple infections is necessary to be able to predict the outcome in terms of disease development and mycotoxin production. The knowledge on the composition of the cereal microbiome under different environmental and agricultural conditions is growing. Future studies are needed to clearly link microbiome structure to Fusarium suppression in order to develop novel disease management strategies for example based on conservation biological control approaches.
Collapse
Affiliation(s)
- Ida Karlsson
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Paula Persson
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hanna Friberg
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
41
|
Munakata Y, Gavira C, Genestier J, Bourgaud F, Hehn A, Slezack-Deschaumes S. Composition and functional comparison of vetiver root endophytic microbiota originating from different geographic locations that show antagonistic activity towards Fusarium graminearum. Microbiol Res 2020; 243:126650. [PMID: 33302220 DOI: 10.1016/j.micres.2020.126650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022]
Abstract
Given the current trend towards reducing the use of chemical controls in agriculture, microbial resources such as plant endophytes are being intensively investigated for traits that are conducive to plant protection. Among the various important target pathogens, Fusarium graminearum is a fungal pathogen of cereal crops that is responsible for severe yield losses and mycotoxin contamination in grains. In the present study, we investigated the bacterial endophytic communities from vetiver (Chrysopogon zizanioides (L.) Roberty) roots originating from 5 different geographic locations across Europe and Africa. This study relies on a global 16S metabarcoding approach and the isolation/functional characterization of bacterial isolates. The results we obtained showed that geographical location is a factor that influences the composition and relative abundance of root endophyte communities in vetiver. Three hundred eighty-one bacterial endophytes were isolated and assessed for their in vitro antagonistic activities towards F. graminearum mycelium growth. In total, 46 % of the isolates showed at least 50 % inhibitory activity against F. graminearum. The taxonomic identification of the bioactive isolates revealed that the composition of these functional culturable endophytic communities was influenced by the geographic origins of the roots. The selected communities consisted of 15 genera. Some endophytes in Bacillus, Janthinobacterium, Kosakonia, Microbacterium, Pseudomonas, and Serratia showed strong growth inhibition activity (≥70 %) against F. graminearum and could be candidates for further development as biocontrol agents.
Collapse
Affiliation(s)
- Yuka Munakata
- Université de Lorraine - INRAE, LAE, F-54000, Nancy, France
| | - Carole Gavira
- Plant Advanced Technologies, F54500, Vandoeuvre-lès-Nancy, France
| | | | | | - Alain Hehn
- Université de Lorraine - INRAE, LAE, F-54000, Nancy, France
| | | |
Collapse
|
42
|
Faria PSA, Marques VDO, Selari PJRG, Martins PF, Silva FG, Sales JDF. Multifunctional potential of endophytic bacteria from Anacardium othonianum Rizzini in promoting in vitro and ex vitro plant growth. Microbiol Res 2020; 242:126600. [PMID: 33011553 DOI: 10.1016/j.micres.2020.126600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/05/2020] [Accepted: 09/04/2020] [Indexed: 01/15/2023]
Abstract
Anacardium othonianum Rizzini, a cashew tree native to the Brazilian Cerrado, is economically important due to its applications in the food, chemical and pharmaceutical industries. However, A. othonianum yields a crop with low productivity due to a number of factors, such as nutritionally poor soils, drought and losses due to pests and diseases. Brazil is one of the nine largest cashew nut producers worldwide, and sustainable technologies are needed to increase the productivity of this crop. In this context, the use of endophytic microorganisms could promote plant growth and provide protection against phytopathogens. In this study, the isolation of the root endophytic community of A. othonianum led to the characterization of 22 distinct bacterial strains with multifunctional traits for plant growth promotion. The results of in vitro assays to assess auxin synthesis, phosphate solubilization, phosphatase and siderophore production and biocontrol against Fusarium oxysporum led to the selection of Acinetobacter lwoffii Bac109 and Pantoea agglomerans Bac131 as the most promising strains. The reinoculation of the Bac109 and Bac131 strains onto A. othonianum seeds showed that the treatment containing a mixture of these strains was the most effective in promoting increases in the biometric parameters of early plant growth. Thus, this study highlights the biotechnological potential of a consortium of A. lwoffii Bac109 and P. agglomerans Bac131 for future applications in sustainable cashew cultivation.
