1
|
El-Sayed ASA, Shindia AA, El-Badry WM, Mostafa AA, A Al-Ghanayem A, Rady AM. Purification and Immobilization of Burkholderia gladioli Cholesterol Oxidase on Calcium Alginate, with Robust Catalytic Stability for Cholesterol Oxidation In Vitro. Curr Microbiol 2025; 82:119. [PMID: 39909895 DOI: 10.1007/s00284-025-04084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025]
Abstract
Cholesterol oxidase (COX) is a key enzyme in diagnostic kits of cardiovascular diseases via oxidation of cholesterol producing smart enantiomerically compounds; however, the enzyme catalytic stability is the challenge. So, the objective of this study was to purify COX from novel endophytic bacterial isolates of medicinal plants that could have unique catalytic efficiency for the desired applications. Among the recovered forty bacterial isolates, Burkholderia gladioli EFBL PQ721377, an endophyte of Eruca sativa, had the highest COX productivity (14.7 μmol/mg/min). The COX productivity of B. gladioli has been maximized by with the response surface methodology, giving the highest productivity 30.9 μmol/mg/min, by ~ 2.0-fold increment compared to control. The enzyme was purified to its molecular homogeneity with subunit structure 40 kDa. The enzyme was entrapped in Ca-alginate with immobilization yield 87.5%, and the efficiency and homogeneity in Ca-alginate beads were assessed by FTIR and SEM-EDX analyses. The free and Ca-alginate-COX conjugates have the same maximum reaction temperature at 37-40 °C, reaction pH at 7.5 and pH stability at 6.5-8.0. The thermal stability of Ca-alginate-COX was increased by ~ 7.0 folds compared to the free one, ensuring the protective role of alginate beads on enzyme tertiary structure. Ca-alginate-COX had a higher potency of oxidation of human serum cholesterol, than the free one, confirming the feasibility of the product release, and allosteric activation of the enzyme, with a reliable operative stability till the fifth cycle, for production of cholest-4-en-3-one, as the precursor of various drugs.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Ahmed A Shindia
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Walaa M El-Badry
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed A Mostafa
- Applied College at Shaqra, Shaqra University, 11961, Shaqra, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Abdullah A Al-Ghanayem
- Department of Clinical Laboratory, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Amgad M Rady
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| |
Collapse
|
2
|
Refaat S, Fikry E, Tawfeek N, El-Sayed ASA, El-Domiaty MM, El-Shafae AM. Production and bioprocessing of epothilone B from Aspergillus niger, an endophyte of Latania loddegesii, with a conceivable biosynthetic stability: anticancer, anti-wound healing activities and cell cycle analysis. Microb Cell Fact 2024; 23:229. [PMID: 39152399 PMCID: PMC11328370 DOI: 10.1186/s12934-024-02495-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024] Open
Abstract
Epothilones are one of the common prescribed anticancer drugs for solid tumors, for their exceptional binding affinity with β-tubulin microtubule, stabilizing their disassembly, causing an ultimate arrest to the cellular growth. Epothilones were initially isolated from Sornagium cellulosum, however, their extremely slow growth rate and low yield of epothilone is the challenge. So, screening for a novel fungal endophyte dwelling medicinal plants, with higher epothilone productivity and feasibility of growth manipulation was the objective. Aspergillus niger EFBL-SR OR342867, an endophyte of Latania loddegesii, has been recognized as the heady epothilone producer (140.2 μg/L). The chemical structural identity of the TLC-purified putative sample of A. niger was resolved from the HPLC, FTIR and LC-ESI-MS/MS analyses, with an identical molecular structure of the authentic epothilone B. The purified A. niger epothilone B showed a resilient activity against MCF-7 (0.022 μM), HepG-2 (0.037 μM), and HCT-116 (0.12 μM), with selectivity indices 21.8, 12.9 and 4, respectively. The purified epothilone B exhibited a potential anti-wound healing activity to HepG-2 and MCF-7 cells by ~ 54.07 and 60.0%, respectively, after 24 h, compared to the untreated cells. The purified epothilone has a significant antiproliferative effect by arresting the cellular growth of MCF-7 at G2/M phase by ~ 2.1 folds, inducing the total apoptosis by ~ 12.2 folds, normalized to the control cells. The epothilone B productivity by A. niger was optimized by the response surface methodology, with ~ 1.4 fold increments (266.9 μg/L), over the control. The epothilone productivity by A. niger was reduced by ~ 2.4 folds by 6 months storage as a slope culture at 4 °C, however, the epothilone productivity was slightly restored with ethylacetate extracts of L. loddegesii, confirming the plant-derived chemical signals that partially triggers the biosynthetic genes of A. niger epothilones. So, this is the first report emphasizing the metabolic potency of A. niger, an endophyte of L. loddegesii, to produce epothilone B, that could be a new platform for industrial production of this drug.
Collapse
Affiliation(s)
- Sara Refaat
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Eman Fikry
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Nora Tawfeek
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Maher M El-Domiaty
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Azza M El-Shafae
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
3
|
El-Hady NAAA, ElSayed AI, Wadan KM, El-Saadany SS, El-Sayed ASA. Bioprocessing of camptothecin from Alternaria brassicicola, an endophyte of Catharanthus roseus, with a strong antiproliferative activity and inhibition to Topoisomerases. Microb Cell Fact 2024; 23:214. [PMID: 39060918 PMCID: PMC11282713 DOI: 10.1186/s12934-024-02471-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Suppression of fungal camptothecin (CPT) biosynthesis with the preservation and successive subculturing is the challenge that impedes fungi from the industrial application, so, screening for a novel fungal isolate with a conceivable stable producing potency of CPT was the main objective of this work. Catharanthus roseus with diverse contents of bioactive metabolites could have a plethora of novel endophytes with unique metabolic properties. Among the endophytes of C. roseus, Alternaria brassicicola EFBL-NV OR131587.1 was the highest CPT producer (96.5 μg/L). The structural identity of the putative CPT was verified by HPLC, FTIR, HNMR and LC-MS/MS, with a molecular mass 349 m/z, and molecular fragmentation patterns that typically identical to the authentic one. The purified A. brassicicola CPT has a strong antiproliferative activity towards UO-31 (0.75 μM) and MCF7 (3.2 μM), with selectivity index 30.8, and 7.1, respectively, in addition to resilient activity to inhibit Topo II (IC50 value 0.26 nM) than Topo 1 (IC50 value 3.2 nM). The purified CPT combat the wound healing of UO-31 cells by ~ 52%, stops their matrix formation, cell migration and metastasis. The purified CPT arrest the cellular division of the UO-31 at the S-phase, and inducing their cellular apoptosis by ~ 20.4 folds, compared to the control cells. Upon bioprocessing with the surface response methodology, the CPT yield by A. brassicicola was improved by ~ 3.3 folds, compared to control. The metabolic potency of synthesis of CPT by A. brassicicola was attenuated with the fungal storage and subculturing, losing ~ 50% of their CPT productivity by the 6th month of storage and 6th generation. Practically, the CPT productivity of the attenuated A. brassicicola was restored by addition of 1% surface sterilized leaves of C. roseus, ensuring the eliciting of cryptic gene cluster of A. brassicicola CPT via the plant microbiome-A. brassicicola interactions. So, for the first time, a novel endophytic isolate A. brassicicola, from C. roseus, was explored to have a relatively stable CPT biosynthetic machinery, with an affordable feasibility to restore their CPT productivity using C. roseus microbiome, in addition to the unique affinity of the extracted CPT to inhibit Topoisomerase I and II.
Collapse
Affiliation(s)
- Nouran A A Abd El-Hady
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Abdelaleim I ElSayed
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Khalid M Wadan
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Sayed S El-Saadany
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
4
|
Yurnaliza Y, Nurwahyuni I, Lenny S, Lutfia A. Bioprospecting Study of Plant Growth Promoting Rhizospheric Bacteria from Oil Palm Plantation as Biological Control Agent of Ganoderma boninense. Pak J Biol Sci 2024; 27:256-267. [PMID: 38840466 DOI: 10.3923/pjbs.2024.256.267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
<b>Background and Objective:</b> The prioritisation of oil palm studies involves the exploration of novel bacterial isolates as possible agents for suppressing <i>Ganoderma boninense</i>. The objective of this study was to evaluate and characterise the potential of rhizospheric bacteria, obtained from the rhizosphere of oil palm plants, in terms of their ability to demonstrate anti-<i>Ganoderma </i>activity. <b>Materials and Methods:</b> The study began by employing a dual culture technique to select hostile bacteria. Qualitative detection was performed to assess the antifungal activity, as well as the synthesis of chitinase and glucanase, from certain isolates. The candidate strains were molecularly identified using 16S-rRNA ribosomal primers, specifically the 27F and 1492R primers. <b>Results:</b> The findings of the study indicated that the governmental plantation exhibited the highest ratio between diazotroph and indigenous bacterial populations in comparison to the other sites. Out of a pool of ninety bacterial isolates, a subset of twenty-one isolates demonstrated the ability to impede the development of <i>G. boninense</i>, as determined using a dual culture experiment. Twenty-one bacterial strains were found to exhibit antifungal activity. Nine possible bacteria were found based on the sequence analysis. These bacteria include <i>Burkholderia territorii</i> (RK2, RP2, RP3, RP5), <i>Burkholderia stagnalis</i> (RK3), <i>Burkholderia cenocepacia</i> (RP1), <i>Serratia marcescens</i> (RP13) and <i>Rhizobium multihospitium</i> (RU4). <b>Conclusion:</b> The findings of the study revealed that a significant proportion of the bacterial population exhibited the ability to perform nitrogen fixation, indole-3-acetic acid (IAA) production and phosphate solubilization. However, it is worth noting that <i>Rhizobium multihospitium</i> RU4 did not demonstrate the capacity for phosphate solubilization, while <i>B. territory</i> RK2 did not exhibit IAA production.
