1
|
Lasak M, Łysek-Gładysińska M, Lach K, Nirwan VP, Kuc-Ciepluch D, Sanchez-Nieves J, de la Mata FJ, Fahmi A, Ciepluch K. Electrospun Nanofibers for the Delivery of Endolysin/Dendronized Ag-NPs Complex Against Pseudomonas aeruginosa. Nanotechnol Sci Appl 2025; 18:57-70. [PMID: 39989599 PMCID: PMC11846615 DOI: 10.2147/nsa.s498942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
Purpose As bacterial resistance to antibiotics increases, there is an urgent need to identify alternative antibacterial agents and improve antibacterial materials. One is the controlled transport of antibacterial agents that prevents infection with drug-resistant bacteria, especially in the treatment of difficult-to-heal wounds. Methods This work presents the use of electrospun PLCL/PVP (poly(L-lactide-co-ε-caprolactone/polyvinylpyrrolidone) nanofibers modified with two agents with antibacterial properties but with different mechanisms of action, that is, dendritic silver nanoparticles (Dend-AgNPs) and endolysin. Results The nanomat prepared in this manner showed significant antibacterial activity against antibiotic-resistant Pseudomonas aeruginosa strains, inhibiting their growth and production of key pigments and virulence factors. Moreover, the use of nanofibers as carriers of the selected factors significantly reduced their cytotoxicity towards human fibroblasts. Conclusion The results confirmed the possibility of using the presented product as an innovative dressing material, opening new perspectives for the treatment of wounds and combating bacterial infections with drug-resistant bacteria.
Collapse
Affiliation(s)
- Magdalena Lasak
- Division of Medical Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| | | | - Karolina Lach
- Division of Medical Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Viraj P Nirwan
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Science, Kleve, Germany
| | - Dorota Kuc-Ciepluch
- Department of Basic Medical Sciences, Faculty of Medical Sciences and Health Sciences, Casimir Pulaski University of Radom, Radom, Poland
| | - Javier Sanchez-Nieves
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá (UAH), Alcalá de Henares, Spain
- Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Ramón y Cajal Institute of Health Research, (IRYCIS), Madrid, Spain
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá (UAH), Alcalá de Henares, Spain
- Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Ramón y Cajal Institute of Health Research, (IRYCIS), Madrid, Spain
| | - Amir Fahmi
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Science, Kleve, Germany
| | - Karol Ciepluch
- Division of Medical Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| |
Collapse
|
2
|
Diaz Appella MN, Kolender A, Oppezzo OJ, López NI, Tribelli PM. The structural complexity of pyomelanin impacts UV shielding in Pseudomonas species with different lifestyles. FEBS Lett 2024; 598:2702-2716. [PMID: 39152523 DOI: 10.1002/1873-3468.15000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
Pyomelanin, a polymeric pigment in Pseudomonas, arises mainly from alterations in tyrosine degradation. The chemical structure of pyomelanin remains elusive due to its heterogeneous nature. Here, we report strain-specific differences in pyomelanin structural features across Pseudomonas using PAO1 and PA14 reference strains carrying mutations in hmgA (a gene involved in pyomelanin synthesis), a melanogenic P. aeruginosa clinical isolate (PAM), and a melanogenic P. extremaustralis (PexM). UV spectra showed dual peaks for PAO1 and PA14 mutants and single peaks for PAM and PexM. FTIR phenol : alcohol ratio changes and complex NMR spectra indicated non-linear polymers. UVC radiation survival increased with pyomelanin addition, correlating with pigment absorption attenuation. P. extremaustralis UVC survival varied with melanin source, with PAO1 pyomelanin being the most protective. These findings delineate structure-based pyomelanin subgroups, having distinct physiological effects.
