1
|
Li HP, Ma HB, Zhang JL. Halo-tolerant plant growth-promoting bacteria-mediated plant salt resistance and microbiome-based solutions for sustainable agriculture in saline soils. FEMS Microbiol Ecol 2025; 101:fiaf037. [PMID: 40194942 PMCID: PMC12051855 DOI: 10.1093/femsec/fiaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/26/2025] [Accepted: 04/07/2025] [Indexed: 04/09/2025] Open
Abstract
Soil salinization has been the major form of soil degradation under the dual influence of climate change and high-intensity human activities, threatening global agricultural sustainability and food security. High salt concentrations induce osmotic imbalance, ion stress, oxidative damage, and other hazards to plants, resulting in retarded growth, reduced biomass, and even total crop failure. Halo-tolerant plant growth promoting rhizobacteria (HT-PGPR), as a widely distributed group of beneficial soil microorganisms, are emerging as a valuable biological tool for mitigating the toxic effects of high salt concentrations and improve plant growth while remediating degraded saline soil. Here, the current status, harm, and treatment measures of global soil salinization are summarized. The mechanism of salt tolerance and growth promotion induced by HT-PGPR are reviewed. We highlight that advances in multiomics technologies are helpful for exploring the genetic and molecular mechanisms of microbiota centered on HT-PGPR to address the issue of plant losses in saline soil. Future research is urgently needed to comprehensively and robustly determine the interaction mechanism between the root microbiome centered on HT-PGPR and salt-stressed plants via advanced means to maximize the efficacy of HT-PGPR as a microbial agent.
Collapse
Affiliation(s)
- Hui-Ping Li
- School of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia 750021, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Ningxia 750021, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan 750021, China
| | - Hong-Bin Ma
- School of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia 750021, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Ningxia 750021, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan 750021, China
| | - Jin-Lin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Lu J, Yao T, Fu S, Ye L. Metabolomic and microbiomic resilience of Hong Kong oysters to dual stressors: Zinc oxide nanoparticles and low salinity. CHEMOSPHERE 2024; 368:143722. [PMID: 39528128 DOI: 10.1016/j.chemosphere.2024.143722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Zinc oxide nanoparticles, increasingly used in industrial and consumer products, and low salinity, exacerbated by climate change-induced alterations in precipitation patterns, represent significant environmental pressures in estuarine and coastal environments. This study advances previous research on their impacts on Hong Kong oysters (Crassostrea hongkongensis) by integrating metabolomics of hepatopancreas and gills with intestinal microbiomics. Employing advanced multi-omics integration methods, our analysis reveals novel insights into metabolic resilience under combined stress conditions. This resilience is characterized by coordinated, organ-specific adjustments in energy metabolism (d-glucose 1-phosphate in hepatopancreas, cytidine in gills), antioxidant defenses (glutathione, meso-2,6-diaminoheptanedioate, pimelic acid in hepatopancreas; indole, 3-(3-hydroxyphenyl)propanoic acid in gills), immune function (l-glutamine, ergocalciferol in hepatopancreas; argininosuccinic acid in gills), and membrane stability (lanosterin in hepatopancreas, allantoin in gills). Notably, under dual stressors, we observed a previously undescribed stabilization of microbial alpha diversity and certain phyla, an absence of distinctive biomarkers, and certain metabolic activity stabilization within the intestinal microbiota. These findings suggest robust compensatory mechanisms that maintain physiological homeostasis and microbial balance under stress, contrasting with primarily negative impacts reported in previous studies. Integration of metabolomic and microbiomic data revealed coordinated responses between microbial community changes and metabolic adjustments, particularly in osmoregulation, energy metabolism and antioxidant defenses, under dual stressors. This comprehensive approach provides a more realistic model of environmental challenges, revealing sophisticated adaptive strategies in Hong Kong oysters. Our study offers critical insights for understanding bivalve resilience, informing conservation strategies, and managing marine ecosystems in the face of increasing anthropogenic pressures.
Collapse
Affiliation(s)
- Jie Lu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 572426, China
| | - Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 572426, China; Tropical Fisheries Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
| | - Shengli Fu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Lingtong Ye
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| |
Collapse
|
3
|
Rajkumari N, Chowrasia S, Nishad J, Ganie SA, Mondal TK. Metabolomics-mediated elucidation of rice responses to salt stress. PLANTA 2023; 258:111. [PMID: 37919614 DOI: 10.1007/s00425-023-04258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/01/2023] [Indexed: 11/04/2023]
Abstract
MAIN CONCLUSION Role of salinity responsive metabolites of rice and its wild species has been discussed. Salinity stress is one of the important environmental stresses that severely affects rice productivity. Although, several vital physio-biochemical and molecular responses have been activated in rice under salinity stress which were well described in literatures, the mechanistic role of salt stress and microbes-induced metabolites to overcome salt stress in rice are less studied. Nevertheless, over the years, metabolomic studies have allowed a comprehensive analyses of rice salt stress responses. Hence, we review the salt stress-triggered alterations of various metabolites in rice and discuss their significant roles toward salinity tolerance. Some of the metabolites such as serotonin, salicylic acid, ferulic acid and gentisic acid may act as signaling molecules to activate different downstream salt-tolerance mechanisms; whereas, the other compounds such as amino acids, sugars and organic acids directly act as protective agents to maintain osmotic balance and scavenger of reactive oxygen species during the salinity stress. The quantity, type, tissues specificity and time of accumulation of metabolites induced by salinity stress vary between salt-sensitive and tolerant rice genotypes and thus, contribute to their different degrees of salt tolerance. Moreover, few tolerance metabolites such as allantoin, serotonin and melatonin induce unique pathways for activation of defence mechanisms in salt-tolerant varieties of rice, suggesting their potential roles as the universal biomarkers for salt tolerance. Therefore, these metabolites can be applied exogenously to the sensitive genotypes of rice to enhance their performance under salt stress. Furthermore, the microbes of rhizosphere also participated in rice salt tolerance either directly or indirectly by regulating their metabolic pathways. Thus, this review for the first time offers valuable and comprehensive insights into salt-induced spatio-temporal and genotype-specific metabolites in different genotypes of rice which provide a reference point to analyze stress-gene-metabolite relationships for the biomarker designing in rice. Further, it can also help to decipher several metabolic systems associated with salt tolerance in rice which will be useful in developing salt-tolerance cultivars by conventional breeding/genetic engineering/exogenous application of metabolites.