Collapse
|
5
|
Krishna G, Sivalingam AM, Brahma N, Alex A. Phytochemical Analysis of Silver Nanoparticles of Zingiber officinale and Evaluation for Its Antibacterial Property. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1226-S1232. [PMID: 38882741 PMCID: PMC11174277 DOI: 10.4103/jpbs.jpbs_547_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 06/18/2024] Open
Abstract
Nonessential heavy metals are toxic to human health. In this study, mercury, a hazardous metal, was detected by colorimetric analysis using Zingiber (Z.) officinale. The eco-friendliness of this method was also emphasized. The ultraviolet (UV) spectrum is a broad peak observed at 200-250 nm in Z. officinale leaf extracts. The UV spectrum of green synthesized Z. officinale exhibited an absorption band of 286 nm, which confirms the nanoparticle (NP) synthesis. Fourier transform infrared (FTIR) analysis of the vibrational peak around 3307 cm-1 is assigned to ν(O-H) stretching that could possibly emanate from carbohydrates or phenolics. The peaks found around 2917 and 2849 cm-1 are ascribed to the -C-H stretch of the alkyl group, and the peak around 1625 cm-1 is due to the enolic β-diketones or -C = O stretch of carboxylic acids, while the corresponding -C-O stretch is observed around 1375 and 1029 cm-1. The assignment of peaks is similar. It is clear from the scanning electron microscope (SEM) image that the constituent parts were nonuniform, sphere-shaped, agglomerated, and of an average size of 30.9 nm. X-ray diffraction (XRD) analysis was used to determine the structural characteristics and crystalline nature of Z. officinale. The observed intensity peaks at 32.35°, 36.69°, 39.24°, 44.76°, 59.42°, and 67.35° are, respectively, of the Z. officinale diffraction 2θ values, which correspond to the standard database values. The synthesized copper NPs synthesized tested antibacterial properties against various strains of microorganisms, including Escherichia coli: 25 μg/mL 2.01 ± 0.11 and 100 μg/mL 5.37 ± 0.12, Staphylococcus (S.) aureus: 25 μg/mL 1.05 ± 0.71 and 100 μg/mL 11.43 ± 1.27, Streptococcus mutans: 25 μg/mL 02.01 ± 0.1 and 100 μg/mL 15.67 ± 0.17, and Enterococcus faecalis: 25 μg/mL 03.11 ± 0.7 and 100 μg/mL 18.32 ± 0.2. The short novelty of Z. officinale lies in its potential relevance to human health, as it has been found to possess bioactive compounds with various medicinal properties, such as antimicrobial, antioxidant, and anti-inflammatory activities, making it a promising natural resource for therapeutic applications.
Collapse
Affiliation(s)
- Goutham Krishna
- Natural Products and Nanobiotechnology Research Lab, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), (Saveetha Deemed to be University), Thandalam, Chennai, Tamil Nadu, India
| | - Azhagu Madhavan Sivalingam
- Natural Products and Nanobiotechnology Research Lab, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), (Saveetha Deemed to be University), Thandalam, Chennai, Tamil Nadu, India
| | - Neha Brahma
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), (Saveetha Deemed to be University), Thandalam, Chennai, Tamil Nadu, India
| | - Arockia Alex
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), (Saveetha Deemed to be University), Thandalam, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
El-Sayed ASA, ElSayed AI, Wadan KM, El-Saadany SS, Abd El-Hady NAA. Camptothecin bioprocessing from Aspergillus terreus, an endophyte of Catharanthus roseus: antiproliferative activity, topoisomerase inhibition and cell cycle analysis. Microb Cell Fact 2024; 23:15. [PMID: 38183118 PMCID: PMC10768243 DOI: 10.1186/s12934-023-02270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Attenuation of camptothecin (CPT) productivity by fungi with preservation and subculturing is the challenge that halts fungi to be an industrial platform of CPT production. Thus, screening for novel endophytic fungal isolates with metabolic stability for CPT production was the objective. Catharanthus roseus is one of the medicinal plants with diverse bioactive metabolites that could have a plethora of novel endophytes with unique metabolites. Among the endophytes of C. roseus, Aspergillus terreus EFBL-NV OR131583.1 had the most CPT producing potency (90.2 μg/l), the chemical identity of the putative CPT was verified by HPLC, FT-IR, NMR and LC-MS/MS. The putative A. terreus CPT had the same molecular mass (349 m/z), and molecular fragmentation patterns of the authentic one, as revealed from the MS/MS analyses. The purified CPT had a strong activity against MCF7 (5.27 μM) and UO-31 (2.2 μM), with a potential inhibition to Topo II (IC50 value 0.52 nM) than Topo 1 (IC50 value 6.9 nM). The CPT displayed a high wound healing activity to UO-31 cells, stopping their metastasis, matrix formation and cell immigration. The purified CPT had a potential inducing activity to the cellular apoptosis of UO-31 by ~ 17 folds, as well as, arresting their cellular division at the S-phase, compared to the control cells. Upon Plackett-Burman design, the yield of CPT by A. terreus was increased by ~ 2.6 folds, compared to control. The yield of CPT by A. terreus was sequentially suppressed with the fungal storage and subculturing, losing ~ 50% of their CPT productivity by 3rd month and 5th generation. However, the productivity of the attenuated A. terreus culture was completely restored by adding 1% surface sterilized leaves of C. roseus, and the CPT yield was increased over-the-first culture by ~ 3.2 folds (315.2 μg/l). The restoring of CPT productivity of A. terreus in response to indigenous microbiome of C. roseus, ensures the A. terreus-microbiome interactions, releasing a chemical signal that triggers the CPT productivity of A. terreus. This is the first reports exploring the potency of A. terreus, endophyte of C. roseus" to be a platform for industrial production of CPT, with an affordable sustainability with addition of C. roseus microbiome.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Abdelaleim I ElSayed
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Khalid M Wadan
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Sayed S El-Saadany
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Nouran A A Abd El-Hady
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
7
|
El-Sayed ASA, Elghamry HN, Yassin MA. Biochemical Characterization of Thermostable Acrylamide Amidohydrolase from Aspergillus fumigatus with Potential Activity for Acrylamide Degradation in Various Food Products. Curr Microbiol 2023; 81:30. [PMID: 38052960 PMCID: PMC10698087 DOI: 10.1007/s00284-023-03544-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Acrylamide is the major by-product of the Maillard reactions in foods with the overheating processes of L-asparagine-rich foods with reducing sugars that usually allied with neurotoxicity and carcinogenicity. Several approaches have been used to prevent the formation of acrylamide, however, degrading the already formed acrylamide in foods remains unequivocal. Acrylamide hydrolyzing enzyme "amidohydrolase" is one of the most promising enzymes for acrylamide degradation in foods. So, amidohydrolase "amidase" from thermotolerant Aspergillus fumigatus EFBL was purified to their electrophoretic homogeneity by gel-filtration and ion-exchange chromatography, with overall purification folds 2.8 and yield 9.43%. The apparent molecular subunit structure of the purified A. fumigatus amidase was 50 kDa, with highest activity at reaction temperature of 40 °C and pH of 7.5 The enzyme displayed a significant thermal stability as revealed from the value of T1/2 (13.37 h), and thermal denaturation rate (Kr 0.832 × 10-3 min) at 50 °C, with metalloproteinic identity. The purified enzyme had a significant activity for acrylamide degradation in various food products such as meat, cookies, potato chips, and bread as revealed from the HPLC analysis and LC-MS analysis. So, with the purified amidase, the acrylamide in the food products was degraded by about 95% to acrylic acid, ensuring the possibility of using this enzyme in abolishing the toxic acrylamide in the foods products. This is the first report exploring the potency of A. fumigatus amidase for an actual degradation of acrylamide in foods efficiently. Further biochemical analyses are ongoing to assess the affinity of this enzyme for selective hydrolyses of acrylamide in foods, without affecting the beneficial stereochemical related compounds.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Hala N Elghamry
- Enzymology and Fungal Biotechnology Lab, Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Marwa A Yassin
- Enzymology and Fungal Biotechnology Lab, Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
8
|
Eldeghidy A, Abdel-Fattah G, El-Sayed ASA, Abdel-Fattah GG. Production, bioprocessing and antiproliferative activity of camptothecin from Aspergillus terreus, endophyte of Cinnamomum camphora: restoring their biosynthesis by indigenous microbiome of C. camphora. Microb Cell Fact 2023; 22:143. [PMID: 37533061 PMCID: PMC10399021 DOI: 10.1186/s12934-023-02158-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023] Open
Abstract
Fungal producing potency of camptothecin (CPT) raise the hope for their usage to be a platform for industrial production of CPT, nevertheless, attenuation of their productivity of CPT with the subculturing and preservation is the challenge. So, screening for novel endophytic fungal isolates with a reliable CPT-biosynthetic stability was the objective. Among the isolated endophytic fungi from the tested medicinal plants, Aspergillus terreus OQ642314.1, endophyte of Cinnamomum camphora, exhibits the highest yield of CPT (89.4 μg/l). From the NMR, FT-IR and LC-MS/MS analyses, the extracted CPT from A. terreus gave the same structure and molecular mass fragmentation pattern of authentic CPT (349 m/z). The putative CPT had a significant activity against MCF7 (0.27 µM) and HEPG-2 (0.8 µM), with a strong affinity to inhibits the human Topoisomerase 1 activity (IC50 0.362 μg/ml) as revealed from the Gel-based DNA relaxation assay. The purified CPT displayed a strong antimicrobial activity for various bacterial (E. coli and B. cereus) and fungal (A. flavus and A. parasiticus) isolates, ensuring the unique tertiary, and stereo-structure of A. terreus for penetrating the microbial cell walls and targeting the topoisomerase I. The higher dual activity of the purified CPT as antimicrobial and antitumor, emphasize their therapeutic efficiency, especially with growth of the opportunistic microorganisms due to the suppression of human immune system with the CPT uses in vivo. The putative CPT had an obvious activity against the tumor cell (MCF7) metastasis, and migration as revealed from the wound healing assay. The overall yield of A. terreus CPT was maximized with the Blackett-Burman design by twofolds increment (164.8 μg/l). The CPT yield by A. terreus was successively diminished with the multiple fungal subculturing, otherwise, the CPT productivity of A. terreus was restored, and increased over the zero culture upon coculturing with C. camphora microbiome (1.5% w/v), ensuring the restoring of CPT biosynthetic potency of A. terreus by the plant microbiome-derived chemical signals "microbial communication". This is the first report exploring the feasibility of A. terreus "endophyte of C. camphora" to be a preliminary platform for commercial production of CPT with a reliable sustainability upon uses of indigenous C. camphora microbiome.