Collapse
Affiliation(s)
- Mateo N Diaz Appella
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Adriana Kolender
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Oscar J Oppezzo
- Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Nancy I López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
- IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Paula M Tribelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
- IQUIBICEN-CONICET, Buenos Aires, Argentina
| |
Collapse
|
3
|
Lasak M, Nirwan VP, Kuc-Ciepluch D, Lysek-Gladysinska M, Javier de la Mata F, Gomez R, Fahmi A, Ciepluch K. Dendronized Ag/Au Nanomats: Antimicrobial Scaffold for Wound Healing Bandages. Macromol Biosci 2024; 24:e2300513. [PMID: 38444226 DOI: 10.1002/mabi.202300513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/06/2024] [Indexed: 03/07/2024]
Abstract
Electrospun polymer nanofibers, due to high surface area-to-volume ratio, high porosity, good mechanical strength, and ease of functionalization, appear as promising multifunctional materials for biomedical applications. Thanks to their unidirectional structure, imitating the extracellular matrix (ECM), they can be used as scaffolds for cell adhesion and proliferation. In addition, the incorporation of active groups inside nanofiber can give properties for bactericides. The proposed nanomats incorporate nanoparticles templated within the electrospun nanofibers that prevent infections and stimulate tissue regeneration. The generated hybrid electrospun nanofibers are composed of a copolymer of L-lactide-block-ε-caprolactone (PL-b-CL), 70:30, blended with homopolymer polyvinylpyrrolidone (PVP) and gold (Au) nanoparticles. A low cytotoxicity and slightly increased immunoreactivity, stimulated by the nanomat, are observed. Moreover, the decoration of the hybrid nanomat with dendronized silver nanoparticles (Dend-Ag) improves their antibacterial activity against antibiotic-resistant Pseudomonas aeruginosa. The use of Dend-Ag for decorating offers several functional effects; namely, it enhances the antibacterial properties of the produced nanomats and induces a significant increase within macrophages' cytotoxicity. The unidirectional nanostructures of the generated hybrid nanomats demonstrate unique collective physio-chemical and biological properties suitable for a wide range of biomedical applications. Here, the antibacterial properties facilitate an optimal environment, contributing to accelerated wound healing.
Collapse
Affiliation(s)
- Magdalena Lasak
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, Kielce, 25-640, Poland
| | - Viraj P Nirwan
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Science, Marie-Curie-Straβe 1, 47533, Kleve, Germany
| | - Dorota Kuc-Ciepluch
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, Kielce, 25-640, Poland
| | - Malgorzata Lysek-Gladysinska
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, Kielce, 25-640, Poland
| | - F Javier de la Mata
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá, Alcalá de Henares, 28871, Spain
- Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
- Ramón y Cajal Institute of Health Research, IRYCIS, Ctra. de Colmenar Viejo, Km. 9, Madrid, 28034, Spain
| | - Rafael Gomez
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá, Alcalá de Henares, 28871, Spain
- Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
- Ramón y Cajal Institute of Health Research, IRYCIS, Ctra. de Colmenar Viejo, Km. 9, Madrid, 28034, Spain
| | - Amir Fahmi
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Science, Marie-Curie-Straβe 1, 47533, Kleve, Germany
| | - Karol Ciepluch
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, Kielce, 25-640, Poland
| |
Collapse
|
4
|
Nirwan VP, Lasak M, Ciepluch K, Fahmi A. Hybrid Nanomat: Copolymer Template CdSe Quantum Dots In Situ Stabilized and Immobilized within Nanofiber Matrix. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040630. [PMID: 36838998 PMCID: PMC9959613 DOI: 10.3390/nano13040630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 05/12/2023]
Abstract
Fabrication and characterization of hybrid nanomats containing quantum dots can play a prominent role in the development of advanced biosensors and bio-based semiconductors. Owing to their size-dependent properties and controlled nanostructures, quantum dots (QDs) exhibit distinct optical and electronic characteristics. However, QDs include heavy metals and often require stabilizing agents which are toxic for biological applications. Here, to mitigate the use of toxic ligands, cadmium selenide quantum dots (CdSe QDs) were synthesized in situ with polyvinylpyrrolidone (PVP) at room temperature. The addition of PVP polymer provided size regulation, stability, and control over size distribution of CdSe QDs. The characterization of the optical properties of the CdSe QDs was performed using fluorescence and ultraviolet-visible (UV-Vis) spectroscopy. CdSe QDs exhibited a typical absorbance peak at 280 nm and a photoluminescence emission peak at 580 nm. Transmission electron microscopy (TEM) micrographs demonstrated that CdSe QDs having an average size of 6 ± 4 nm were obtained via wet chemistry method. CdSe QDs were immobilized in a blend of PVP and poly(L-lactide-co-ε-caprolactone) (PL-b-CL) copolymer that was electrospun to produce nanofibers. Scanning electron microscopy (SEM), thermal analyses and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) were used to characterize properties of fabricated nanofibers. Both pristine and hybrid nanofibers possessed cylindrical geometry and rough surface features, facilitating increased surface area. Infrared absorption spectra showed a slight shift in absorbance peaks due to interaction of PVP-coated CdSe QDs and nanofiber matrix. The presence of CdSe QDs influenced the fiber diameter and their thermal stability. Further, in vitro biological analyses of hybrid nanofibers showed promising antibacterial effect and decline in cancer cell viability. This study offers a simple approach to obtain hybrid nanomats immobilized with size-controlled PVP-coated CdSe QDs, which have potential applications as biosensors and antibacterial and anticancer cell agents.