Collapse
Affiliation(s)
- Paula Sperotto Alberto Faria
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| | - Vinicius de Oliveira Marques
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| | - Priscila Jane Romano Gonçalves Selari
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Ceres, Goiás, Brazil.
| | - Paula Fabiane Martins
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| | - Fabiano Guimarães Silva
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| | - Juliana de Fátima Sales
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| |
Collapse
|
43
|
Ulrich K, Becker R, Behrendt U, Kube M, Ulrich A. A Comparative Analysis of Ash Leaf-Colonizing Bacterial Communities Identifies Putative Antagonists of Hymenoscyphus fraxineus. Front Microbiol 2020; 11:966. [PMID: 32547506 PMCID: PMC7273808 DOI: 10.3389/fmicb.2020.00966] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
In the last few years, the alarming spread of Hymenoscyphus fraxineus, the causal agent of ash dieback, has resulted in a substantial threat to native ash stands in central and northern Europe. Since leaves and leaf petioles are the primary infection sites, phyllosphere microorganisms are presumed to interact with the pathogen and are discussed as a source of biocontrol agents. We studied compound leaves from susceptible and visible infection-free trees in four ash stands with a high likelihood of infection to assess a possible variation in the bacterial microbiota, depending on the health status of the trees. The bacterial community was analyzed by culture-independent 16S rRNA gene amplicon sequencing and through the isolation and taxonomic classification of 2,589 isolates using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The bacterial community structure did not show significant differences. However, a set of amplicon sequence variants (ASVs) and MALDI groups belonging to Luteimonas, Aureimonas, Pseudomonas, Bacillus, and Paenibacillus were distinctly increased in tolerant trees, which may be associated with the ability of the tree to resist the pathogen. The most obvious differences were observed for Luteimonas, a genus that is also exclusively present in the healthy core microbiome. In a first in vitro screen of antagonists, approximately 11% of total isolates suppressed the growth of H. fraxineus, but a statistical test with two different H. fraxineus strains confirmed only the antagonistic activity of 8% of these isolates. The antagonistic isolates were assigned to Bacillus velezensis, Pantoea vagans, and Pseudomonas caspiana. Overall, our study provides a set of isolates or phylogenetic groups that might be involved in the process that prevents the penetration and spread of H. fraxineus. In the next step, in planta experiments are required with a longer period of exposure to H. fraxineus to evaluate effective isolates or consortia of isolates acting through direct antagonism or competition or indirectly by inducing resistance.
Collapse
Affiliation(s)
- Kristina Ulrich
- Institute of Forest Genetics, Johann Heinrich von Thünen Institute, Waldsieversdorf, Germany
| | - Regina Becker
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Undine Behrendt
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Michael Kube
- Integrative Infection Biology Crops-Livestock, University of Hohenheim, Stuttgart, Germany
| | - Andreas Ulrich
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| |
Collapse
|
44
|
Rojas EC, Sapkota R, Jensen B, Jørgensen HJL, Henriksson T, Jørgensen LN, Nicolaisen M, Collinge DB. Fusarium Head Blight Modifies Fungal Endophytic Communities During Infection of Wheat Spikes. MICROBIAL ECOLOGY 2020; 79:397-408. [PMID: 31448388 PMCID: PMC7033075 DOI: 10.1007/s00248-019-01426-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 08/13/2019] [Indexed: 05/29/2023]
Abstract
Fusarium head blight (FHB) is a devastating disease of wheat heads. It is caused by several species from the genus Fusarium. Several endophytic fungi also colonize wheat spikes asymptomatically. Pathogenic and commensal fungi share and compete for the same niche and thereby influence plant performance. Understanding the natural dynamics of the fungal community and how the pre-established species react to pathogen attack can provide useful information on the disease biology and the potential use of some of these endophytic organisms in disease control strategies. Fungal community composition was assessed during anthesis as well as during FHB attack in wheat spikes during 2016 and 2017 in two locations. Community metabarcoding revealed that endophyte communities are dominated by basidiomycete yeasts before anthesis and shift towards a more opportunistic ascomycete-rich community during kernel development. These dynamics are interrupted when Fusarium spp. colonize wheat spikes. The Fusarium pathogens appear to exclude other fungi from floral tissues as they are associated with a reduction in community diversity, especially in the kernel which they colonize rapidly. Similarly, the presence of several endophytes was negatively correlated with Fusarium spp. and linked with spikes that stayed healthy despite exposure to the pathogen. These endophytes belonged to the genera Cladosporium, Itersonillia and Holtermanniella. These findings support the hypothesis that some naturally occurring endophytes could outcompete or prevent FHB and represent a source of potential biological control agents in wheat.