Collapse
Affiliation(s)
- Abeer Eldeghidy
- Botany and Microbiology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Gamal Abdel-Fattah
- Botany and Microbiology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt.
| | - Ghada G Abdel-Fattah
- Botany and Microbiology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Santos M, Diánez F, Sánchez-Montesinos B, Huertas V, Moreno-Gavira A, Esteban García B, Garrido-Cárdenas JA, Gea FJ. Biocontrol of Diseases Caused by Phytophthora capsici and P. parasitica in Pepper Plants. J Fungi (Basel) 2023; 9:jof9030360. [PMID: 36983528 PMCID: PMC10051450 DOI: 10.3390/jof9030360] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
The main objective of this study was to evaluate the ability of Trichoderma aggressivum f. europaeum, T. longibrachiatum, Paecilomyces variotii, and T. saturnisporum as biological control agents (BCAs) against diseases caused by P. capsici and P. parasitica in pepper. For this purpose, their antagonistic activities were evaluated both in vitro and in vivo. We analysed the expression patterns of five defence related genes, CaBGLU, CaRGA1, CaBPR1, CaPTI1, and CaSAR8.2, in leaves. All BCAs showed a high in vitro antagonistic activity, significantly reducing the mycelial growth of P. capsici and P. parasitica. The treatments with T. aggressivum f. europaeum, T. longibrachiatum, and P. variotii substantially reduced the severity of the disease caused by P. capsici by 54, 76, and 70%, respectively, and of the disease caused by P. parasitica by 66, 55, and 64%, respectively. T. saturnisporum had the lowest values of disease reduction. Reinoculation with the four BCAs increased the control of both plant pathogens. Markedly different expression patterns were observed in the genes CaBGLU, CaRGA1, and CaSAR8.2. Based on the results, all four BCAs under study could be used as a biological alternative to chemicals for the control of P. capsici and P. parasitica in pepper with a high success rate.
Collapse
Affiliation(s)
- Mila Santos
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain
- Correspondence: ; Tel.: +34-628188339
| | - Fernando Diánez
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain
| | - Brenda Sánchez-Montesinos
- Departamento de Agronomía, División Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato 36500, Guanajuato, Mexico
| | - Victoria Huertas
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain
| | - Alejandro Moreno-Gavira
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain
| | - Belén Esteban García
- Departamento de Biología y Geología, Edificio CITE IIB, Universidad de Almería, 04120 Almería, Spain
| | - José A. Garrido-Cárdenas
- Departamento de Biología y Geología, Edificio CITE IIB, Universidad de Almería, 04120 Almería, Spain
| | - Francisco J. Gea
- Centro de Investigación, Experimentación y Servicios del Champiñón (CIES), Quintanar del Rey, 16220 Cuenca, Spain
| |
Collapse
|
10
|
Thermostable Chitosan-L-Asparaginase conjugate from Aspergillus fumigatus is a novel structurally stable composite for abolishing acrylamide formation in French fried potatoes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
de Andrade Lourenço D, Branco I, Choupina A. A systematic review about biological control of phytopathogenic Phytophthora cinnamomi. Mol Biol Rep 2022; 49:9947-9962. [PMID: 35585380 DOI: 10.1007/s11033-022-07547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022]
Abstract
The oomycetes of the genus Phytophthora have the most aggressive species for agriculture and forestry, such as Phytophthora sojae which is responsible for soybean root rot, Phytophthora infestans responsible for the potato downy mildew that caused the diaspora in Ireland in the nineteenth-century, and Phytophthora cinnamomi that affects a wide variety of tree species, from avocado in America, trees in Oceania to European chestnut trees. P. cinnamomi reproduces either sexually or asexually and asexual zoospores can live as saprotrophs and subsist in the soil long after death and removal of host plants. Controlling this organism is very challenging for researchers due to the limited range of effective chemical inhibitors. In this work, we present a systematic review of alternatives for biocontrol of Phytophthora in general and P. cinnamomi in particular. Our literature review indicates that Trichoderma spp., mainly Trichoderma harzianum, T. virens, and T. asperellum are very promising fungal species in the control of different Phytophthora spp. The Bacillus genus is also very promising in the control and inhibition of several Phytophthoras spp.
Collapse
Affiliation(s)
- Darling de Andrade Lourenço
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Ramiro Barcelo's street, 2600, 90035-003, Porto Alegre, RS, Brazil
| | - Iuliia Branco
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Altino Choupina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal. .,Centro de Investigação de Montanha (CIMO) - Instituto Politécnico de Bragança, Campus Santa Apolónia, 5301-855, Bragança, Portugal.
| |
Collapse
|
12
|
Metabolic Profiling and In Vitro Assessment of the Biological Activities of the Ethyl Acetate Extract of Penicillium chrysogenum “Endozoic of Cliona sp. Marine Sponge” from the Red Sea (Egypt). Mar Drugs 2022; 20:md20050326. [PMID: 35621977 PMCID: PMC9143181 DOI: 10.3390/md20050326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Marine sponge-derived endozoic fungi have been gaining increasing importance as promising sources of numerous and unique bioactive compounds. This study investigates the phytochemical profile and biological activities of the ethyl acetate extract of Penicillium chrysogenum derived from Cliona sp. sponge. Thirty-six compounds were tentatively identified from P. chrysogenum ethyl acetate extract along with the kojic acid (KA) isolation. The UPLC-ESI-MS/MS positive ionization mode was used to analyze and identify the extract constituents while 1D and 2D NMR spectroscopy were used for kojic acid (KA) structure confirmation. The antimicrobial, antioxidant, and cytotoxic activities were assessed in vitro. Both the extract and kojic acid showed potent antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa with MIC 250 ± 0.82 µg/mL. Interestingly, the extract showed strong antifungal activity against Candida albicans and Cryptococcus neoformans with MIC 93.75 ± 0.55 and 19.53 ± 0.48 µg/mL, respectively. Furthermore, KA showed the same potency against Fusarium oxysporum and Cryptococcus neoformans with MIC 39.06 ± 0.85 and 39.06 ± 0.98 µg/mL, respectively. Ultimately, KA showed strong antioxidant activity with IC50 33.7 ± 0.8 µg/mL. Moreover, the extract and KA showed strong cytotoxic activity against colon carcinoma (with IC50 22.6 ± 0.8 and 23.4 ± 1.4 µg/mL, respectively) and human larynx carcinoma (with equal IC50 30.8 ± 1.3 and ± 2.1 µg/mL, respectively), respectively. The current study represents the first insights into the phytochemical profile and biological properties of P. chrysoenum ethyl acetate extract, which could be a promising source of valuable secondary metabolites with potent biological potentials.
Collapse
|
13
|
Production, Bioprocessing and Anti-Proliferative Activity of Camptothecin from Penicillium chrysogenum, "An Endozoic of Marine Sponge, Cliona sp.", as a Metabolically Stable Camptothecin Producing Isolate. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27093033. [PMID: 35566384 PMCID: PMC9104752 DOI: 10.3390/molecules27093033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/23/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022]
Abstract
Exploring the metabolic potency of fungi as camptothecin producers raises the hope of their usage as an industrial source of camptothecin, due to their short-life span and the feasibility of metabolic engineering. However, the tiny yield and loss of camptothecin productivity of fungi during storage and sub-culturing are challenges that counteract this approach. Marine fungi could be a novel source for camptothecin production, with higher yield and reliable metabolic sustainability. The marine fungal isolate Penicillium chrysogenum EFBL # OL597937.1 derived from the sponge "Cliona sp." has been morphologically identified and molecularly confirmed, based on the Internal Transcribed Spacer sequence, exhibiting the highest yield of camptothecin (110 μg/L). The molecular structure and chemical identity of P. chrysogenum derived camptothecin has been resolved by HPLC, FTIR and LC-MS/MS analyses, giving the same spectroscopic profiles and mass fragmentation patterns as authentic camptothecin. The extracted camptothecin displayed a strong anti-proliferative activity towards HEP-2 and HCT-116 (IC50 values 0.33-0.35 µM). The yield of camptothecin was maximized by nutritional optimization of P. chrysogenum with a Plackett-Burman design, and the productivity of camptothecin increased by 1.8 fold (200 µg/L), compared to control fungal cultures. Upon storage at 4 °C as slope culture for 8 months, the productivity of camptothecin for P. chrysogenum was reduced by 40% compared to the initial culture. Visual fading of the mycelial pigmentation of P. chrysogenum was observed during fungal storage, matched with loss of camptothecin productivity. Methylene chloride extracts of Cliona sp. had the potency to completely restore the camptothecin productivity of P. chrysogenum, ensuring the partial dependence of the expression of the camptothecin biosynthetic machinery of P. chrysogenum on the chemical signals derived from the sponge, or the associated microbial flora. This is the first report describing the feasibility of P. chrysogenum, endozoic of Cliona sp., for camptothecin production, along with reliable metabolic biosynthetic stability, which could be a new platform for scaling-up camptothecin production.