Collapse
Affiliation(s)
- Viraj P. Nirwan
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Science, Marie-Curie-Straβe 1, 47533 Kleve, Germany
| | - Magdalena Lasak
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, 25-406 Kielce, Poland
| | - Karol Ciepluch
- Division of Medical Biology, Jan Kochanowski University in Kielce, Uniwersytecka Street 7, 25-406 Kielce, Poland
| | - Amir Fahmi
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Science, Marie-Curie-Straβe 1, 47533 Kleve, Germany
- Correspondence: ; Tel.: +49-0282-1806-73634
| |
Collapse
|
5
|
Styczynski M, Rogowska A, Nyabayo C, Decewicz P, Romaniuk F, Pączkowski C, Szakiel A, Suessmuth R, Dziewit L. Heterologous production and characterization of a pyomelanin of Antarctic Pseudomonas sp. ANT_H4: a metabolite protecting against UV and free radicals, interacting with iron from minerals and exhibiting priming properties toward plant hairy roots. Microb Cell Fact 2022; 21:261. [PMID: 36527127 PMCID: PMC9756463 DOI: 10.1186/s12934-022-01990-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Antarctica has one of the most extreme environments in the world. This region is inhabited by specifically adapted microorganisms that produce various unique secondary metabolites (e.g. pigments) enabling their survival under the harsh environmental conditions. It was already shown that these natural, biologically active molecules may find application in various fields of biotechnology. RESULTS In this study, a cold-active brown-pigment-producing Pseudomonas sp. ANT_H4 strain was characterized. In-depth genomic analysis combined with the application of a fosmid expression system revealed two different pathways of melanin-like compounds biosynthesis by the ANT_H4 strain. The chromatographic behavior and Fourier-transform infrared spectroscopic analyses allowed for the identification of the extracted melanin-like compound as a pyomelanin. Furthermore, optimization of the production and thorough functional analyses of the pyomelanin were performed to test its usability in biotechnology. It was confirmed that ANT_H4-derived pyomelanin increases the sun protection factor, enables scavenging of free radicals, and interacts with the iron from minerals. Moreover, it was shown for the first time that pyomelanin exhibits priming properties toward Calendula officinalis hairy roots in in vitro cultures. CONCLUSIONS Results of the study indicate the significant biotechnological potential of ANT_H4-derived pyomelanin and open opportunities for future applications. Taking into account protective features of analyzed pyomelanin it may be potentially used in medical biotechnology and cosmetology. Especially interesting was showing that pyomelanin exhibits priming properties toward hairy roots, which creates a perspective for its usage for the development of novel and sustainable agrotechnical solutions.
Collapse
Affiliation(s)
- Michal Styczynski
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agata Rogowska
- grid.12847.380000 0004 1937 1290Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Christine Nyabayo
- grid.6734.60000 0001 2292 8254Institute of Chemistry, Technical University of Berlin, Berlin, Germany
| | - Przemyslaw Decewicz
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Filip Romaniuk
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Cezary Pączkowski
- grid.12847.380000 0004 1937 1290Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Szakiel
- grid.12847.380000 0004 1937 1290Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Roderich Suessmuth
- grid.6734.60000 0001 2292 8254Institute of Chemistry, Technical University of Berlin, Berlin, Germany
| | - Lukasz Dziewit
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Menon ND, Penziner S, Montaño ET, Zurich R, Pride DT, Nair BG, Kumar GB, Nizet V. Increased Innate Immune Susceptibility in Hyperpigmented Bacteriophage-Resistant Mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2022; 66:e0023922. [PMID: 35862755 PMCID: PMC9380547 DOI: 10.1128/aac.00239-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/17/2022] [Indexed: 01/11/2023] Open
Abstract
Bacteriophage (phage) therapy is an alternative to traditional antibiotic treatments that is particularly important for multidrug-resistant pathogens, such as Pseudomonas aeruginosa. Unfortunately, phage resistance commonly arises during treatment as bacteria evolve to survive phage predation. During in vitro phage treatment of a P. aeruginosa-type strain, we observed the emergence of phage-resistant mutants with brown pigmentation that was indicative of pyomelanin. As increased pyomelanin (due to hmgA gene mutation) was recently associated with enhanced resistance to hydrogen peroxide and persistence in experimental lung infection, we questioned if therapeutic phage applications could inadvertently select for hypervirulent populations. Pyomelanogenic phage-resistant mutants of P. aeruginosa PAO1 were selected for upon treatment with three distinct phages. Phage-resistant pyomelanogenic mutants did not possess increased survival of pyomelanogenic ΔhmgA in hydrogen peroxide. At the genomic level, large (~300 kb) deletions in the phage-resistant mutants resulted in the loss of ≥227 genes, many of which had roles in survival, virulence, and antibiotic resistance. Phage-resistant pyomelanogenic mutants were hypersusceptible to cationic peptides LL-37 and colistin and were more easily cleared in human whole blood, serum, and a murine infection model. Our findings suggest that hyperpigmented phage-resistant mutants that may arise during phage therapy are markedly less virulent than their predecessors due to large genomic deletions. Thus, their existence does not present a contraindication to using anti-pseudomonal phage therapy, especially considering that these mutants develop drug susceptibility to the familiar FDA-approved antibiotic, colistin.