Collapse
Affiliation(s)
- Nitasana Rajkumari
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, 110012, India
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Soni Chowrasia
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, 110012, India
- Department of Bioscience and Biotechnology, Banastahli Vidyapith, Tonk, Rajasthan, 304022, India
| | - Jyoti Nishad
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, 110012, India
| | - Showkat Ahmad Ganie
- Plant Molecular Sciences and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, Surrey, UK
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, 110012, India.
| |
Collapse
|
4
|
Ma Y, Li F, Yi Y, Wang X, Li T, Wang X, Sun H, Li L, Ren M, Han S, Zhang L, Chen Y, Tang H, Jia H, Li J. Hydrogen sulfide improves salt tolerance through persulfidation of PMA1 in Arabidopsis. PLANT CELL REPORTS 2023:10.1007/s00299-023-03029-2. [PMID: 37179518 DOI: 10.1007/s00299-023-03029-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
KEY MESSAGE A new interaction was found between PMA1 and GRF4. H2S promotes the interaction through persulfidated Cys446 of PMA1. H2S activates PMA1 to maintain K+/Na+ homeostasis through persulfidation under salt stress. Plasma membrane H+-ATPase (PMA) is a transmembrane transporter responsible for pumping protons, and its contribution to salt resistance is indispensable in plants. Hydrogen sulfide (H2S), a small signaling gas molecule, plays the important roles in facilitating adaptation of plants to salt stress. However, how H2S regulates PMA activity remains largely unclear. Here, we show a possible original mechanism for H2S to regulate PMA activity. PMA1, a predominant member in the PMA family of Arabidopsis, has a non-conservative persulfidated cysteine (Cys) residue (Cys446), which is exposed on the surface of PMA1 and located in cation transporter/ATPase domain. A new interaction of PMA1 and GENERAL REGULATORY FACTOR 4 (GRF4, belongs to the 14-3-3 protein family) was found by chemical crosslinking coupled with mass spectrometry (CXMS) in vivo. H2S-mediated persulfidation promoted the binding of PMA1 to GRF4. Further studies showed that H2S enhanced instantaneous H+ efflux and maintained K+/Na+ homeostasis under salt stress. In light of these findings, we suggest that H2S promotes the binding of PMA1 to GRF4 through persulfidation, and then activating PMA, thus improving the salt tolerance of Arabidopsis.
Collapse
Affiliation(s)
- Ying Ma
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fali Li
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuying Yi
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | | | - Tian Li
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiuyu Wang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haotian Sun
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Luqi Li
- Division of Laboratory Safety and Services, Life Science Research Core Services, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Meijuan Ren
- Division of Laboratory Safety and Services, Life Science Research Core Services, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Sirui Han
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Luan Zhang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ying Chen
- WuXi AppTec, Shanghai, 200131, China
| | | | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China.
| | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Roy Choudhury A, Trivedi P, Choi J, Madhaiyan M, Park JH, Choi W, Walitang DI, Sa T. Inoculation of ACC deaminase-producing endophytic bacteria down-regulates ethylene-induced pathogenesis-related signaling in red pepper (Capsicum annuum L.) under salt stress. PHYSIOLOGIA PLANTARUM 2023; 175:e13909. [PMID: 37026423 DOI: 10.1111/ppl.13909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 05/22/2023]
Abstract
Pathogenesis-related (PR) signaling plays multiple roles in plant development under abiotic and biotic stress conditions and is regulated by a plethora of plant physiological as well as external factors. Here, our study was conducted to evaluate the role of an ACC deaminase-producing endophytic bacteria in regulating ethylene-induced PR signaling in red pepper plants under salt stress. We also evaluated the efficiency of the bacteria in down-regulating the PR signaling for efficient colonization and persistence in the plant endosphere. We used a characteristic endophyte, Methylobacterium oryzae CBMB20 and its ACC deaminase knockdown mutant (acdS- ). The wild-type M. oryzae CBMB20 was able to decrease ethylene emission by 23% compared to the noninoculated and acdS- M. oryzae CBMB20 inoculated plants under salt stress. The increase in ethylene emission resulted in enhanced hydrogen peroxide concentration, phenylalanine ammonia-lyase activity, β-1,3 glucanase activity, and expression profiles of WRKY, CaPR1, and CaPTI1 genes that are typical salt stress and PR signaling factors. Furthermore, the inoculation of both the bacterial strains had shown induction of PR signaling under normal conditions during the initial inoculation period. However, wild-type M. oryzae CBMB20 was able to down-regulate the ethylene-induced PR signaling under salt stress and enhance plant growth and stress tolerance. Collectively, ACC deaminase-producing endophytic bacteria down-regulate the salt stress-mediated PR signaling in plants by regulating the stress ethylene emission levels and this suggests a new paradigm in efficient colonization and persistence of ACC deaminase-producing endophytic bacteria for better plant growth and productivity.
Collapse
Affiliation(s)
- Aritra Roy Choudhury
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, South Korea
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Jeongyun Choi
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, South Korea
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Munusamy Madhaiyan
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
- Department of Bioprocess Engineering, University of Science and Technology of Korea, Daejeon, South Korea
| | - Wonho Choi
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Denver I Walitang
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, South Korea
- College of Agriculture, Fisheries and Forestry, Romblon State University, Romblon, Philippines
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, South Korea
- The Korean Academy of Science and Technology, Seongnam, South Korea
| |
Collapse
|
6
|
Kumawat KC, Sharma B, Nagpal S, Kumar A, Tiwari S, Nair RM. Plant growth-promoting rhizobacteria: Salt stress alleviators to improve crop productivity for sustainable agriculture development. FRONTIERS IN PLANT SCIENCE 2023; 13:1101862. [PMID: 36714780 PMCID: PMC9878403 DOI: 10.3389/fpls.2022.1101862] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/16/2022] [Indexed: 06/12/2023]
Abstract
Soil salinity, a growing issue worldwide, is a detrimental consequence of the ever-changing climate, which has highlighted and worsened the conditions associated with damaged soil quality, reduced agricultural production, and decreasing land areas, thus resulting in an unsteady national economy. In this review, halo-tolerant plant growth-promoting rhizo-microbiomes (PGPRs) are evaluated in the salinity-affected agriculture as they serve as excellent agents in controlling various biotic-abiotic stresses and help in the augmentation of crop productivity. Integrated efforts of these effective microbes lighten the load of agro-chemicals on the environment while managing nutrient availability. PGPR-assisted modern agriculture practices have emerged as a green strategy to benefit sustainable farming without compromising the crop yield under salinity as well as salinity-affected supplementary stresses including increased temperature, drought, salinity, and potential invasive plant pathogenicity. PGPRs as bio-inoculants impart induced systemic tolerance (IST) to plants by the production of volatile organic compounds (VOCs), antioxidants, osmolytes, extracellular polymeric substances (EPS), phytohormones, and ACC-deaminase and recuperation of nutritional status and ionic homeostasis. Regulation of PGPR-induced signaling pathways such as MAPK and CDPK assists in salinity stress alleviation. The "Next Gen Agriculture" consists of the application of designer crop microbiomes through gene editing tools, for instance, CRISPR, and engineering of the metabolic pathways of the microbes so as to gain maximum plant resistance. The utilization of omics technologies over the traditional approaches can fulfill the criteria required to increase crop yields in a sustainable manner for feeding the burgeoning population and augment plant adaptability under climate change conditions, ultimately leading to improved vitality. Furthermore, constraints such as the crop specificity issue of PGPR, lack of acceptance by farmers, and legal regulatory aspects have been acknowledged while also discussing the future trends for product commercialization with the view of the changing climate.