Collapse
|
14
|
Bioprocesses optimization and anticancer activity of camptothecin from Aspergillus flavus, an endophyte of in vitro cultured Astragalus fruticosus. Mol Biol Rep 2022; 49:4349-4364. [DOI: 10.1007/s11033-022-07271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 10/18/2022]
|
15
|
Abdel-Fatah SS, El-Sherbiny GM, khalaf M, Baz AFE, El-Sayed ASA, El-Batal AI. Boosting the Anticancer Activity of Aspergillus flavus "endophyte of Jojoba" Taxol via Conjugation with Gold Nanoparticles Mediated by γ-Irradiation. Appl Biochem Biotechnol 2022; 194:3558-3581. [PMID: 35438406 PMCID: PMC9270289 DOI: 10.1007/s12010-022-03906-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
Taxol production by fungi is one of the promising alternative approaches, regarding to the natural and semisynthetic sources; however, the lower yield and rapid loss of Taxol productivity by fungi are the major challenges that halt their further industrial implementation. Thus, searching for fungal isolates with affordable Taxol-production stability, in addition to enhance its anticancer activity via conjugation with gold nanoparticles, is the main objectives of this study. Twenty-four endophytic fungal isolates were recovered from the barks, twigs, and leaves of jojoba plant, among these fungi, Aspergillus flavus MW485934.1 was the most potent Taxol producer (88.6 µg/l). The chemical identity of the extracted Taxol of A. flavus was verified by the TLC, HPLC, HNMR, and FTIR analyses. The yield of Taxol produced by A. flavus was optimized by the response surface methodology (RSM) using Plackett-Burman (PBD) and faced central composite designs (FCCD). The yield of Taxol by A. flavus was increased by about 3.2 folds comparing to the control cultures (from 96.5 into 302.7 µg/l). The highest Taxol yield by was obtained growing A. flavus on a modified malt extract medium (g/l) (malt extract 20.0, peptone 2.0, sucrose 20.0, soytone 2.0, cysteine 0.5, glutamine 0.5, and beef extract 1.0 adjusted to pH 6.0) and incubated at 30 °C for 16 days. From the FCCD design, the significant variables affecting Taxol production by A. flavus were cysteine, pH, and incubation time. Upon A. flavus γ-irradiation at 1.0 kGy, the Taxol yield was increased by about 1.25 fold (375.9 µg/l). To boost its anticancer activity, the purified Taxol was conjugated with gold nanoparticles (AuNPs) mediated by γ-rays irradiation (0.5 kGy), and the physicochemical properties of Taxol-AuNPs composite were evaluated by UV-Vis, DLS, XRD, and TEM analyses. The IC50 values of the native-Taxol and Taxol-AuNPs conjugates towards HEPG-2 cells were 4.06 and 2.1 µg/ml, while the IC50 values against MCF-7 were 6.07 and 3.3 µg/ml, respectively. Thus, the anticancer activity of Taxol-AuNPs composite was increased by 2 folds comparing to the native Taxol towards HEPG-2 and MCF-7 cell lines. Also, the antimicrobial activity of Taxol against the multidrug resistant bacteria was dramatically increased upon conjugation with AuNPs comparing to authentic AuNPs and Taxol, ensuring the higher solubility, targetability, and efficiency of Taxol upon AuNPs conjugation.
Collapse
Affiliation(s)
- Sobhy S. Abdel-Fatah
- grid.429648.50000 0000 9052 0245Drug Radiation Research Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Gamal M. El-Sherbiny
- grid.411303.40000 0001 2155 6022Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Mahmoud khalaf
- grid.429648.50000 0000 9052 0245Microbiology Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Ashraf F. El Baz
- Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat University City, Sadat City, Egypt
| | - Ashraf S. A. El-Sayed
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Ahmed I. El-Batal
- grid.429648.50000 0000 9052 0245Drug Radiation Research Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
16
|
Purification and Biochemical Characterization of Taxadiene Synthase from Bacillus koreensis and Stenotrophomonas maltophilia. Sci Pharm 2021. [DOI: 10.3390/scipharm89040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Taxadiene synthase (TDS) is the rate-limiting enzyme of Taxol biosynthesis that cyclizes the geranylgeranyl pyrophosphate into taxadiene. Attenuating Taxol productivity by fungi is the main challenge impeding its industrial application; it is possible that silencing the expression of TDS is the most noticeable genomic feature associated with Taxol-biosynthetic abolishing in fungi. As such, the characterization of TDS with unique biochemical properties and autonomous expression that is independent of transcriptional factors from the host is the main challenge. Thus, the objective of this study was to kinetically characterize TDS from endophytic bacteria isolated from different plants harboring Taxol-producing endophytic fungi. Among the recovered 23 isolates, Bacillus koreensis and Stenotrophomonas maltophilia achieved the highest TDS activity. Upon using the Plackett–Burman design, the TDS productivity achieved by B. koreensis (18.1 µmol/mg/min) and S. maltophilia (14.6 µmol/mg/min) increased by ~2.2-fold over the control. The enzyme was purified by gel-filtration and ion-exchange chromatography with ~15 overall folds and with molecular subunit structure 65 and 80 kDa from B. koreensis and S. maltophilia, respectively. The chemical identity of taxadiene was authenticated from the GC-MS analyses, which provided the same mass fragmentation pattern of authentic taxadiene. The tds gene was screened by PCR with nested primers of the conservative active site domains, and the amplicons were sequenced, displaying a higher similarity with tds from T. baccata and T. brevifolia. The highest TDS activity by both bacterial isolates was recorded at 37–40 °C. The Apo-TDSs retained ~50% of its initial holoenzyme activities, ensuring their metalloproteinic identity. The activity of purified TDS was completely restored upon the addition of Mg2+, confirming the identity of Mg2+ as a cofactor. The TDS activity was dramatically reduced upon the addition of DTNB and MBTH, ensuring the implementation of cysteine-reactive thiols and ammonia groups on their active site domains. This is the first report exploring the autonomous robust expression TDS from B. koreensis and S. maltophilia with a higher affinity to cyclize GGPP into taxadiene, which could be a novel platform for taxadiene production as intermediary metabolites of Taxol biosynthesis.
Collapse
|
17
|
El-Kalyoubi S, Agili F, Zordok WA, El-Sayed ASA. Synthesis, In Silico Prediction and In Vitro Evaluation of Antimicrobial Activity, DFT Calculation and Theoretical Investigation of Novel Xanthines and Uracil Containing Imidazolone Derivatives. Int J Mol Sci 2021; 22:10979. [PMID: 34681643 PMCID: PMC8539769 DOI: 10.3390/ijms222010979] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
Novel xanthine and imidazolone derivatives were synthesized based on oxazolone derivatives 2a-c as a key intermediate. The corresponding xanthine 3-5 and imidazolone derivatives 6-13 were obtained via reaction of oxazolone derivative 2a-c with 5,6-diaminouracils 1a-e under various conditions. Xanthine compounds 3-5 were obtained by cyclocondensation of 5,6-diaminouracils 1a-c with different oxazolones in glacial acetic acid. Moreover, 5,6-diaminouracils 1a-e were reacted with oxazolones 2a-c in presence of drops of acetic acid under fused condition yielding the imidazolone derivatives 6-13. Furthermore, Schiff base of compounds 14-16 were obtained by condensing 5,6-diaminouracils 1a,b,e with 4-dimethylaminobenzaldehyde in acetic acid. The structural identity of the resulting compounds was resolved by IR, 1H-, 13C-NMR and Mass spectral analyses. The novel synthesized compounds were screened for their antifungal and antibacterial activities. Compounds 3, 6, 13 and 16 displayed the highest activity against Escherichia coli as revealed from the IC50 values (1.8-1.9 µg/mL). The compound 16 displayed a significant antifungal activity against Candia albicans (0.82 µg/mL), Aspergillus flavus (1.2 µg/mL) comparing to authentic antibiotics. From the TEM microgram, the compounds 3, 12, 13 and 16 exhibited a strong deformation to the cellular entities, by interfering with the cell membrane components, causing cytosol leakage, cellular shrinkage and irregularity to the cell shape. In addition, docking study for the most promising antimicrobial tested compounds depicted high binding affinity against acyl carrier protein domain from a fungal type I polyketide synthase (ACP), and Baumannii penicillin- binding protein (PBP). Moreover, compound 12 showed high drug- likeness, and excellent pharmacokinetics, which needs to be in focus for further antimicrobial drug development. The most promising antimicrobial compounds underwent theoretical investigation using DFT calculation.