Collapse
Affiliation(s)
- Nitasha D. Menon
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, California, USA
| | - Samuel Penziner
- Division of Infectious Diseases and Global Public Health, Department of Medicine, UC San Diego, La Jolla, California, USA
| | - Elizabeth T. Montaño
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, California, USA
| | - Raymond Zurich
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, California, USA
| | - David T. Pride
- Division of Infectious Diseases and Global Public Health, Department of Medicine, UC San Diego, La Jolla, California, USA
- Department of Pathology, UC San Diego, La Jolla, California, USA
| | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Tata Institute for Genetics and Society (TIGS), Bangalore, Karnataka, India
| | - Geetha B. Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Tata Institute for Genetics and Society (TIGS), Bangalore, Karnataka, India
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Shmidov E, Lebenthal-Loinger I, Roth S, Karako-Lampert S, Zander I, Shoshani S, Danielli A, Banin E. PrrT/A, a Pseudomonas aeruginosa Bacterial Encoded Toxin-Antitoxin System Involved in Prophage Regulation and Biofilm Formation. Microbiol Spectr 2022; 10:e0118222. [PMID: 35575497 PMCID: PMC9241795 DOI: 10.1128/spectrum.01182-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 01/28/2023] Open
Abstract
Toxin-antitoxin (TA) systems are genetic modules that consist of a stable protein-toxin and an unstable antitoxin that neutralizes the toxic effect. In type II TA systems, the antitoxin is a protein that inhibits the toxin by direct binding. Type II TA systems, whose roles and functions are under intensive study, are highly distributed among bacterial chromosomes. Here, we identified and characterized a novel type II TA system PrrT/A encoded in the chromosome of the clinical isolate 39016 of the opportunistic pathogen Pseudomonas aeruginosa. We have shown that the PrrT/A system exhibits classical type II TA characteristics and novel regulatory properties. Following deletion of the prrA antitoxin, we discovered that the system is involved in a range of processes including (i) biofilm and motility, (ii) reduced prophage induction and bacteriophage production, and (iii) increased fitness for aminoglycosides. Taken together, these results highlight the importance of this toxin-antitoxin system to key physiological traits in P. aeruginosa. IMPORTANCE The functions attributed to bacterial TA systems are controversial and remain largely unknown. Our study suggests new insights into the potential functions of bacterial TA systems. We reveal that a chromosome-encoded TA system can regulate biofilm and motility, antibiotic resistance, prophage gene expression, and phage production. The latter presents a thus far unreported function of bacterial TA systems. In addition, with the emergence of antimicrobial-resistant bacteria, especially with the rising of P. aeruginosa resistant strains, the investigation of TA systems is critical as it may account for potential new targets against the resistant strains.
Collapse
Affiliation(s)
- Esther Shmidov
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Ilana Lebenthal-Loinger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Shira Roth
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Sarit Karako-Lampert
- Scientific Equipment Center, The Mina & Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat Gan, Israel
| | - Itzhak Zander
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Sivan Shoshani
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Amos Danielli
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
8
|
Ernst S, Volkov AN, Stark M, Hölscher L, Steinert K, Fetzner S, Hennecke U, Drees SL. Azetidomonamide and Diazetidomonapyridone Metabolites Control Biofilm Formation and Pigment Synthesis in Pseudomonas aeruginosa. J Am Chem Soc 2022; 144:7676-7685. [PMID: 35451837 DOI: 10.1021/jacs.1c13653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Synthesis of azetidine-derived natural products by the opportunistic pathogen Pseudomonas aeruginosa is controlled by quorum sensing, a process involving the production and sensing of diffusible signal molecules that is decisive for virulence regulation. In this study, we engineered P. aeruginosa for the titratable expression of the biosynthetic aze gene cluster, which allowed the purification and identification of two new products, azetidomonamide C and diazetidomonapyridone. Diazetidomonapyridone was shown to have a highly unusual structure with two azetidine rings and an open-chain diimide moiety. Expression of aze genes strongly increased biofilm formation and production of phenazine and alkyl quinolone virulence factors. Further physiological studies revealed that all effects were mainly mediated by azetidomonamide A and diazetidomonapyridone, whereas azetidomonamides B and C had little or no phenotypic impact. The P450 monooxygenase AzeF which catalyzes a challenging, stereoselective hydroxylation of the azetidine ring converting azetidomonamide C into azetidomonamide A is therefore crucial for biological activity. Based on our findings, we propose this group of metabolites to constitute a new class of diffusible regulatory molecules with community-related effects in P. aeruginosa.