Collapse
Affiliation(s)
- Kailash Chand Kumawat
- Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, Uttar Pradesh, India
| | - Barkha Sharma
- Department of Microbiology, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Sharon Nagpal
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Ajay Kumar
- Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, Uttar Pradesh, India
| | - Shalini Tiwari
- Department of Microbiology, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Ramakrishnan Madhavan Nair
- World Vegetable Centre, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| |
Collapse
|
7
|
Quach NT, Loan TT, Nguyen TTA, Nguyen Vu TH, Pham QA, Chu HH, Phi QT, Thuoc DV. Phenotypic and genomic characterization provide new insights into adaptation to environmental stressors and biotechnological relevance of mangrove Alcaligenes faecalis D334. Res Microbiol 2023; 174:103994. [PMID: 36240959 DOI: 10.1016/j.resmic.2022.103994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
Alcaligenes faecalis D334 was determined in this study as a salt-tolerant bacterium isolated from mangrove sediment. In response to 6% (w/v) NaCl, strain D334 produced the highest ectoines of 14.14 wt%. To understand adaptive features to mangrove environment, strain D334 was sequenced using Pacific BioScience platform, resulting in a circular chromosome of 4.23 Mb. Of note, D334 genome harbored 81 salt-responsive genes, among which two membrane-associated genes ompc and eric were absent in 3 selected A. faecalis genomes. Apart from that, a complete pathway for ectoine and 5-hydroxyectoine synthesis was predicted. To resist 40 mM H2O2, 46 genetic determinants contributing to oxidative stress response were employed. Moreover, two operons involved in polyhydroxyalkanoate (PHA) production were identified in the D334 genome, resulting in maximum PHA content of 5.03 ± 0.04 wt% and PHA concentration of 0.13 ± 0.001 g/L. A large flagellar biosynthesis operon contributing to swimming motility was found to be conserved in D334 and 8 other A. faecalis genomes. These findings shed light for the first time on the high versatility of A. faecalis D334 genome to adapt to mangrove lifestyle and the possibility to develop D334 as an industrial platform for PHA and 5-hydroxyectoine production.
Collapse
Affiliation(s)
- Ngoc Tung Quach
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam
| | - Tran Thi Loan
- Department of Microbiology, Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), Hanoi 100000, Viet Nam; Department of Biotechnology and Microbiology, Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Viet Nam
| | - Thi Thu An Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam
| | - Thi Hanh Nguyen Vu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam
| | - Quynh Anh Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam
| | - Hoang Ha Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam
| | - Quyet-Tien Phi
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam.
| | - Doan Van Thuoc
- Department of Biotechnology and Microbiology, Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Viet Nam.
| |
Collapse
|
8
|
Rhizosphere microbes enhance plant salt tolerance: toward crop production in saline soil. Comput Struct Biotechnol J 2022; 20:6543-6551. [DOI: 10.1016/j.csbj.2022.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
|
9
|
Yaghoubi Khanghahi M, Crecchio C, Verbruggen E. Shifts in the Rhizosphere and Endosphere Colonizing Bacterial Communities Under Drought and Salinity Stress as Affected by a Biofertilizer Consortium. MICROBIAL ECOLOGY 2022; 84:483-495. [PMID: 34499191 DOI: 10.1007/s00248-021-01856-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The present research asks how plant growth-promoting bacterial (PGPB) inoculants and chemical fertilizers change rhizosphere and root endophytic bacterial communities in durum wheat, and its dependence on environmental stress. A greenhouse experiment was carried out under drought (at 40% field capacity), or salinity (150 mM NaCl) conditions to investigate the effects of a chemical fertilizer (containing nitrogen, phosphorus, potassium and zinc) or a biofertilizer (a bacterial consortium of four PGPBs). High-throughput amplicon sequencing of the 16S rRNA of the rhizosphere, non-sterilized, or surface-sterilized roots, showed shifts in bacterial communities in response to stress treatments, which were greater for salinity than for drought and tended to show increased oligotrophs relative abundances compared to non-stress controls. The results also showed that Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes, Thaumarchaeota, Firmicutes, and Verrucomicrobia had a higher relative abundance in the rhizosphere, while Actinobacteria were more abundant on roots, while Candidatus_Saccharibacteria and Planctomycetes inside roots. The results indicated that the root endophytic bacterial communities were more affected by (bio-) fertilization treatments than those in the rhizosphere, particularly as affected by PGPB inoculation. This greater susceptibility of endophytes to (bio-) fertilizers was associated with increased abundance of the 16S rRNA and acdS genes in plant roots, especially under stress conditions. These changes in root endophytes, which coincided with an improvement in grain yield and photosynthetic capacity of plants, may be considered as one of the mechanisms by which PGPB affect plants.
Collapse
Affiliation(s)
- Mohammad Yaghoubi Khanghahi
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Carmine Crecchio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Erik Verbruggen
- Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
10
|
Synergistic Practicing of Rhizobacteria and Silicon Improve Salt Tolerance: Implications from Boosted Oxidative Metabolism, Nutrient Uptake, Growth and Grain Yield in Mung Bean. PLANTS 2022; 11:plants11151980. [PMID: 35956457 PMCID: PMC9370704 DOI: 10.3390/plants11151980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022]
Abstract
Plant growth promoting rhizobacteria (PGPR) and silicon (Si) are known for alleviating abiotic stresses in crop plants. In this study, Bacillus drentensis and Enterobacter cloacae strains of PGPR and foliar application of Si were tested for regulating the antioxidant metabolism and nutrient uptake on grain yield of mung bean under irrigation of saline water (3.12 and 7.81 dS m−1). Bacterial inoculation and supplemental Si (1 and 2 kg ha−1) reduced salinity-induced oxidative stress in mung bean leaves. The improved salt stress tolerance was achieved by enhancing the activities of catalase (45%), peroxidase (43%) and ascorbate peroxidase (48%), while decreasing malondialdehyde levels (57%). Enhanced nutrient uptake of magnesium 1.85 mg g−1, iron 7 mg kg−1, zinc 49.66 mg kg−1 and copper 12.92 mg kg−1 in mung bean seeds was observed with foliar application of Si and PGPR inoculation. Biomass (7.75 t ha−1), number of pods per plant (16.02) and 1000 seed weight (60.95 g) of plants treated with 2 kg Si ha−1 and B. drentensis clearly outperformed treatments with Si or PGPR alone. In conclusion, application of Si and PGPR enhances mung bean productivity under saline conditions, thereby helping exploitation of agriculture in low productive areas.