Collapse
Affiliation(s)
- Samar El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11651, Egypt
| | - Fatimah Agili
- Chemistry Department, Faculty of Science (Female Section), Jazan University, Jazan 82621, Saudi Arabia;
| | - Wael A. Zordok
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Ashraf S. A. El-Sayed
- Enzymology and Fungal Biotechnology, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| |
Collapse
|
18
|
El-Sayed AS, Khalaf SA, Azez HA, Hussein HA, EL-Moslamy SH, Sitohy B, El-Baz AF. Production, bioprocess optimization and anticancer activity of Camptothecin from Aspergillus terreus and Aspergillus flavus, endophytes of Ficus elastica. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
El-Sayed ASA, Shindia AA, AbouZeid A, Koura A, Hassanein SE, Ahmed RM. Triggering the biosynthetic machinery of Taxol by Aspergillus flavipes via cocultivation with Bacillus subtilis: proteomic analyses emphasize the chromatin remodeling upon fungal-bacterial interaction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39866-39881. [PMID: 33768456 DOI: 10.1007/s11356-021-13533-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Attenuating the Taxol biosynthesis by fungi with storage and subculturing is the major challenge that limits their further industrial applications. Aspergillus flavipes has been reported as a potent Taxol producer, with plausible increasing to its Taxol yield upon coculturing with the microbiome of Podocarpus gracilior (El-Sayed et al., Process Biochemistry 76:55-67, 2019a; Scientific Reports 9, 2019b; Enzyme and Microbial Technology 131, 2019c); however, the identity of these microbial inducers remains ambiguous. Thus, this study was to assess the potency of individual microbes to trigger the Taxol biosynthesis by A. flavipes and to unravel the differentially expressed protein in response to bacterial interaction. Among the 25 bacterial endophytes of P. gracilior, Bacillus subtilis was the potent isolate enhancing the Taxol yield of A. flavipes by ~1.6-fold. Strikingly, this bacterial elicitor displayed a reliable inhibition to the growth of A. flavipes, so the released antifungal compound by B. subtilis could be the same signals for triggering the expression of A. flavipes Taxol synthesis. The highest Taxol yield by A. flavipes was obtained with the viable cells of B. subtilis, ensuring the pivotality of physical intimate bacterial-fungal interaction. Differential proteome of the cocultures A. flavipes and B. subtilis as well as the axenic A. flavipes was conducted by LC-MS/MS. From the total of 106 identified proteins, 50 proteins were significantly expressed, 47 were upregulated ones, and 59 were downregulated ones for the cocultures normalizing to the axenic one. From the Gene Ontology (GO) and KEGG enrichment analyses, the cellular process, primary metabolic process, and nitrogen compound metabolic process were significantly changed in the coculture normalizing to monoculture of A. flavipes. The molecular function terms (histones H2B, H2A, peptidyl-prolyl cis-trans isomerase, and nucleoside-diphosphate kinase (NDPK)) were the highly significantly expressed proteins of A. flavipes in response to B. subtilis, with strong correlation to triggering of Taxol biosynthesis. The intimate interaction of A. flavipes with B. subtilis strongly modulates the Taxol biosynthetic machinery of A. flavipes by modulating the chromatin remodeling.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Ahmed A Shindia
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Azza AbouZeid
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Alaa Koura
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Sameh E Hassanein
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center, Cairo, Egypt
| | - Rania M Ahmed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
20
|
Abdel-Fatah SS, El-Batal AI, El-Sherbiny GM, Khalaf MA, El-Sayed AS. Production, bioprocess optimization and γ-irradiation of Penicillium polonicum, as a new Taxol producing endophyte from Ginko biloba. ACTA ACUST UNITED AC 2021; 30:e00623. [PMID: 34026575 PMCID: PMC8120861 DOI: 10.1016/j.btre.2021.e00623] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022]
Abstract
Twenty-eight fungal endophytes were recovered from the different parts of Ginkgo biloba and screened for their Taxol producing potency. Among these isolates, Penicillium polonicum AUMC14487 was reported as the potent Taxol producer (90.53 μg/l). The chemical identity of the extracted Taxol was verified from the TLC, HPLC, NMR, EDX, and FTIR analyses. The extracted Taxol displayed a strong antiproliferative activity against HEPG2 (IC50 4.06 μM) and MCF7 (IC50 6.07 μM). The yield of Taxol by P. polonicum was optimized by nutritional optimization with the Response Surface Methodology (RSM) using Plackett-Burman and Central Composite Designs. In addition to nutritional optimization, the effect of γ-irradiation of the spores of P. polonicum on its Taxol producing potency was evaluated. The yield of Taxol by P. polonicum was increased via nutritional optimization by response surface methodology with Plackett-Burman and FCCD designs, and γ-irradiation by about 4.5 folds, comparing to the control culture. The yield of Taxol was increased by about 1.2 folds (401.2 μg/l) by γ -irradiation of the isolates at 0.5-0.75 kGy, comparing to the control cultures (332.2 μg/l). The highest Taxol yield was obtained by growing P. polonicum on modified Czapek's- Dox medium (sucrose 40.0 g/l, malt extract 20.0 g/l, peptone 2.0 g/l, K2PO4 2.0 g/l, KCl 1.0 g/l, NaNO3 2.0 g/l, MgSO4. 5H2O 1.0 g/l) of pH 7.0 at 30.0 °C for 7.0 days. From the FCCD design, sucrose, malt extract and incubation time being the highest significant variables medium components affecting the Taxol production by P. polonicum.
Collapse
Affiliation(s)
- Sobhy S Abdel-Fatah
- Drug Radiation Research Dep., Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Ahmed I El-Batal
- Drug Radiation Research Dep., Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Gamal M El-Sherbiny
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Mahmoud A Khalaf
- Drug Radiation Research Dep., Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt.,Microbiology Dep., Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Ashraf S El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt
| |
Collapse
|
21
|
LC-MS/MS-based profiling of bioactive metabolites of endophytic bacteria from Cannabis sativa and their anti-Phytophthora activity. Antonie van Leeuwenhoek 2021; 114:1165-1179. [PMID: 33945066 DOI: 10.1007/s10482-021-01586-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Protection of crop plants from phytopathogens through endophytic bacteria is a newly emerged area of biocontrol. In this study, endophytic bacteria were isolated from the rhizosphere of Cannabis sativa. Based on initial antimicrobial screening, three (03) bacteria Serratia marcescens MOSEL-w2, Enterobacter cloacae MOSEL-w7, and Paenibacillus MOSEL-w13 were selected. Antimicrobial assays of these selected bacteria against Phytophthora parasitica revealed that E. cloacae MOSEL-w7 and Paenibacillus sp. MOSEL-w13 possessed strong activity against P. parasitica. All these bacterial extracts showed strong inhibition against P. parasitica at different concentrations (4-400 µg mL-1). P. parasitica hyphae treated with ethyl acetate extract of E. cloacae MOSEL-w7 resulted in severe growth abnormalities compared to control. The extracts were further evaluated for in vivo detached-leaf assay against P. parasitica on the wild type tobacco. Application of 1% ethyl acetate bacterial extract of S. marcescens MOSEL-w2, E. cloacae MOSEL-w7, and Paenibacillus sp. MOSEL-w13 reduced P. parasitica induced lesion sizes and lesion frequencies by 60-80%. HPLC based fractions of each extract also showed bioactivity against P. parasitica. A total of 24 compounds were found in the S. marcescens MOSEL-w2, 15 compounds in E. cloacae MOSEL-w7 and 20 compounds found in Paenibacillus sp. MOSEL-w13. LC-MS/MS analyses showed different bioactive compounds in the bacterial extracts such as Cotinine (alkylpyrrolidine), L-tryptophan, L-lysine, L-Dopa, and L-ornithine. These results suggest that S. marcescens MOSEL-w2, E. cloacae MOSEL-w7, and Paenibacillus MOSEL-w13 are a source of bioactive metabolites and could be used in combination with other biocontrol agents, with other modes of action for controlling diseases caused by Phytophthora in crops. They could be a clue for the broad-spectrum biopesticides for agriculturally significant crops.
Collapse
|
22
|
Raafat M, El-Sayed ASA, El-Sayed MT. Biosynthesis and Anti-Mycotoxigenic Activity of Zingiber officinale Roscoe-Derived Metal Nanoparticles. Molecules 2021; 26:2290. [PMID: 33920949 PMCID: PMC8071333 DOI: 10.3390/molecules26082290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 01/15/2023] Open
Abstract
Mycotoxigenic fungi have attracted special attention due to their threat to food security and toxicity to human health. Aqueous extract of Zingiber officinale Roscoe was used as reducing and capping agent for the synthesis of silver (AgNPs), copper (CuNPs), and zinc oxide (ZnONPs) nanoparticles. UV-Visible spectra of the AgNPs, CuNPs, and ZnONPs showed absorption peaks at λmax 416 nm, 472 nm, and 372 nm, respectively. Zeta potential of AgNPs, CuNPs, and ZnONPs were -30.9, -30.4 and -18.4 mV, respectively. ZnONPs showed the highest activity against Aspergillus awamori ZUJQ 965830.1 (ZOI 20.9 mm and MIC 24.7 µg/mL). TEM micrographs of ZnONPs-treated A. awamori showed cracks and pits in the cell wall, liquefaction of the cytoplasmic content, making it less electron-dense. The sporulation and ochratoxin A production of A. awamori was inhibited by ZnONPs in a concentration-dependent pattern. The inhibition percentage of OTA were 45.6, 84.78 and 95.65% for 10, 15, 20 of ZnONPs/mL, respectively.
Collapse
Affiliation(s)
- Mohamed Raafat
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Ashraf S. A. El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Manal T. El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
23
|
Moon JH, Won SJ, Maung CEH, Choi JH, Choi SI, Ajuna HB, Ahn YS. Bacillus velezensis CE 100 Inhibits Root Rot Diseases ( Phytophthora spp.) and Promotes Growth of Japanese Cypress ( Chamaecyparis obtusa Endlicher) Seedlings. Microorganisms 2021; 9:microorganisms9040821. [PMID: 33924463 PMCID: PMC8069221 DOI: 10.3390/microorganisms9040821] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 12/18/2022] Open
Abstract
Root rot diseases, caused by phytopathogenic oomycetes, Phytophthora spp. cause devastating losses involving forest seedlings, such as Japanese cypress (Chamaecyparis obtusa Endlicher) in Korea. Plant growth-promoting rhizobacteria (PGPR) are a promising strategy to control root rot diseases and promote growth in seedlings. In this study, the potential of Bacillus velezensis CE 100 in controlling Phytophthora root rot diseases and promoting the growth of C. obtusa seedlings was investigated. B. velezensis CE 100 produced β-1,3-glucanase and protease enzymes, which degrade the β-glucan and protein components of phytopathogenic oomycetes cell-wall, causing mycelial growth inhibition of P. boehmeriae, P. cinnamomi, P. drechsleri and P. erythoroseptica by 54.6%, 62.6%, 74.3%, and 73.7%, respectively. The inhibited phytopathogens showed abnormal growth characterized by swelling and deformation of hyphae. B. velezensis CE 100 increased the survival rate of C. obtusa seedlings 2.0-fold and 1.7-fold compared to control, and fertilizer treatment, respectively. Moreover, B. velezensis CE 100 produced indole-3-acetic acid (IAA) up to 183.7 mg/L, resulting in a significant increase in the growth of C. obtusa seedlings compared to control, or chemical fertilizer treatment, respectively. Therefore, this study demonstrates that B. velezensis CE 100 could simultaneously control Phytophthora root rot diseases and enhance growth of C. obtusa seedlings.
Collapse
Affiliation(s)
- Jae-Hyun Moon
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (J.-H.M.); (S.-J.W.); (J.-H.C.); (S.-I.C.); (H.B.A.)
| | - Sang-Jae Won
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (J.-H.M.); (S.-J.W.); (J.-H.C.); (S.-I.C.); (H.B.A.)
| | - Chaw Ei Htwe Maung
- Division of Agricultural and Biological Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea;
| | - Jae-Hyeok Choi
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (J.-H.M.); (S.-J.W.); (J.-H.C.); (S.-I.C.); (H.B.A.)
| | - Su-In Choi
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (J.-H.M.); (S.-J.W.); (J.-H.C.); (S.-I.C.); (H.B.A.)
| | - Henry B. Ajuna
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (J.-H.M.); (S.-J.W.); (J.-H.C.); (S.-I.C.); (H.B.A.)
| | - Young Sang Ahn
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (J.-H.M.); (S.-J.W.); (J.-H.C.); (S.-I.C.); (H.B.A.)