Collapse
Affiliation(s)
- Edward C Rojas
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences & Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
| | - Rumakanta Sapkota
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Birgit Jensen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences & Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Hans J L Jørgensen
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences & Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | | | - Lise Nistrup Jørgensen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - David B Collinge
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences & Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
45
|
Santra HK, Banerjee D. Fungal Endophytes: A Source for Biological Control Agents. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Besset-Manzoni Y, Joly P, Brutel A, Gerin F, Soudière O, Langin T, Prigent-Combaret C. Does in vitro selection of biocontrol agents guarantee success in planta? A study case of wheat protection against Fusarium seedling blight by soil bacteria. PLoS One 2019; 14:e0225655. [PMID: 31805068 PMCID: PMC6894788 DOI: 10.1371/journal.pone.0225655] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/09/2019] [Indexed: 01/14/2023] Open
Abstract
Biological control is a great hope for reducing the overutilization of pesticides in agricultural soils. It often involves microorganisms or molecules produced by microorganisms that will be able to interact with either a plant or pathogens of this plant to reduce the growth of the pathogen and limit its negative impact on the host plant. When new biocontrol products are developed, strains were mostly selected based on their ability to inhibit a pathogen of interest under in vitro conditions via antagonistic effects. Strains with no in vitro effect are often discarded and not tested in planta. But is the in vitro selection of bacterial agents according to their antagonism activities towards a plant pathogen the best way to get effective biocontrol products? To answer this question, we used wheat and the fungal pathogen Fusarium graminearum as a study pathosystem model. A library of 205 soil bacteria was screened in 2 types of in vitro growth inhibition tests against F. graminearum, and in an in planta experiment. We find strains which do not have inhibition phenotypes in vitro but good efficacy in planta. Interestingly, some strains belong to species (Microbacterium, Arthrobacter, Variovorax) that are not known in the literature for their ability to protect plants against fungal pathogens. Thus, developing a biocontrol product against F. graminearum must be preferentially based on the direct screening of strains for their protective activity on wheat plants against fungal diseases, rather than on their in vitro antagonistic effects on fungal growth.
Collapse
Affiliation(s)
- Yoann Besset-Manzoni
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne cedex, France
- Biovitis, Le Bourg, Saint Etienne-de-Chomeil, France
| | - Pierre Joly
- Biovitis, Le Bourg, Saint Etienne-de-Chomeil, France
| | - Aline Brutel
- Biovitis, Le Bourg, Saint Etienne-de-Chomeil, France
| | - Florence Gerin
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne cedex, France
| | - Olivier Soudière
- INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Clermont–Ferrand, France
| | - Thierry Langin
- INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Clermont–Ferrand, France
| | - Claire Prigent-Combaret
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne cedex, France
- * E-mail:
| |
Collapse
|
47
|
Critical Assessment of Streptomyces spp. Able to Control Toxigenic Fusaria in Cereals: A Literature and Patent Review. Int J Mol Sci 2019; 20:ijms20246119. [PMID: 31817248 PMCID: PMC6941072 DOI: 10.3390/ijms20246119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/18/2019] [Accepted: 12/01/2019] [Indexed: 12/18/2022] Open
Abstract
Mycotoxins produced by Fusarium species on cereals represent a major concern for food safety worldwide. Fusarium toxins that are currently under regulation for their content in food include trichothecenes, fumonisins, and zearalenone. Biological control of Fusarium spp. has been widely explored with the aim of limiting disease occurrence, but few efforts have focused so far on limiting toxin accumulation in grains. The bacterial genus Streptomyces is responsible for the production of numerous drug molecules and represents a huge resource for the discovery of new molecules. Streptomyces spp. are also efficient plant colonizers and able to employ different mechanisms of control against toxigenic fungi on cereals. This review describes the outcomes of research using Streptomyces strains and/or their derived molecules to limit toxin production and/or contamination of Fusarium species in cereals. Both the scientific and patent literature were analyzed, starting from the year 2000, and we highlight promising results as well as the current pitfalls and limitations of this approach.