Collapse
|
11
|
A Highly Salt-Tolerant Bacterium Brevibacterium sediminis Promotes the Growth of Rice (Oryza sativa L.) Seedlings. Stress 2022. [DOI: 10.3390/stresses2030020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Soil salinity has emerged as a serious issue for food security due to global climate change. It is estimated that currently about 62 million hectares or 20 percent of the world’s irrigated land is affected by salinity. Salinity is a serious problem in the coastal areas of Bangladesh. Isolation of salt-tolerant plant growth-promoting bacteria (PGPB) and applying them as bioinoculants in crop plants are considered promising and effective biotechnological approaches to combat soil salinity. This study aimed to screen salt-tolerant PGPB from the root, leaf, and rhizospheric soils of rice plants collected from salt-affected coastal areas including Chattogram, Noakhali, Lakshmipur, and Cox’s Bazar districts of Bangladesh and evaluated their performances on the seedling growth of rice. Out of forty-one salinity-tolerant bacterial isolates screened, Brevibacterium sediminis showed salinity tolerance up to 12% NaCl (w/v). In vitro bioassay revealed that B. sediminis promoted the seedling growth of rice cv. BRRI dhan29 (salinity susceptible) and BINAdhan-10 (salinity tolerant), and the growth-promoting effects were higher in BINAdhan-10. This study for the first time identified B. sediminis strain IBGE3C as a salt-tolerant PGPB from a widely cultivated rice variety, BRRI dhan28 in the Lakshmipur district of Bangladesh. Our results suggest that salt-tolerant PGPB isolated from the root, leaf, and rhizospheric soil of rice plants could be used as a low cost and environmentally friendly option for overcoming the detrimental effects of salt stress on rice plants in the southern coastal regions of Bangladesh. However, further studies are needed for assessing the efficacy of B. sediminis on enhancement of salinity tolerance, and growth and yield of rice under salinity stressed conditions.
Collapse
|
12
|
Yadav R, Chakraborty S, Ramakrishna W. Wheat grain proteomic and protein-metabolite interactions analyses provide insights into plant growth promoting bacteria-arbuscular mycorrhizal fungi-wheat interactions. PLANT CELL REPORTS 2022; 41:1417-1437. [PMID: 35396966 DOI: 10.1007/s00299-022-02866-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Proteomic, protein-protein and protein-metabolite interaction analyses in wheat inoculated with PGPB and AMF identified key proteins and metabolites that may have a role in enhancing yield and biofortification. Plant growth-promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) have an impact on grain yield and nutrition. This dynamic yet complex interaction implies a broad reprogramming of the plant's metabolic and proteomic activities. However, little information is available regarding the role of native PGPB and AMF and how they affect the plant proteome, especially under field conditions. Here, proteomic, protein-protein and protein-metabolite interaction studies in wheat triggered by PGPB, Bacillus subtilis CP4 either alone or together with AMF under field conditions was carried out. The dual inoculation with native PGPB (CP4) and AMF promoted the differential abundance of many proteins, such as histones, glutenin, avenin and ATP synthase compared to the control and single inoculation. Interaction study of these differentially expressed proteins using STRING revealed that they interact with other proteins involved in seed development and abiotic stress tolerance. Furthermore, these interacting proteins are involved in carbon fixation, sugar metabolism and biosynthesis of amino acids. Molecular docking predicted that wheat seed storage proteins, avenin and glutenin interact with secondary metabolites, such as trehalose, and sugars, such as xylitol. Mapping of differentially expressed proteins to KEGG pathways showed their involvement in sugar metabolism, biosynthesis of secondary metabolites and modulation of histones. These proteins and metabolites can serve as markers for improving wheat-PGPB-AMF interactions leading to higher yield and biofortification.
Collapse
Affiliation(s)
- Radheshyam Yadav
- Department of Biochemistry, Central University of Punjab, VPO Ghudda, Punjab, India
| | - Sudip Chakraborty
- Department of Computational Sciences, Central University of Punjab, VPO Ghudda, Punjab, India
| | - Wusirika Ramakrishna
- Department of Biochemistry, Central University of Punjab, VPO Ghudda, Punjab, India.
| |
Collapse
|
13
|
Feng G, Xiao P, Wang X, Huang L, Nie G, Li Z, Peng Y, Li D, Zhang X. Comprehensive Transcriptome Analysis Uncovers Distinct Expression Patterns Associated with Early Salinity Stress in Annual Ryegrass ( Lolium Multiflorum L.). Int J Mol Sci 2022; 23:3279. [PMID: 35328700 PMCID: PMC8948850 DOI: 10.3390/ijms23063279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Soil salination is likely to reduce crop production worldwide. Annual ryegrass (Lolium multiflorum L.) is one of the most important forages cultivated in temperate and subtropical regions. We performed a time-course comparative transcriptome for salinity-sensitive (SS) and salinity-insensitive (SI) genotypes of the annual ryegrass at six intervals post-stress to describe the transcriptional changes and identify the core genes involved in the early responses to salt stress. Our study generated 215.18 Gb of clean data and identified 7642 DEGs in six pairwise comparisons between the SS and SI genotypes of annual ryegrass. Function enrichment of the DEGs indicated that the differences in lipid, vitamins, and carbohydrate metabolism are responsible for variation in salt tolerance of the SS and SI genotypes. Stage-specific profiles revealed novel regulation mechanisms in salinity stress sensing, phytohormones signaling transduction, and transcriptional regulation of the early salinity responses. High-affinity K+ (HAKs) and high-affinity K1 transporter (HKT1) play different roles in the ionic homeostasis of the two genotypes. Moreover, our results also revealed that transcription factors (TFs), such as WRKYs, ERFs, and MYBs, may have different functions during the early signaling sensing of salt stress, such as WRKYs, ERFs, and MYBs. Generally, our study provides insights into the mechanisms of the early salinity response in the annual ryegrass and accelerates the breeding of salt-tolerant forage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xinquan Zhang
- Department of Forage Science, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (P.X.); (X.W.); (L.H.); (G.N.); (Z.L.); (Y.P.); (D.L.)
| |
Collapse
|
14
|
Salt Stress Tolerance-Promoting Proteins and Metabolites under Plant-Bacteria-Salt Stress Tripartite Interactions. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The rapid increase in soil salinization has impacted agricultural output and poses a threat to food security. There is an urgent need to focus on improving soil fertility and agricultural yield, both of which are severely influenced by abiotic variables such as soil salinity and sodicity. Abiotic forces have rendered one-third of the overall land unproductive. Microbes are the primary answer to the majority of agricultural production’s above- and below-ground problems. In stressful conditions, proper communication between plants and beneficial microbes is critical for avoiding plant cell damage. Many chemical substances such as proteins and metabolites synthesized by bacteria and plants mediate communication and stress reduction. Metabolites such as amino acids, fatty acids, carbohydrates, vitamins, and lipids as well as proteins such as aquaporins and antioxidant enzymes play important roles in plant stress tolerance. Plant beneficial bacteria have an important role in stress reduction through protein and metabolite synthesis under salt stress. Proper genomic, proteomic and metabolomics characterization of proteins and metabolites’ roles in salt stress mitigation aids scientists in discovering a profitable avenue for increasing crop output. This review critically examines recent findings on proteins and metabolites produced during plant-bacteria interaction essential for the development of plant salt stress tolerance.