- Correspondence: ; Tel.: +82-62-530-2081; Fax: +82-62-530-2089
| |
Collapse
|
24
|
Iqrar I, Shinwari ZK, El-Sayed ASAF, Ali GS. Exploration of microbiome of medicinally important plants as biocontrol agents against Phytophthora parasitica. Arch Microbiol 2021; 203:2475-2489. [PMID: 33675371 DOI: 10.1007/s00203-021-02237-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/25/2021] [Accepted: 02/11/2021] [Indexed: 01/08/2023]
Abstract
In a preliminary plant-based microbiome study, diverse bacterial taxa were identified from different medicinal plants using 16S rRNA gene sequencing. Based on initial antimicrobial screening, eight (8) bacterial endophytes in six (6) different genera, Streptomyces, Pseudomonas, Enterobacter, Bacillus, Arthrobacter, and Delftia, from four important medicinal plants Dodonaea viscosa, Fagonia indica, Caralluma tuberculata, and Calendula arvensis were selected for further analyses. Antimicrobial assays revealed that Pseudomonas taiwanensis MOSEL-RD23 has strong anti-Phytophthora activity. Volatiles produced by P. taiwanensis MOSEL-RD23and Bacillus flexus MOSEL-MIC5 inhibited the growth of Phytophthora parasitica by more than 80%. Ethyl acetate extracts of Streptomyces alboniger MOSEL-RD3, P. taiwanensis MOSEL-RD23, Enterobacter hormaechei MOSEL-FLS1, and Bacillus tequilensis MOSEL-FLS3, and Delftia lacustris MB322 displayed high potency against P. parasitica. All these bacterial extracts showed strong inhibition of more than 80% inhibition in vitro against P. parasitica at different concentrations (4-400 µg/mL). Bacterial extracts showing strong antimicrobial activity were selected for bioactivity-driven fractionation and showed anti-Phytophthoral activity in multiple fractions and different peaks observed in UV-Vis spectroscopy. In the detached-leaf assay against P. parasitica on tobacco, 1% ethyl acetate bacterial extract of S. alboniger MOSEL-RD3, P. taiwanensis MOSEL-RD23, E. hormaechei MOSEL-FLS1, B. tequilensis MOSEL-FLS3, and D. lacustris MB322 reduced lesion sizes and lesion frequencies caused by P. parasitica by 68 to 81%. Overall, P. taiwanensis MOSEL-RD23 showed positive activities for all the assays. Analyzing the potential of bacterial endophytes as biological control agents can potentially lead to the formulation of broad-spectrum biopesticides for the sustainable production of crops.
Collapse
Affiliation(s)
- Irum Iqrar
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan. .,Department of Plant Pathology, Mid-Florida Research and Education Center, University of Florida/Institute of Food and Agricultural Sciences, 2725 Binion Rd, Apopka, FL, 32703, USA.
| | - Zabta Khan Shinwari
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Ashraf Sabry Abdel Fatah El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Microbiology and Botany Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Gul Shad Ali
- Department of Plant Pathology, Mid-Florida Research and Education Center, University of Florida/Institute of Food and Agricultural Sciences, 2725 Binion Rd, Apopka, FL, 32703, USA.,EukaryoTech LLC., Apopka, FL, 32703, USA
| |
Collapse
|
25
|
Biochemical Properties of Tyrosinase from Aspergillus terreus and Penicillium copticola; Undecanoic Acid from Aspergillus flavus, an Endophyte of Moringa oleifera, Is a Novel Potent Tyrosinase Inhibitor. Molecules 2021; 26:molecules26051309. [PMID: 33804376 PMCID: PMC7957516 DOI: 10.3390/molecules26051309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 01/31/2023] Open
Abstract
Tyrosinase is a copper-containing monooxygenase catalyzing the O-hydroxylation of tyrosine to 3,4-dihydroxyphenylalanine then to dopaquinone that is profoundly involved in melanin synthesis in eukaryotes. Overactivation of tyrosinase is correlated with hyperpigmentation that is metabolically correlated with severe pathological disorders, so, inhibition of this enzyme is the most effective approach in controlling the overproduction of melanin and its hazardous effects. Thus, searching for a powerful, selective inhibitor of human tyrosinase to limit the hyper-synthesis of melanin is a challenge. Unlike the difficulty of overexpression of human tyrosinase, using fungal tyrosinase as a model enzyme to the human one to evaluate the mechanistics of enzyme inhibition in response to various compounds is the most feasible strategy. Thus, the purification of highly catalytic-efficient fungal tyrosinase, exploring a novel inhibitor, and evaluating the mechanistics of enzyme inhibition are the main objectives of this work. Aspergillus terreus and Penicillium copticola were reported as the most potential tyrosinase producers. The biochemical properties suggest that this enzyme displays a higher structural and catalytic proximity to human tyrosinase. Upon nutritional bioprocessing by Plackett–Burman design, the yield of tyrosinase was increased by about 7.5-folds, compared to the control. The purified tyrosinase was strongly inhibited by kojic acid and A. flavus DCM extracts with IC50 values of 15.1 and 12.6 µg/mL, respectively. From the spectroscopic analysis, the main anti-tyrosinase compounds of A. flavus extract was resolved, and verified as undecanoic acid. Further studies are ongoing to unravel the in vivo effect and cytotoxicity of this compound in fungi and human, that could be a novel drug to various diseases associated with hyperpigmentation by melanin.
Collapse
|
26
|
Abd El-Ghani MM, El-Sayed ASA, Moubarak A, Rashad R, Nosier H, Khattab A. Biosystematic Study on Some Egyptian Species of Astragalus L. (Fabaceae). AGRICULTURE 2021; 11:125. [DOI: 10.3390/agriculture11020125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Astragalus L. is one of the largest angiosperm complex genera that belongs to the family Fabaceae, subfamily Papilionoideae or Faboideae under the subtribe Astragalinae of the tribe Galegeae. The current study includes the whole plant morphology, DNA barcode (ITS2), and molecular marker (SCoT). Ten taxa representing four species of Astragalus were collected from different localities in Egypt during the period from February 2018 to May 2019. Morphologically, identification and classification of collected Astragalus plants occurred by utilizing the light microscope, regarding the taxonomic revisions of the reference collected Astragalus specimens in other Egyptian Herbaria. For molecular validation, ten SCoT primers were used in this study, producing a unique banding pattern to differentiate between ten samples of Astragalus taxa which generated 212 DNA fragments with an average of 12.2 bands per 10 Astragalus samples, with 8 to 37 fragments per primer. The 212 fragments amplified were distributed as 2 monomorphic bands, 27 polymorphic without unique bands, 183 unique bands (210 Polymorphic with unique bands), and ITS2 gene sequence was showed as the optimal barcode for identifying Astragalus L. using BLAST searched on NCBI database, and afterward, analyzing the chromatogram for ITS region, 10 samples have been identified as two samples representing A. hauarensis, four samples representing A. sieberi, three samples representing A. spinosus and one sample representing A. vogelii. Based on the ITS barcode, A. hauarensis RMG1, A. hauarensis RMG2, A. sieberi RMG1, A. sieberi RMG2, A. sieberi RMG3, A. sieberi RMG4, A. spinosus RMG1, A. spinosus RMG2, A. spinosus RMG3, A. vogelii RMG were deposited into GenBank with accession # MT367587.1, MT367591.1, MT367593.1, MT367585.1, MT367586.1, MT367588.1, MT160347.1, MT367590.1, MT367589.1, MT367592.1, respectively. These results indicated the efficiency of SCoT markers and ITS2 region in identifying and determining genetic relationships between Astragalus species.
Collapse
|
27
|
Abd El-Atti MS, El-Sayed AS, Said RM. Usage of pharmaceutical contraceptive drug for controlling Eobania vermiculata snails by baits technique. Heliyon 2020; 6:e05630. [PMID: 33319095 PMCID: PMC7724155 DOI: 10.1016/j.heliyon.2020.e05630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/16/2020] [Accepted: 11/25/2020] [Indexed: 11/06/2022] Open
Abstract
The present study focused on evaluating the effects of oral administration of three different concentrations of Yasmin® combined contraceptive pills (estrogen and progesterone) on reproductive hormones levels, histology of the ovotestis and rate of oviposition of E. vermiculata for two months using baits technique. The levels of anti-müllerian hormone (AMH), Follicle stimulating hormone (FSH), Luteinizing hormone (LH), Estradiol (E2), Progesterone(PRG), Thyroid-stimulating hormone (TSH) and Testesterone (T) of treated snails were decreased with increasing the drug concentrations by percentages of -83.3%, -78.9%, - 59.6%,- 98.3 %, - 79.6 %, - 86.7% and 8.2%, respectively. Prolactin (PRL) level was significantly increased (86.9%) compared to control snails after 8 weeks of exposure. Histological investigations on the hermaphrodite glands of snails treated with 909 μg/gm. showed glandular hyperplasia, sloughing of germinal epithelium, acini sizes reduction, suppression of follicular growths, decreased luteinization and vasodilation. Male acini revealed histolytic of spermatogonia and mature sperms. The lowest concentration (303 μg/gm.) caused gradual decrease of the total egg counts that reach 50% at the 8th week of treatment. Higher doses (606 and 909 μg/gm.) resulted in dramatic dwindling of egg numbers and inspiring complete egg cessation at the 7th and 3rd weeks of treatments, respectively. The applications of combined contraceptive drugs as baits give promising results for controlling high population densities of E. vermiculata snails at Sharkia Governorate, Egypt.