Collapse
Affiliation(s)
- Simon Ernst
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, Münster 48149, Germany
| | - Alexander N Volkov
- VIB Centre for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Pleinlaan 2, Brussels 1050, Belgium.,Jean Jeener NMR Centre, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050 Belgium
| | - Melina Stark
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, Münster 48149, Germany
| | - Lea Hölscher
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, Münster 48149, Germany
| | - Katharina Steinert
- Institute for Food Chemistry, University of Münster, Corrensstr. 45, Münster 48149, Germany
| | - Susanne Fetzner
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, Münster 48149, Germany
| | - Ulrich Hennecke
- Organic Chemistry Research Group, Department of Chemistry and Department of Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050, Belgium
| | - Steffen Lorenz Drees
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, Münster 48149, Germany
| |
Collapse
|
9
|
Antagonistic Roles of Gallates and Ascorbic Acid in Pyomelanin Biosynthesis of Pseudomonas aeruginosa Biofilms. Curr Microbiol 2021; 78:3843-3852. [PMID: 34554299 DOI: 10.1007/s00284-021-02655-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Primarily synthesized for chelating metal ions from the surrounding media, the pyomelanin plays an important role in bacterial virulence where it is needed for infection and biofilm formation as well as protection from host immune response. In this study, two out of three phenolic acids, gallic acid, and propyl gallate induced pyomelanin in two clinical isolates of Pseudomonas aeruginosa and inhibited biofilm formation. Ascorbic acid treatment reversed the gallic acid and propyl gallate mediated pyomelanin synthesis without reversing the inhibition of the biofilm formation. mRNA expression study revealed the upregulation of homogentisic acid oxidase enzyme by ascorbic acid treatment, possibly contributing towards the inhibition of pyomelanin synthesis. Tannic acid did not show any antibacterial or pyomelanin-induction activities. The synergistic effect of gallates and ascorbic acid in the inhibition of biofilm formation and associated pyomelanin synthesis was evidenced which needs further studies to establish their antibacterial efficacies, especially against the clinical isolates of Pseudomonas sp.
Collapse
|
10
|
Pyomelanin produced by Streptomyces sp. ZL-24 and its protective effects against SH-SY5Y cells injury induced by hydrogen peroxide. Sci Rep 2021; 11:16649. [PMID: 34404820 PMCID: PMC8371117 DOI: 10.1038/s41598-021-94598-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
A soluble melanin pigment produced by Streptomyces sp. ZL-24 was purified and named StrSM. The elemental analysis of StrSM showed it consists of carbon, hydrogen, and oxygen. The spectrum analysis, including ultraviolet-visible absorption spectrum, Fourier-transform infrared spectrum, and pyrolysis-gas chromatography-mass spectrometry, indicated that StrSM might be pyomelanin. High performance liquid chromatography and liquid chromatography-mass spectra analysis of intermediate metabolite showed the presence of homogentisic acid (HGA). Moreover, the enzyme 4-hydroxyphenylpyruvate dioxygenase, involved in HGA biosynthesis, showed high activity during melanin production. Subsequently, a tyrosinase gene (melC2) and hydroxyphenylpyruvate dioxygenase gene double mutant demonstrated StrSM is pyomelanin. In vitro bioactivity assay showed that StrSM had excellent protective capability against SH-SY5Y cell oxidative injury. To our knowledge, the results firstly provide comprehensive data on Streptomyces pyomelanin identification and a promising candidate compound to treat oxidative injury of neurocytes.
Collapse
|
11
|
A Yarrowia lipolytica Strain Engineered for Pyomelanin Production. Microorganisms 2021; 9:microorganisms9040838. [PMID: 33920006 PMCID: PMC8071058 DOI: 10.3390/microorganisms9040838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 11/20/2022] Open
Abstract
The yeast Yarrowia lipolytica naturally produces pyomelanin. This pigment accumulates in the extracellular environment following the autoxidation and polymerization of homogentisic acid, a metabolite derived from aromatic amino acids. In this study, we used a chassis strain optimized to produce aromatic amino acids for the de novo overproduction of pyomelanin. The gene 4HPPD, which encodes an enzyme involved in homogentisic acid synthesis (4-hydroxyphenylpyruvic acid dioxygenase), was characterized and overexpressed in the chassis strain with up to three copies, leading to pyomelanin yields of 4.5 g/L. Homogentisic acid is derived from tyrosine. When engineered strains were grown in a phenylalanine-supplemented medium, pyomelanin production increased, revealing that the yeast could convert phenylalanine to tyrosine, or that the homogentisic acid pathway is strongly induced by phenylalanine.