Collapse
|
15
|
Choudhury AR, Roy SK, Trivedi P, Choi J, Cho K, Yun SH, Walitang DI, Park JH, Kim K, Sa T. Label-free proteomics approach reveals candidate proteins in rice (Oryza sativa L.) important for ACC deaminase producing bacteria-mediated tolerance against salt stress. Environ Microbiol 2022; 24:3612-3624. [PMID: 35191581 DOI: 10.1111/1462-2920.15937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/30/2022]
Abstract
The omics-based studies are important for identifying characteristic proteins in plants to elucidate the mechanism of ACC deaminase producing bacteria-mediated salt tolerance. This study evaluates the changes in the proteome of rice inoculated with ACC deaminase producing bacteria under salt stress conditions. Salt stress resulted in a significant decrease in photosynthetic pigments, whereas inoculation of Methylobacterium oryzae CBMB20 had significantly increased pigment contents under normal and salt stress conditions. A total of 76, 51 and 33 differentially abundant proteins (DAPs) were identified in non-inoculated salt stressed plants, bacteria inoculated plants under normal and salt stress conditions, respectively. The abundances of proteins responsible for ethylene emission and programmed cell death were increased, and that of photosynthesis-related proteins were decreased in non-inoculated plants under salt stress. Whereas, bacteria-inoculated plants had shown higher abundance of antioxidant proteins, RuBisCo and ribosomal proteins that are important for enhancing stress tolerance and improving plant physiological traits. Collectively, salt stress might affect plant physiological traits by impairing photosynthetic machinery and accelerating apoptosis leading to a decline in biomass. However, inoculation of plants with bacteria can assist in enhancing photosynthetic activity, antioxidant activities and ethylene regulation related proteins for attenuating salt induced apoptosis and sustaining growth and development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aritra Roy Choudhury
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea.,Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Swapan Kumar Roy
- College of Agricultural Sciences, IUBAT-International University of Business Agriculture and Technology, Dhaka, Bangladesh
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Jeongyun Choi
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea.,Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Kun Cho
- Bio-chemical Analysis Team, Center for Research Equipment, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Sung Ho Yun
- Bio-chemical Analysis Team, Center for Research Equipment, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Denver I Walitang
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea.,College of Agriculture, Fisheries and Forestry, Romblon State University, Philippines
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.,Department of Bioprocess Engineering, University of Science and Technology (UST) of Korea, Daejeon, Republic of Korea
| | - Kiyoon Kim
- National Forest Seed Variety Center, Chungju, Republic of Korea
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea.,The Korean Academy of Science and Technology, Seongnam, Republic of Korea
| |
Collapse
|
16
|
Choi J, Roy Choudhury A, Walitang DI, Lee Y, Sa T. ACC deaminase-producing Brevibacterium linens RS16 enhances heat-stress tolerance of rice (Oryza sativa L.). PHYSIOLOGIA PLANTARUM 2022; 174:e13584. [PMID: 34625965 DOI: 10.1111/ppl.13584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
The rapid rise in global temperature has adverse effects on rice productivity. The lack of eminent resources for heat stress alleviation is threatening the agricultural sector. Heat stress alleviation by endophytic plant growth-promoting bacteria (PGPB) can be a sustainable and eco-friendly approach. The present study was conducted to check the colonization of Brevibacterium linens RS16 producing ACC (1-aminocyclopropane-1-carboxylate) deaminase in the rice endosphere and to characterize its efficiency in enhancing stress tolerance. The ethylene emission pathway, reactive oxygen species (ROS) concentrations, proline accumulation, expression of glutathione S-transferase (GST), and small heat shock proteins (sHSPs) were monitored at two different levels of heat stress (40°C and 45°C). Bacterial inoculation decreased ethylene emission levels by 26.9% and 24.4% in rice plants exposed to 40°C and 45°C, respectively, compared with the non-inoculated plants. B. linens RS16 also enhanced the expression profiles of glutathione S-transferase. The collective effect of GST expression profiles and decrease in ethylene emission due to bacterial ACC deaminase activity subsequently resulted in a decrease in ROS concentrations. Additionally, HSP16 and HSP26 increased expression in heat-stressed plants inoculated with B. linens RS16 resulted in enhanced stress tolerance (i.e., lesser proline accumulation) than non-inoculated plants. Hence, this study demonstrates the bacteria-mediated tolerance against heat stress by regulating the ethylene emission pathway and upregulating antioxidant enzymes and heat shock proteins.
Collapse
Affiliation(s)
- Jeongyun Choi
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea
| | - Aritra Roy Choudhury
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Denver I Walitang
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea
- College of Agriculture, Fisheries, and Forestry, Romblon State University, Romblon, Philippines
| | - Yi Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea
- The Korean Academy of Science and Technology, Seongnam, Republic of Korea
| |
Collapse
|
17
|
Enhancement of the Aroma Compound 2-Acetyl-1-pyrroline in Thai Jasmine Rice ( Oryza sativa) by Rhizobacteria under Salt Stress. BIOLOGY 2021; 10:biology10101065. [PMID: 34681166 PMCID: PMC8533629 DOI: 10.3390/biology10101065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
Simple Summary The major aroma compound (2-acetyl-1-pyrroline) of the world-famous Thai jasmine rice, variety KDML105, has declined due to high soil salinity and agrochemical input. In this work, the rhizobacteria from rice were investigated for the aroma compound’s production, as well as their potential for increasing the compound content in Thai jasmine rice seedlings under saline conditions. Our results provide evidence that the addition of aroma compound-producing rhizobacteria increases the aroma content in the rice seedlings under salt stress. Sinomonas sp. strain ORF15-23 which colonize the rice roots, is a promising rhizobacteria in promoting the aroma level of the Thai jasmine rice grown under salt stress and could be developed as a bioinoculant for Thai jasmine rice cultivation in a salt-affected area. Abstract Thai jasmine rice (Oryza sativa L. KDML105), particularly from inland salt-affected areas in Thailand, is both domestically and globally valued for its unique aroma and high grain quality. The key aroma compound, 2-acetyl-1-pyrroline (2AP), has undergone a gradual degradation due to anthropogenic soil salinization driven by excessive chemical input and climate change. Here, we propose a cheaper and an ecofriendly solution to improve the 2AP levels, based on the application of plant growth-promoting rhizobacteria (PGPR). In the present study, nine PGPR isolates from rice rhizosphere were investigated for the 2AP production in liquid culture and the promotion potential for 2AP content in KDML105 rice seedlings under four NaCl concentrations (0, 50, 100, and 150 mM NaCl). The inoculation of 2AP-producing rhizobacteria resulted in an increase in 2AP content in rice seedling leaves with the maximum enhancement from Sinomonas sp. ORF15-23 at 50 mM NaCl (19.6 µg·kg−1), corresponding to a 90.2% increase as compared to the control. Scanning electron microscopy confirmed the colonization of Sinomonas sp. ORF15-23 in the roots of salinity-stressed KDML105 seedlings. Our results provide evidence that Sinomonas sp. ORF15-23 could be a promising PGPR isolate in promoting aroma level of Thai jasmine rice KDML105 under salt stress.