Collapse
|
48
|
Bisutti I, Stephan D. Influence of fermentation temperature and duration on survival and biocontrol efficacy of
Pseudomonas fluorescens
Pf153 freeze‐dried cells. J Appl Microbiol 2019; 128:232-241. [DOI: 10.1111/jam.14458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/08/2019] [Accepted: 08/18/2019] [Indexed: 02/01/2023]
Affiliation(s)
- I.L. Bisutti
- Julius Kühn‐Institut Federal Research Centre for Cultivated Plants Institute for Biological Control Darmstadt Germany
- Division Phytomedicine Faculty of Life Science Humboldt‐Universität zu Berlin Berlin Germany
| | - D. Stephan
- Julius Kühn‐Institut Federal Research Centre for Cultivated Plants Institute for Biological Control Darmstadt Germany
| |
Collapse
|
49
|
Screening, Identification, and Optimization of Fermentation Conditions of an Antagonistic Endophyte to Wheat Head Blight. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9090476] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fusarium Head Blight (FHB, scab) is a destructive fungal disease that causes extensive yield and quality losses in wheat and other small cereals. Biological control of FHB is considered to be an alternative disease management strategy that is environmentally benign, durable, and compatible with other control measures. In this study, to screen antagonistic bacteria with the potential to manage FHB, 113 endophytes were isolated from the stems, leaves, panicles, and roots of wheat. Among them, six strains appeared to effectively inhibit Fusarium graminearum growth and one isolate, XS-2, showed a highly antagonistic effect against FHB. An in vitro antagonistic test of XS-2 on wheat heads confirmed that XS-2 could suppress the disease severity of FHB. The 16S rDNA sequence analysis revealed that XS-2 is a strain of Bacillus amyloliquefaciens. Antagonistic spectrum analyses showed that XS-2 had antagonistic effects against two and four types of cotton and fruit tree pathogens, respectively. The fermentation condition assays showed that glucose and peptone are the most suitable nutrient sources for XS-2, and that the optimal pH value and temperature for fermentation were 7.4 and 28 °C, respectively. Our study indicates that XS-2 has a good antagonistic effect on FHB and lays a theoretical foundation for the application of the strain as a biological agent in the field to control FHB.
Collapse
|
50
|
Biocontrol of Postharvest Fruit Fungal Diseases by Bacterial Antagonists: A Review. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9030121] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review deals with the main mechanisms of action exerted by antagonistic bacteria, such as competition for space and nutrients, suppression via siderophores, hydrolytic enzymes, antibiosis, biofilm formation, and induction of plant resistance. These mechanisms inhibit phytopathogen growth that affects postharvest fruit since quality and safety parameters are influenced by the action of these microorganisms, which cause production losses in more than 50% of fruit tree species. The use of synthetic fungicide products has been the dominant control strategy for diseases caused by fungi. However, their excessive and inappropriate use in intensive agriculture has brought about problems that have led to environmental contamination, considerable residues in agricultural products, and phytopathogen resistance. Thus, there is a need to generate alternatives that are safe, ecological, and economically viable to face this problem. Phytopathogen inhibition in fruit utilizing antagonist microorganisms has been recognized as a type of biological control (BC), which could represent a viable and environmentally safe alternative to synthetic fungicides. Despite the ecological benefit that derives from the use of controllers and biological control agents (BCA) at a commercial level, their application and efficient use has been minimal at a global level.
Collapse
|