Collapse
|
28
|
Production and bioprocess optimization of antitumor Epothilone B analogue from Aspergillus fumigatus, endophyte of Catharanthus roseus, with response surface methodology. Enzyme Microb Technol 2020; 143:109718. [PMID: 33375978 DOI: 10.1016/j.enzmictec.2020.109718] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/23/2020] [Accepted: 11/22/2020] [Indexed: 11/23/2022]
Abstract
Epothilones are secondary metabolites produced by Sorangium cellulosum with powerful antiproliferative activity against tumor cells by stabilizing their microtubule arrays, arresting their cellular division at G2-M phase. Unfortunately, the lower yield of epothilone is the challenge for its higher accessibility, thus, searching for alternative sources with promising epothilone producing potency is the prospective. Endophytic fungi are the potential repertoire for bioactive metabolites, thus exploring the epothilone producing potency of endophytic fungi of medicinal plants was objective. Thirty-two fungal isolates were recovered from the tested medicinal plants and their potency to produced epothilone have been assessed using the TLC, HPLC and molecular markers epoA, epoC and epoK. Aspergillus fumigatus EFBL, an endophyte of Catharanthus roseus, was the potent epothilone producer (21.5 μg/g biomass) as revealed from the chromatographic analyses and PCR of molecular markers. The chemical identity of extracted epothilone was verified from the HPLC, NMR, FTIR and LC-MS analyses as epothilone B analogue. The putative epoA gene from A. fumigatus was amplified using RT-PCR with the conservative corresponding primers to the active-sites of S. cellulosum. The amplicons of epoA was 517 bp displayed 98 % similarity with A. fumigatus PKS-NRPS domains, and 40 % similarity with epoA of S. cellulosum. From the in silico analyses, Val506, Ala605 and Ser630 are the conservative amino acids of epoA protein of A. fumigatus and S. cellulosum. Epothilone B from A. fumigatus displayed a strong antiproliferative activity against HepG-2, MCF-7 and LS174 T as revealed from the IC50 values 6.4, 8.7 and 10.21 μM, respectively. The productivity of epothilone B from A. fumigatus was optimized by surface response methodology with Plackett-Burman and Faced Centered Central Composite. With the Plackett-Burman design, the yield of epothilone (54.4-60.1 μg/g biomass) by A. fumigatus was increased by about 2.8-3.0 folds comparing to non-optimized cultures (21.5 μg/ g biomass). From the FCCD design, sucrose, tryptone and incubation time being the highest significant variables medium components affecting the epothilone yield of A. fumigatus. This is the first report exploring the feasibility of endophytic fungi for epothilone producing potency, that could be a novel platform for industrial production of epothilone.
Collapse
|
29
|
El-Sayed A, Enan G, Al-Mohammadi AR, H. Moustafa A, El-Gazzar N. Detection, Purification and Elucidation of Chemical Structure and Antiproliferative Activity of Taxol Produced by Penicillium chrysogenum. Molecules 2020; 25:E4822. [PMID: 33092293 PMCID: PMC7588014 DOI: 10.3390/molecules25204822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 01/18/2023] Open
Abstract
Penicillium chrysogenum has been reported as a potent taxol producer based on quantitative analysis by TLC and HPLC. The biosynthetic potency of taxol has been validated from PCR detection of rate-limiting genes of taxol synthesis such as taxadienesynthase and 10-de-acetylbaccatin III-O-acetyltransferase (DBAT), which catalyzes the immediate diterpenoid precursor of the taxol substance, as detected by PCR. Taxol production by P. chrysogenum was assessed by growing the fungus on different media. Potato dextrose broth (PDB) was shown to be the best medium for obtaining the higher amount of taxol (170 µg/L). A stepwise optimization of culture conditions necessary for production of higher amounts of taxol was investigated. The substance taxol was produced optimally after 18 d of incubation at 30 °C in PDB adjusted initially at pH 8.0 with shaking (120 rpm) (250 µg/L). The P. chrysogenum taxol was purified successfully by HPLC. Instrumental analyzes such as Fourier transform infrared spectroscopy (FTIR), ultraviolet (UV) spectroscopy, 1HNMR and 13C NMR approved the structural formula of taxol (C47H51NO14), as constructed by ChemDraw. The P. chrysogenum taxol showed promising anticancer activity.
Collapse
Affiliation(s)
- Ashraf El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (G.E.); (N.E.-G.)
| | - Gamal Enan
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (G.E.); (N.E.-G.)
| | | | - Ahmed H. Moustafa
- Department of Sciences, King Khalid Military Academy, Riyadh 11495, Saudi Arabia;
| | - Nashwa El-Gazzar
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (G.E.); (N.E.-G.)
| |
Collapse
|
30
|
El Sayed MT, El-Sayed ASA. Bioremediation and tolerance of zinc ions using Fusarium solani. Heliyon 2020; 6:e05048. [PMID: 33024860 PMCID: PMC7527588 DOI: 10.1016/j.heliyon.2020.e05048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/28/2020] [Accepted: 09/21/2020] [Indexed: 11/26/2022] Open
Abstract
Evaluating the mechanism of tolerance and biotransformation Zn(II) ions by Fusarium solani based on the different physiological was the objective of this work. The physical properties of synthesized ZnONPs was determined by UV-spectroscopy, transmission electron microscope, and X-ray powder diffraction. The structural and anatomical changes of F. solani in response to Zn(II) was examined by TEM and SEM. From the HPLC profile, oxalic acid by F. solani was strongly increased by about 10.5 folds in response to 200 mg/l Zn(II) comparing to control cultures. The highest biosorption potential were reported at pH 4.0 (alkali-treated biomass) and 5.0 (native biomass), at 600 mg/l Zn(II) concentration, incubation temperature 30 °C, and contact time 40 min (alkali-treated biomass) and 6 h (native biomass). From the FT-IR spectroscopy, the main functional groups implemented on this remediation were C-S stretching, C=O C=N, C-H bending, C-N stretching and N-H bending. From the EDX spectra, fungal cellular sulfur and phosphorus compounds were the mainly compartments involved on ZN(II) binding.
Collapse
Affiliation(s)
- Manal T El Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt
| | - Ashraf S A El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt
| |
Collapse
|
31
|
El-Sayed AS, El-Sayed MT, Rady AM, Zein N, Enan G, Shindia A, El-Hefnawy S, Sitohy M, Sitohy B. Exploiting the Biosynthetic Potency of Taxol from Fungal Endophytes of Conifers Plants; Genome Mining and Metabolic Manipulation. Molecules 2020; 25:E3000. [PMID: 32630044 PMCID: PMC7412027 DOI: 10.3390/molecules25133000] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 11/17/2022] Open
Abstract
Endophytic fungi have been considered as a repertoire for bioactive secondary metabolites with potential application in medicine, agriculture and food industry. The biosynthetic pathways by fungal endophytes raise the argument of acquisition of these machineries of such complex metabolites from the plant host. Diterpenoids "Taxol" is the most effective anticancer drug with highest annual sale, since its discovery in 1970 from the Pacific yew tree, Taxus brevifolia. However, the lower yield of Taxol from this natural source (bark of T. brevifolia), availability and vulnerability of this plant to unpredicted fluctuation with the ecological and environmental conditions are the challenges. Endophytic fungi from Taxus spp. opened a new avenue for industrial Taxol production due to their fast growth, cost effectiveness, independence on climatic changes, feasibility of genetic manipulation. However, the anticipation of endophytic fungi for industrial Taxol production has been challenged by the loss of its productivity, due to the metabolic reprograming of cells, downregulating the expression of its encoding genes with subculturing and storage. Thus, the objectives of this review were to (1) Nominate the endophytic fungal isolates with the Taxol producing potency from Taxaceae and Podocarpaceae; (2) Emphasize the different approaches such as molecular manipulation, cultural optimization, co-cultivation for enhancing the Taxol productivities; (3) Accentuate the genome mining of the rate-limiting enzymes for rapid screening the Taxol biosynthetic machinery; (4) Triggering the silenced rate-limiting genes and transcriptional factors to activates the biosynthetic gene cluster of Taxol.
Collapse
Affiliation(s)
- Ashraf S.A. El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.T.E.-S.); (G.E.); (A.S.); (S.E.-H.)
| | - Manal T. El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.T.E.-S.); (G.E.); (A.S.); (S.E.-H.)
| | - Amgad M. Rady
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Cairo 12566, Egypt;
| | - Nabila Zein
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Gamal Enan
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.T.E.-S.); (G.E.); (A.S.); (S.E.-H.)
| | - Ahmed Shindia
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.T.E.-S.); (G.E.); (A.S.); (S.E.-H.)
| | - Sara El-Hefnawy
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.T.E.-S.); (G.E.); (A.S.); (S.E.-H.)
| | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185 Umeå, Sweden
- Department of Radiation Sciences, Oncology, Umeå University, SE-90185 Umeå, Sweden
| |
Collapse
|
32
|
El Sayed MT, El-Sayed ASA. Tolerance and mycoremediation of silver ions by Fusarium solani. Heliyon 2020; 6:e03866. [PMID: 32426534 PMCID: PMC7225397 DOI: 10.1016/j.heliyon.2020.e03866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/13/2020] [Accepted: 04/23/2020] [Indexed: 01/18/2023] Open
Abstract
Silver ions discharged from various industries, are potentially toxic to living organisms at low concentrations, thus, there is an increasing need for development of an eco-friendly and cost-effective approach for its bioremediation. Filamentous fungi especially, Fusarium solani displayed a strong resistance to copper and cadmium ions as revealed from our previous study (El-Sayed 2014), however, the mechanisms of silver resistance by this fungus has not been resolved yet. Thus, this study was an extension to our previous work, to elucidate the mechanism of silver ions resistance and biotransformation by F. solani. The growth, bioaccumulation, thiol, total antioxidant, malondialdehyde (MDA), hydrogen peroxide (H2O2) contents and polyphenol oxidase (PPO) and catalase (CAT) activities of F. solani in response to silver ions were determined. Production and bioaccumulation of silver nanoparticles was characterized by UV-visible spectroscopy, TEM, and X-ray powder diffraction (XRD). The ultrastructural changes of F. solani induced by Ag(I) was examined by TEM and SEM. Production of oxalic acid by F. solani was increased by about 343.8% in response to 400 mg/l Ag(I), compared to control cultures (without silver ions) as revealed from HPLC analysis. The maximum biosorption levels by the native and alkali-treated biomass were carried out at pH 5.0, initial metal concentration 200 mg/l, biomass 0.5 g/l, temperature 35 °C, and contact time 1 h (native biomass) and 3 h (alkali-treated biomass). Fourier transform infrared spectroscopy (FTIR) results revealed that the main functional groups involved on this mycoremediation were C–S stretching, C=O C=N, C – H bending, C–N stretching and N–H bending. EDX spectra indicated the involvement of fungal cellular sulfur and phosphorus compounds in Ag(I) binding.