Collapse
|
18
|
Brevibacterium limosum sp. nov., Brevibacterium pigmenatum sp. nov., and Brevibacterium atlanticum sp. nov., three novel dye decolorizing actinobacteria isolated from ocean sediments. J Microbiol 2021; 59:898-910. [PMID: 34491521 DOI: 10.1007/s12275-021-1235-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
During a study of the marine actinobacterial biodiversity, a large number of Brevibacterium strains were isolated. Of these, five that have relatively low 16S rRNA gene similarity (98.5-99.3%) with validly published Brevibacterium species, were chosen to determine taxonomic positions. On the basis of 16S rRNA gene sequence analysis and BOX-PCR fingerprinting, strains o2T, YB235T, and WO024T were selected as representative strains. Genomic analyses, including average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH), clearly differentiated the three strains from each other and from their closest relatives, with values ranging from 82.8% to 91.5% for ANI and from 26.7% to 46.5% for dDDH that below the threshold for species delineation. Strains YB235T, WO024T, and o2T all exhibited strong and efficient decolorization activity in congo red (CR) dyes, moderate decolorization activity in toluidine blue (TB) dyes and poor decolorization in reactive blue (RB) dyes. Genes coding for peroxidases and laccases were identified and accounted for these strains' ability to effectively oxidize a variety of dyes with different chemical structures. Mining of the whole genome for secondary metabolite biosynthesis gene clusters revealed the presence of gene clusters encoding for bacteriocin, ectoine, NRPS, siderophore, T3PKS, terpene, and thiopeptide. Based on the phylogenetic, genotypic and phenotypic data, strains o2T, YB235T and WO024T clearly represent three novel taxa within the genus Brevibacterium, for which the names Brevibacterium limosum sp. nov. (type strain o2T = JCM 33844T = MCCC 1A09961T), Brevibacterium pigmenatum sp. nov. (type strain YB235T = JCM 33843T = MCCC 1A09842T) and Brevibacterium atlanticum sp. nov. (type strain WO024T = JCM 33846T = MCCC 1A16743T) are proposed.
Collapse
|
19
|
Singh M, Tiwari N. Microbial amelioration of salinity stress in HD 2967 wheat cultivar by up-regulating antioxidant defense. Commun Integr Biol 2021; 14:136-150. [PMID: 34239684 PMCID: PMC8237971 DOI: 10.1080/19420889.2021.1937839] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/05/2022] Open
Abstract
An experiment was conducted to investigate the potential of Piriformospora indica and plant growth-promoting bacteria (PGPB) to ameliorate salinity stress in HD 2967 wheat cultivar. Plants were treated with four different levels of salinity viz. 0, 50, 100 and 200 mM NaCl (electrical conductivity value 0.01, 5.84, 11.50 and 21.4 mS cm-1, respectively) under greenhouse conditions, using a completely randomized design experiment. Plants inoculated with PGPB and P. indica showed decrease in lipid peroxidation, relative membrane permeability and lipoxygenase enzyme (LOX) activity as compared to uninoculated plants. The result of this study showed that PGPB and P. indica inoculated HD 2967 wheat plants accumulated higher content of proline, α-tocopherol and carotenoid as compared to uninoculated plants. The HD 2967 wheat plants either inoculated with PGPB or P. indica showed significantly higher activities of antioxidant enzymes viz. superoxide dismutase, catalase and ascorbate peroxidase than that of the uninoculated plants. Moreover, PGPB inoculated plants showed greater activity of antioxidant enzymes than the plants inoculated with P. indica. Salinity stress tolerance was more pronounced in the PGPB inoculated than P. indica inoculated plants. This study revealed the potentiality of PGPB and P. indica as bio-ameliorator under salinity stress, and suggests that this plant microbial association could be a promising biotechnological tool to combat the deleterious effects of salinity stress.
Collapse
Affiliation(s)
- Madhulika Singh
- Department of Botany, SSN College, University of Delhi, Delhi, India
| | - Neha Tiwari
- Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
20
|
Changes in Photo-Protective Energy Dissipation of Photosystem II in Response to Beneficial Bacteria Consortium in Durum Wheat under Drought and Salinity Stresses. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The present research aimed at evaluating the harmless dissipation of excess excitation energy by durum wheat (Triticum durum Desf.) leaves in response to the application of a bacterial consortium consisting of four plant growth-promoting bacteria (PGPB). Three pot experiments were carried out under non-stress, drought (at 40% field capacity), and salinity (150 mM NaCl) conditions. The results showed that drought and salinity affected photo-protective energy dissipation of photosystem II (PSII) increasing the rate of non-photochemical chlorophyll fluorescence quenching (NPQ (non-photochemical quenching) and qCN (complete non-photochemical quenching)), as well as decreasing the total quenching of chlorophyll fluorescence (qTQ), total quenching of variable chlorophyll fluorescence (qTV) and the ratio of the quantum yield of actual PSII photochemistry, in light-adapted state to the quantum yield of the constitutive non-regulatory NPQ (PQ rate). Our results also indicated that the PGPB inoculants can mitigate the adverse impacts of stresses on leaves, especially the saline one, in comparison with the non-fertilized (control) treatment, by increasing the fraction of light absorbed by the PSII antenna, PQ ratio, qTQ, and qTV. In the light of findings, our beneficial bacterial strains showed the potential in reducing reliance on traditional chemical fertilizers, in particular in saline soil, by improving the grain yield and regulating the amount of excitation energy.