Collapse
|
12
|
Dhyani R, Shankar K, Bhatt A, Jain S, Hussain A, Navani NK. Homogentisic Acid-Based Whole-Cell Biosensor for Detection of Alkaptonuria Disease. Anal Chem 2021; 93:4521-4527. [PMID: 33655752 DOI: 10.1021/acs.analchem.0c04914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Clinicians require simple quantitative tools for the detection of homogentisic acid in alkaptonuria patients, a rare inherited disorder of amino acid metabolism. In this study, we report a whole-cell biosensor for homogentisic acid to detect alkaptonuria disease through the expression of green fluorescence protein. The assay system utilizes a promoter sequence (hmgA) isolated from the Pseudomonas aeruginosa genome. To increase the sensitivity, the sensor module harboring phmgA::GFP was further transformed into various transposon mutants debilitated in steps involved in the metabolism of phenylalanine and tyrosine via homogentisic acid as a central intermediate. The proposed biosensor was further checked for analytical features such as sensitivity, selectivity, linearity, and precision for the quantification of homogentisic acid in spiked urine samples. The limit of detection for the developed biosensor was calculated to be 3.9 μM, which is comparable to that of the various analytical techniques currently in use. The sensor construct showed no interference from all of the amino acids and its homolog molecules. The accuracy and precision of the proposed biosensor were validated using high-performance liquid chromatography (HPLC) with satisfactory results.
Collapse
Affiliation(s)
- Rajat Dhyani
- Chemical Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Shankar
- Chemical Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ankita Bhatt
- Chemical Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Shubham Jain
- Chemical Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ajmal Hussain
- Chemical Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Naveen Kumar Navani
- Chemical Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
13
|
Mitra M, Nguyen KMAK, Box TW, Gilpin JS, Hamby SR, Berry TL, Duckett EH. Isolation and characterization of a novel bacterial strain from a Tris-Acetate-Phosphate agar medium plate of the green micro-alga Chlamydomonas reinhardtii that can utilize common environmental pollutants as a carbon source. F1000Res 2020; 9:656. [PMID: 32855811 PMCID: PMC7425125 DOI: 10.12688/f1000research.24680.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/19/2020] [Indexed: 12/28/2022] Open
Abstract
Background:Chlamydomonas reinhardtii, a green micro-alga can be grown at the lab heterotrophically or photo-heterotrophically in Tris-Phosphate-Acetate (TAP) medium which contains acetate as the sole carbon source. When grown in TAP medium,
Chlamydomonas can utilize the exogenous acetate in the medium for gluconeogenesis using the glyoxylate cycle, which is also present in many bacteria and higher plants. A novel bacterial strain, LMJ, was isolated from a contaminated TAP medium plate of
Chlamydomonas. We present our work on the isolation and physiological and biochemical characterizations of LMJ. Methods: Several microbiological tests were conducted to characterize LMJ, including its sensitivity to four antibiotics. We amplified and sequenced partially the 16S rRNA gene of LMJ. We tested if LMJ can utilize cyclic alkanes, aromatic hydrocarbons, poly-hydroxyalkanoates, and fresh and combusted car motor oil as the sole carbon source on Tris-Phosphate (TP) agar medium plates for growth. Results: LMJ is a gram-negative rod, oxidase-positive, mesophilic, non-enteric, pigmented, salt-sensitive bacterium. LMJ can ferment glucose, is starch hydrolysis-negative, and is very sensitive to penicillin and chloramphenicol. Preliminary spectrophotometric analyses indicate LMJ produces pyomelanin. NCBI-BLAST analyses of the partial 16S rRNA gene sequence of LMJ showed that it matched to that of an uncultured bacterium clone LIB091_C05_1243. The nearest genus relative of LMJ is an
Acidovorax sp. strain. LMJ was able to use alkane hydrocarbons, fresh and combusted car motor oil, poly-hydroxybutyrate, phenanthrene, naphthalene, benzoic acid and phenyl acetate as the sole carbon source for growth on TP-agar medium plates. Conclusions: LMJ has 99.14% sequence identity with the
Acidovorax sp. strain A16OP12 whose genome has not been sequenced yet. LMJ’s ability to use chemicals that are common environmental pollutants makes it a promising candidate for further investigation for its use in bioremediation and, provides us with an incentive to sequence its genome.