Collapse
Affiliation(s)
- Manal T El Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Ashraf S A El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
33
|
Potential insecticidal activity of Sarocladium strictum, an endophyte of Cynanchum acutum, against Spodoptera littoralis, a polyphagous insect pest. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101524] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
El-Sayed ASA, Fathalla M, Yassin MA, Zein N, Morsy S, Sitohy M, Sitohy B. Conjugation of Aspergillus flavipes Taxol with Porphyrin Increases the Anticancer Activity of Taxol and Ameliorates Its Cytotoxic Effects. Molecules 2020; 25:E263. [PMID: 31936458 PMCID: PMC7024149 DOI: 10.3390/molecules25020263] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/14/2019] [Accepted: 12/23/2019] [Indexed: 11/17/2022] Open
Abstract
Taxol is one of the potential anticancer drugs; however, the yield of Taxol and its cytotoxicity are common challenges. Thus, manipulating the Taxol biosynthetic pathway from endophytic fungi, in addition to chemical modification with biocompatible polymers, is the challenge. Four fungal isolates, namely, Aspergillus flavipes, A. terreus, A. flavus, and A. parasiticus, were selected from our previous study as potential Taxol producers, and their potency for Taxol production was evaluated in response to fluconazole and silver nitrate. A higher Taxol yield was reported in the cultures of A. flavipes (185 µg/L) and A. terreus (66 µg/L). With addition of fluconazole, the yield of Taxol was increased 1.8 and 1.2-fold for A. flavipes and A. terreus, respectively, confirming the inhibition of sterol biosynthesis and redirecting the geranyl phosphate pool to terpenoids synthesis. A significant inhibition of ergosterol biosynthesis by A. flavipes with addition of fluconazole was observed, correlating with the increase on Taxol yield. To increase the Taxol solubility and to reduce its cytotoxicity, Taxol was modified via chemical conjugation with porphyrin, and the degree of conjugation was checked from the Thin layer chromatography and UV spectral analysis. The antiproliferative activity of native and modified Taxol conjugates was evaluated; upon porphyrin conjugation, the activity of Taxol towards HepG2 was increased 1.5-fold, while its cytotoxicity to VERO cells was reduced 3-fold.
Collapse
Affiliation(s)
- Ashraf S. A. El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Maher Fathalla
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.F.); (N.Z.); (S.M.)
| | - Marwa A. Yassin
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Nabila Zein
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.F.); (N.Z.); (S.M.)
| | - Shaima Morsy
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.F.); (N.Z.); (S.M.)
| | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185 Umeå, Sweden;
- Department of Radiation Sciences, Oncology, Umeå University, SE-90185 Umeå, Sweden
| |
Collapse
|
35
|
El-Sayed ASA, Mohamed NZ, Safan S, Yassin MA, Shaban L, Shindia AA, Shad Ali G, Sitohy MZ. Restoring the Taxol biosynthetic machinery of Aspergillus terreus by Podocarpus gracilior Pilger microbiome, with retrieving the ribosome biogenesis proteins of WD40 superfamily. Sci Rep 2019; 9:11534. [PMID: 31395904 PMCID: PMC6687737 DOI: 10.1038/s41598-019-47816-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 07/04/2019] [Indexed: 11/13/2022] Open
Abstract
Attenuating the Taxol yield of Aspergillus terreus with the subculturing and storage were the technical challenges that prevent this fungus to be a novel platform for industrial Taxol production. Thus, the objective of this study was to unravel the metabolic machineries of A. terreus associated with attenuation of Taxol productivity, and their restoring potency upon cocultivation with the Podocarpus gracilior microbiome. The Taxol yield of A. terreus was drastically reduced with the fungal subculturing. At the 10th subculture, the yield of Taxol was reduced by four folds (78.2 µg/l) comparing to the original culture (268 µg/l), as authenticated from silencing of molecular expression of the Taxol-rate limiting enzymes (GGPPS, TDS, DBAT and BAPT) by qPCR analyses. The visual fading of A. terreus conidial pigmentation with the subculturing, revealing the biosynthetic correlation of melanin and Taxol. The level of intracellular acetyl-CoA influx was reduced sequentially with the fungal subculturing, rationalizing the decreasing on Taxol and melanin yields. Fascinatingly, the Taxol biosynthetic machinery and cellular acetyl-CoA of A. terreus have been completely restored upon addition of 3% surface sterilized leaves of P. gracilior, suggesting the implantation of plant microbiome on re-triggering the molecular machinery of Taxol biosynthesis, their transcriptional factors, and/or increasing the influx of Acetyl-CoA. The expression of the proteins of 74.4, 68.2, 37.1 kDa were exponentially suppressed with A. terreus subculturing, and strongly restored upon addition of P. gracilior leaves, ensuring their profoundly correlation with the molecular expression of Taxol biosynthetic genes. From the proteomic analysis, the restored proteins 74.4 kDa of A. terreus upon addition of P. gracilior leaves were annotated as ribosome biogenesis proteins YTM and microtubule-assembly proteins that belong to WD40 superfamily. Thus, further ongoing studies for molecular cloning and expression of these genes with strong promotors in A. terreus, have been initiated, to construct a novel platform of metabolically stable A. terreus for sustainable Taxol production. Attenuating the Taxol yield of A. terreus with the multiple-culturing and storage might be due to the reduction on main influx of acetyl-CoA, or downregulation of ribosome biogenesis proteins that belong to WD40 protein superfamily.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Nabil Z Mohamed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Samia Safan
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Marwa A Yassin
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Lamis Shaban
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed A Shindia
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Gul Shad Ali
- Mid-Florida Research Education Center, IFAS, University of Florida, Gainesville, USA
- Eukaryo Tech, LLC, Apopka, Florida, 32703, USA
| | - Mahmoud Z Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
36
|
Slama HB, Cherif-Silini H, Chenari Bouket A, Qader M, Silini A, Yahiaoui B, Alenezi FN, Luptakova L, Triki MA, Vallat A, Oszako T, Rateb ME, Belbahri L. Screening for Fusarium Antagonistic Bacteria From Contrasting Niches Designated the Endophyte Bacillus halotolerans as Plant Warden Against Fusarium. Front Microbiol 2019; 9:3236. [PMID: 30687252 PMCID: PMC6336696 DOI: 10.3389/fmicb.2018.03236] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/13/2018] [Indexed: 11/22/2022] Open
Abstract
Date palm (Phoenix dactylifera L.) plantations in North Africa are nowadays threatened with the spread of the Bayoud disease caused by Fusarium oxysporum f. sp. albedinis, already responsible for destroying date production in other infected areas, mainly in Morocco. Biological control holds great promise for sustainable and environmental-friendly management of the disease. In this study, the additional benefits to agricultural ecosystems of using plant growth promoting rhizobacteria (PGPR) or endophytes are addressed. First, PGPR or endophytes can offer an interesting bio-fertilization, meaning that it can add another layer to the sustainability of the approach. Additionally, screening of contrasting niches can yield bacterial actors that could represent wardens against whole genera or groups of plant pathogenic agents thriving in semi-arid to arid ecosystems. Using this strategy, we recovered four bacterial isolates, designated BFOA1, BFOA2, BFOA3 and BFOA4, that proved very active against F. oxysporum f. sp. albedinis. BFOA1-BFOA4 proved also active against 16 Fusarium isolates belonging to four species: F. oxysporum (with strains phytopathogenic of Olea europaea and tomato), F. solani (with different strains attacking O. europaea and potato), F. acuminatum (pathogenic on O. europaea) and F. chlamydosporum (phytopathogenic of O. europaea). BFOA1-BFOA4 bacterial isolates exhibited strong activities against another four major phytopathogens: Botrytis cinerea, Alternaria alternata, Phytophthora infestans, and Rhizoctonia bataticola. Isolates BFOA1-BFOA4 had the ability to grow at temperatures up to 35°C, pH range of 5-10, and tolerate high concentrations of NaCl and up to 30% PEG. The isolates also showed relevant direct and indirect PGP features, including growth on nitrogen-free medium, phosphate solubilization and auxin biosynthesis, as well as resistance to metal and xenobiotic stress. Phylogenomic analysis of BFOA1-BFOA4 isolates indicated that they all belong to Bacillus halotolerans, which could therefore considered as a warden against Fusarium infection in plants. Comparative genomics allowed us to functionally describe the open pan genome of B. halotolerans and LC-HRMS and GCMS analyses, enabling the description of diverse secondary metabolites including pulegone, 2-undecanone, and germacrene D, with important antimicrobial and insecticidal properties. In conclusion, B. halotolerans could be used as an efficient bio-fertilizer and bio-control agent in semi-arid and arid ecosystems.
Collapse
Affiliation(s)
- Houda Ben Slama
- NextBiotech, Agareb, Tunisia
- Institut de l’Olivier Sfax, Sfax, Tunisia
| | - Hafsa Cherif-Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas of Setif, Setif, Algeria
| | | | - Mallique Qader
- School of Science and Sport, University of the West of Scotland, Paisley, United Kingdom
- National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Allaoua Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas of Setif, Setif, Algeria
| | - Bilal Yahiaoui
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas of Setif, Setif, Algeria
| | | | - Lenka Luptakova
- Department of Biology and Genetics, Institute of Biology, Zoology and Radiobiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | | | - Armelle Vallat
- Neuchatel Platform of Analytical Chemistry, Institute of Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Tomasz Oszako
- Department of Forest Protection of the Forest Research Institute in Sękocin Stary, Raszyn, Poland
| | - Mostafa E. Rateb
- School of Science and Sport, University of the West of Scotland, Paisley, United Kingdom
| | - Lassaad Belbahri
- NextBiotech, Agareb, Tunisia
- Laboratory of Soil Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|