Collapse
|
21
|
Wang J, Hou W, Christensen MJ, Xia C, Chen T, Zhang Z, Nan Z. The fungal endophyte Epichloë gansuensis increases NaCl-tolerance in Achnatherum inebrians through enhancing the activity of plasma membrane H +-ATPase and glucose-6-phosphate dehydrogenase. SCIENCE CHINA-LIFE SCIENCES 2020; 64:452-465. [PMID: 32430851 DOI: 10.1007/s11427-020-1674-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/08/2020] [Indexed: 12/13/2022]
Abstract
Salt stress negatively affects plant growth, and the fungal endophyte Epichloëgansuensis increases the tolerance of its host grass species, Achnatherum inebrians, to abiotic stresses. In this work, we first evaluated the effects of E. gansuensis on glucose-6-phosphate dehydrogenase (G6PDH) and plasma membrane (PM) H+-ATPase activity of Achnatherum inebrians plants under varying NaCl concentrations. Our results showed that the presence of E. gansuensis increased G6PDH, PM H+-ATPase, superoxide dismutase and catalase activity to decrease O2•-, H2O2 and Na+ contents in A. inebrians under NaCl stress, resulting in enhanced salt tolerance. In addition, the PM NADPH oxidase activity and NADPH/NADP+ ratios were all lower in A. inebrians with E. ganusensis plants than A. inebrians plants without this endophyte under NaCl stress. In conclusion, E. gansuensis has a positive role in improving host grass yield under NaCl stress by enhancing the activity of G6PDH and PM H+-ATPase to decrease ROS content. This provides a new way for the selection of stress-resistant and high-quality forage varieties by the use of systemic fungal endophytes.
Collapse
Affiliation(s)
- Jianfeng Wang
- State Key Laboratory of Grassland Agro-ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation; Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry; Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Wenpeng Hou
- State Key Laboratory of Grassland Agro-ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation; Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry; Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Michael J Christensen
- Retired scientist of AgResearch, Grasslands Research Centre, Private Bag 11-008, Palmerston North, 4442, New Zealand
| | - Chao Xia
- State Key Laboratory of Grassland Agro-ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation; Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry; Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Tao Chen
- State Key Laboratory of Grassland Agro-ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation; Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry; Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Zhixin Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation; Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry; Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
22
|
Chatterjee P, Kanagendran A, Samaddar S, Pazouki L, Sa TM, Niinemets Ü. Influence of Brevibacterium linens RS16 on foliage photosynthetic and volatile emission characteristics upon heat stress in Eucalyptus grandis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134453. [PMID: 31670196 DOI: 10.1016/j.scitotenv.2019.134453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Heat stress induces secondary metabolic changes in plants, channeling photosynthetic carbon and energy, away from primary metabolic processes, including, growth. Use of ACC (1-aminocyclopropane-1-carboxylate) deaminase containing plant growth promoting bacteria (PGPB) in conferring heat resistance in plants and the role of PGPB, in altering net carbon assimilation, constitutive and stress volatile emissions has not been studied yet. We exposed leaves of Eucalyptus grandis inoculated and non-inoculated with PGPB Brevibacterium linens RS16 to two levels of heat stress (37 °C and 41 °C for 5 min) and quantified temporal changes in foliage photosynthetic characteristics and volatile emission rates at 0.5 h, day 1 and day 5 after the stress application. Heat stress resulted in immediate reductions in dark-adapted photosystem II (PSII) quantum yield (Fv/Fm), net assimilation rate (A), stomatal conductance to water vapor (gs), and enhancement of stress volatile emissions, including enhanced emissions of green leaf volatiles (GLV), mono- and sesquiterpenes, light weight oxygenated volatile organic compounds (LOC), geranyl-geranyl diphosphate pathway volatiles (GGDP), saturated aldehydes, and benzenoids, with partial recovery by day 5. Changes in stress-induced volatiles were always less in leaves inoculated with B. linens RS16. However, net assimilation rate was enhanced by bacterial inoculation only in the 37 °C treatment and overall reduction of isoprene emissions was observed in bacterially-treated leaves. Principal component analysis (PCA), correlation analysis and partial least squares discriminant analysis (PLS-DA) indicated that different stress applications influenced specific volatile organic compounds. In addition, changes in the expression analysis of heat shock protein 70 gene (DnaK) gene in B. linens RS16 upon exposure to higher temperatures further indicated that B. linens RS16 has developed its own heat resistance mechanism to survive under higher temperature regimes. Taken together, this study demonstrates that foliar application of ACC deaminase containing PGPB can ameliorate heat stress effects in realistic biological settings.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Environmental and Biological Chemistry, Chungbuk National University Cheongju, Chungbuk 28644, Republic of Korea; Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA
| | - Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia; FARCE Lab, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Sandipan Samaddar
- Department of Environmental and Biological Chemistry, Chungbuk National University Cheongju, Chungbuk 28644, Republic of Korea; Department of Land, Air, and Water Resources, University of California, Davis, California 95616, USA
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia; Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Tong-Min Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University Cheongju, Chungbuk 28644, Republic of Korea.
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia.
| |
Collapse
|
23
|
Zhang J, Wang P, Tian H, Tao Z, Guo T. Transcriptome Analysis of Ice Plant Growth-Promoting Endophytic Bacterium Halomonas sp. Strain MC1 to Identify the Genes Involved in Salt Tolerance. Microorganisms 2020; 8:E88. [PMID: 31936448 PMCID: PMC7022971 DOI: 10.3390/microorganisms8010088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/27/2019] [Accepted: 01/04/2020] [Indexed: 12/27/2022] Open
Abstract
Salt stress is an important adverse condition encountered during plant and microbe growth in terrestrial soil ecosystems. Currently, how ice plant (Mesembryanthemum crystallinum) growth-promoting endophytic bacteria (EB) cope with salt stress and regulate growth and the genes responsible for salt tolerance remain unknown. We applied RNA-Seq technology to determine the growth mechanism of the EB Halomonas sp. MC1 strain and the genes involved in salt tolerance. A total of 893 genes were significantly regulated after salt treatment. These genes included 401 upregulated and 492 downregulated genes. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes analysis revealed that the most enriched genes included those related to the outer membrane-bounded periplasmic space, ATPase activity, catabolic process, and proton transmembrane transport. The quantitative real-time polymerase chain reaction data were similar to those obtained from RNA-Seq. The MC1 strain maintained survival under salt stress by regulating cellular and metabolic processes and pyruvate metabolism pathways such as organic and carboxylic acid catabolic pathways. We highlighted the response mechanism of Halomonas sp. MC1 to fully understand the dynamics of complex salt-microbe interactions.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China (Z.T.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei 230031, Anhui, China
| | - Pengcheng Wang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China (Z.T.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei 230031, Anhui, China
| | - Hongmei Tian
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China (Z.T.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei 230031, Anhui, China
| | - Zhen Tao
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China (Z.T.)
| | - Tingting Guo
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China (Z.T.)
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
24
|
Analysis of the complete genome sequence of Brevibacterium frigoritolerans ZB201705 isolated from drought- and salt-stressed rhizosphere soil of maize. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01532-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Purpose
To analyze the complete genome sequence of the Brevibacterium frigoritolerans ZB201705, a Brevibacterium strain was isolated from the maize rhizosphere in drought- and salt-stressed soil, and the activity of the strain under simulated drought and high salt conditions was assessed.
Methods
We used a combination of the PacBio RS and Illumina sequencing platforms to obtain the complete genome sequence of B. frigoritolerans ZB201705.