Collapse
Affiliation(s)
- Mautusi Mitra
- Department of Biology, University of West Georgia, Carrollton, Georgia, 30118, USA
| | - Kevin Manoap-Anh-Khoa Nguyen
- Department of Biology, University of West Georgia, Carrollton, Georgia, 30118, USA.,Department of Mechanical Engineering, Kennesaw State University, Marietta, Georgia, 30060, USA
| | - Taylor Wayland Box
- Department of Biology, University of West Georgia, Carrollton, Georgia, 30118, USA
| | - Jesse Scott Gilpin
- Department of Biology, University of West Georgia, Carrollton, Georgia, 30118, USA
| | - Seth Ryan Hamby
- Department of Biology, University of West Georgia, Carrollton, Georgia, 30118, USA
| | - Taylor Lynne Berry
- Carrollton High School, Carrollton, Georgia, 30117, USA.,Department of Chemistry and Biochemistry, University of North Georgia, Dahlonega, Georgia, 30597, USA
| | - Erin Harper Duckett
- Department of Biology, University of West Georgia, Carrollton, Georgia, 30118, USA
| |
Collapse
|
14
|
Pip serves as an intermediate in RpoS-modulated phz2 expression and pyocyanin production in Pseudomonas aeruginosa. Microb Pathog 2020; 147:104409. [PMID: 32707314 DOI: 10.1016/j.micpath.2020.104409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022]
Abstract
Pyocyanin, a main virulence factor that is produced by Pseudomonas aeruginosa, plays an important role in pathogen-host interaction during infection. Two copies of phenazine-biosynthetic operons on genome, phz1 (phzA1B1C1D1E1F1G1) and phz2 (phzA2B2C2D2E2F2G2), contribute to phenazine biosynthesis. In our previous study, we found that RpoS positively regulates expression of the phz2 operon and pyocyanin biosynthesis in P. aeruginosa PAO1. In this work, when a TetR-family regulator gene, pip, was knocked out, we found that pyocyanin production was dramatically reduced, indicating that Pip positively regulates pyocyanin biosynthesis. With further phenazines quantification and β-galactosidase assay, we confirmed that Pip positively regulates phz2 expression, but does not regulate phz1 expression. In addition, while the rpoS gene was deleted, expression of pip was down-regulated. Expression of rpoS in the wild-type PAO1 strain, however, was similar to that in the Pip-deficient mutant PAΔpip, suggesting that expression of pip could positively be regulated by RpoS, whereas rpoS could not be regulated by Pip. Taken together, we drew a conclusion that Pip might serve as an intermediate in RpoS-modulated expression of the phz2 operon and pyocyanin biosynthesis in P. aeruginosa.
Collapse
|
15
|
Zander I, Shmidov E, Roth S, Ben-David Y, Shoval I, Shoshani S, Danielli A, Banin E. Characterization of PfiT/PfiA toxin-antitoxin system of Pseudomonas aeruginosa that affects cell elongation and prophage induction. Environ Microbiol 2020; 22:5048-5057. [PMID: 32458560 DOI: 10.1111/1462-2920.15102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/24/2020] [Indexed: 01/22/2023]
Abstract
Toxin-antitoxin (TA) systems are small genetic modules usually consisting of two elements-a toxin and an antitoxin. The abundance of TA systems among various bacterial strains may indicate an important evolutionary role. Pseudomonas aeruginosa, which can be found in a variety of niches in nature, is an opportunistic pathogen for various hosts. While P. aeruginosa strains are very versatile and diverse, only a few TA systems were characterized in this species. Here, we describe a newly characterized TA system in P. aeruginosa that is encoded within the filamentous Pf4 prophage. This system, named PfiT/PfiA, is a homologue of the ParE/YefM TA system. It is a type II TA system, in which the antitoxin is a protein that binds the toxic protein and eliminates the toxic effect. PfiT/PfiA carries several typical type II characteristics. Specifically, it constitutes two small genes expressed in a single operon, PfiT inhibits growth and PfiA eliminates this effect, PfiA binds PfiT, and PfiT expression results in elongated cells. Finally, we assigned a novel function to this TA system, where an imbalance between PfiT and PfiA, favouring the toxin, resulted in cell elongation and an increase in virion production.
Collapse
Affiliation(s)
- Itzhak Zander
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Ester Shmidov
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Shira Roth
- Faculty of Engineering and The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Yossi Ben-David
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Irit Shoval
- Scientific Equipment Center, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Sivan Shoshani
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Amos Danielli
- Faculty of Engineering and The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
16
|
Pavan ME, López NI, Pettinari MJ. Melanin biosynthesis in bacteria, regulation and production perspectives. Appl Microbiol Biotechnol 2019; 104:1357-1370. [PMID: 31811318 DOI: 10.1007/s00253-019-10245-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022]
Abstract
The production of black pigments in bacteria was discovered more than a century ago and related to tyrosine metabolism. However, their diverse biological roles and the control of melanin synthesis in different bacteria have only recently been investigated. The broad distribution of these pigments suggests that they have an important role in a variety of organisms. Melanins protect microorganisms from many environmental stress conditions, ranging from ultraviolet radiation and toxic heavy metals to oxidative stress. Melanins can also affect bacterial interactions with other organisms and are important in pathogenesis and survival in many environments. Bacteria produce several types of melanin through dedicated pathways or as a result of enzymatic imbalances in altered metabolic routes. The control of the melanin synthesis in bacteria involves metabolic and transcriptional regulation, but many aspects remain still largely unknown. The diverse properties of melanins have spurred a large number of applications, and recent efforts have been done to produce the pigment at biotechnologically relevant scales.
Collapse
Affiliation(s)
- María Elisa Pavan
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nancy I López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. .,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - M Julia Pettinari
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. .,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Xie W, Pakdel E, Liang Y, Kim YJ, Liu D, Sun L, Wang X. Natural Eumelanin and Its Derivatives as Multifunctional Materials for Bioinspired Applications: A Review. Biomacromolecules 2019; 20:4312-4331. [DOI: 10.1021/acs.biomac.9b01413] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wanjie Xie
- Institute for Frontier Materials, Australian Future Fibers Research and Innovation Center, Deakin University, Geelong, Victoria 3220, Australia
| | - Esfandiar Pakdel
- Institute for Frontier Materials, Australian Future Fibers Research and Innovation Center, Deakin University, Geelong, Victoria 3220, Australia
| | - Yujia Liang
- Institute for Frontier Materials, Australian Future Fibers Research and Innovation Center, Deakin University, Geelong, Victoria 3220, Australia
| | - Young Jo Kim
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Kingsbury Hall W301, Durham, New Hampshire 03824, United States
| | - Dan Liu
- Institute for Frontier Materials, Australian Future Fibers Research and Innovation Center, Deakin University, Geelong, Victoria 3220, Australia
| | - Lu Sun
- Institute for Frontier Materials, Australian Future Fibers Research and Innovation Center, Deakin University, Geelong, Victoria 3220, Australia
| | - Xungai Wang
- Institute for Frontier Materials, Australian Future Fibers Research and Innovation Center, Deakin University, Geelong, Victoria 3220, Australia
| |
Collapse
|
18
|
Catauro M, Tranquillo E, Barrino F, Blanco I, Dal Poggetto F, Naviglio D. Drug Release of Hybrid Materials Containing Fe(II)Citrate Synthesized by Sol-Gel Technique. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2270. [PMID: 30441749 PMCID: PMC6266215 DOI: 10.3390/ma11112270] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/06/2018] [Accepted: 11/10/2018] [Indexed: 12/17/2022]
Abstract
The use of oral iron integration is commonly recommended for the treatment of iron deficiency, nevertheless the diagnosis and treatment of this disease could clearly be improved. The aim of this work was the synthesis of therapeutic systems, iron (II) based, by sol-gel method. In an SiO₂ matrix, we embedded different weight percentages of polyethylene glycol (PEG6, 12, 24 wt%) and ferrous citrate (Fe(II)C5, 10, 15 wt%) for drug delivery applications. Fourier Transform Infrared (FTIR) spectroscopy was used to study the interactions among different components in the hybrid materials. Release kinetics in a simulated body fluid (SBF) were investigated and the amount of Fe2+ released was detected by Ultraviolet⁻Visible spectroscopy (UV-VIS) after reaction with ortho-phenantroline. Furthermore, the biological characterization was carried out. The bioactivity of the synthesized hybrid materials was evaluated by the formation of a layer of hydroxyapatite on the surface of samples soaked in SBF using FTIR spectroscopy. Finally, also, the potential antibacterial properties of the different materials against two different bacteria, E. coli and P. aeruginosa, were investigated.
Collapse
Affiliation(s)
- Michelina Catauro
- Department of Engineering, University of Campania "Luigi Vanvitelli", via Roma 29, I-81031 Aversa, Italy.
| | - Elisabetta Tranquillo
- Department of Engineering, University of Campania "Luigi Vanvitelli", via Roma 29, I-81031 Aversa, Italy.
| | - Federico Barrino
- Department of Engineering, University of Campania "Luigi Vanvitelli", via Roma 29, I-81031 Aversa, Italy.
| | - Ignazio Blanco
- Department of Civil Engineering and Architecture and UdR-Catania Consorzio INSTM, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | | | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126 Naples, Italy.
| |
Collapse
|