Results
The genome consists of 5,475,560 bp in a linear chromosome with no gaps, 4,391 protein-coding sequences, 39 ribosomal RNAs, and 81 transfer RNAs. The genome analysis revealed many putative gene clusters involved in defense mechanisms. In addition, an activity analysis of the strain under high-salt and simulated drought conditions helped clarify its potential tolerance to these abiotic stresses.
Conclusions
Our data revealed the complete genome sequence of the new isolated strain, and showed that it produces many proteins involved in drought and salt stress responses, suggesting that B. frigoritolerans ZB201705 may be a potential factor to increase crop yield under abiotic stresses. The information provided here on the genome of B. frigoritolerans ZB201705 provides valuable insight into rhizobacteria-mediated plant salt and drought tolerance and rhizobacteria-based solutions for agriculture under abiotic stress.
Collapse
|
25
|
Kanagendran A, Chatterjee P, Liu B, Sa T, Pazouki L, Niinemets Ü. Foliage inoculation by Burkholderia vietnamiensis CBMB40 antagonizes methyl jasmonate-mediated stress in Eucalyptus grandis. JOURNAL OF PLANT PHYSIOLOGY 2019; 242:153032. [PMID: 31491672 PMCID: PMC6863749 DOI: 10.1016/j.jplph.2019.153032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 05/21/2023]
Abstract
Methyl jasmonate (MeJA) is widely used as a model chemical to study hypersensitive responses to biotic stress impacts in plants. Elevated levels of methyl jasmonate induce jasmonate-dependent defense responses, associated with a decline in primary metabolism and enhancement of secondary metabolism of plants. However, there is no information of how stress resistance of plants, and accordingly the sensitivity to exogenous MeJA can be decreased by endophytic plant growth promoting rhizobacteria (PGPR) harboring ACC (1-aminocyclopropane-1-carboxylate) deaminase. In this study, we estimated stress alleviating potential of endophytic PGPR against MeJA-induced plant perturbations through assessing photosynthetic traits and stress volatile emissions. We used mild (5 mM) to severe (20 mM) MeJA and endophytic plant growth promoting rhizobacteria Burkholderia vietnamiensis CBMB40 and studied how MeJA and B. vietnamiensis treatments influenced temporal changes in photosynthetic characteristics and stress volatile emissions. Separate application of MeJA markedly decreased photosynthetic characteristics and increased lipoxygenase pathway (LOX) volatiles, volatile isoprenoids, saturated aldehydes, lightweight oxygenated compounds (LOC), geranyl-geranyl diphosphate pathway (GGDP) volatiles, and benzenoids. However, MeJA-treated leaves inoculated by endophytic bacteria B. vietnamiensis had substantially increased photosynthetic characteristics and decreased emissions of LOX, volatile isoprenoids and other stress volatiles compared with non-inoculated MeJA treatments, especially at later stages of recovery. In addition, analysis of leaf terpenoid contents demonstrated that several mono- and sesquiterpenes were de novo synthesized upon MeJA and B. vietnamiensis applications. This study demonstrates that foliar application of endophytic bacteria B. vietnamiensis can potentially enhance resistance to biotic stresses and contribute to the maintenance of the integrity of plant metabolic activity.
Collapse
Affiliation(s)
- Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia; Faculty of Science, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Poulami Chatterjee
- Department of Environmental and Biological Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea; Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Bin Liu
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia; Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, Tallinn 10130, Estonia
| |
Collapse
|
26
|
Physiological response of tomato plant to chitosan-immobilized aggregated Methylobacterium oryzae CBMB20 inoculation under salinity stress. 3 Biotech 2019; 9:397. [PMID: 31656735 DOI: 10.1007/s13205-019-1923-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022] Open
Abstract
The use of plant growth promoting bacteria as bioinoculant to alleviate salt stress is a sustainable and eco-friendly approach in agriculture. However, the maintenance of the bacterial population in the soil for longer period is a major concern. In the present study, chitosan-immobilized aggregated Methylobacterium oryzae CBMB20 was used as a bioinoculant to improve tomato plant (Solanum lycopersicum Mill.) growth under salt stress. The chitosan-immobilized aggregated M. oryzae CBMB20 was able to enhance plant dry weight, nutrient uptake (N, P, K and Mg2+), photosynthetic efficiency and decrease electrolyte leakage under salt stress conditions. The oxidative stress exerted by elevated levels of salt stress was also alleviated by the formulated bioinoculant, as it up-regulated the antioxidant enzyme activities and enhanced the accumulation of proline which acts as an osmolyte. The chitosan-immobilized aggregated M. oryzae CBMB20 was able to decrease the excess Na+ influx into the plant cells and subsequently decreasing the Na+/K+ ratio to improve tomato plant growth under salt stress conditions. Therefore, it is proposed that the chitosan-immobilized aggregated M. oryzae CBMB20 could be used as a bioinoculant to promote the plant growth under salt stress conditions.
Collapse
|
27
|
Chatterjee P, Kanagendran A, Samaddar S, Pazouki L, Sa TM, Niinemets Ü. Methylobacterium oryzae CBMB20 influences photosynthetic traits, volatile emission and ethylene metabolism in Oryza sativa genotypes grown in salt stress conditions. PLANTA 2019; 249:1903-1919. [PMID: 30877435 PMCID: PMC6875431 DOI: 10.1007/s00425-019-03139-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/12/2019] [Indexed: 05/05/2023]
Abstract
MAIN CONCLUSION Inoculation of endophytic Methylobacterium oryzae CBMB20 in salt-stressed rice plants improves photosynthesis and reduces stress volatile emissions due to mellowing of ethylene-dependent responses and activating vacuolar H+-ATPase. The objective of this study was to analyze the impact of ACC (1-aminocyclopropane-1-carboxylate) deaminase-producing Methylobacterium oryzae CBMB20 in acclimation of plant to salt stress by controlling photosynthetic characteristics and volatile emission in salt-sensitive (IR29) and moderately salt-resistant (FL478) rice (Oryza sativa L.) cultivars. Saline levels of 50 mM and 100 mM NaCl with and without bacteria inoculation were applied, and the temporal changes in stress response and salinity resistance were assessed by monitoring photosynthetic characteristics, ACC accumulation, ACC oxidase activity (ACO), vacuolar H+ ATPase activity, and volatile organic compound (VOC) emissions. Salt stress considerably reduced photosynthetic rate, stomatal conductance, PSII efficiency and vacuolar H+ ATPase activity, but it increased ACC accumulation, ACO activity, green leaf volatiles, mono- and sesquiterpenes, and other stress volatiles. These responses were enhanced with increasing salt stress and time. However, rice cultivars treated with CBMB20 showed improved plant vacuolar H+ ATPase activity, photosynthetic characteristics and decreased ACC accumulation, ACO activity and VOC emission. The bacteria-dependent changes were greater in the IR29 cultivar. These results indicate that decreasing photosynthesis and vacuolar H+ ATPase activity rates and increasing VOC emission rates in response to high-salinity stress were effectively mitigated by M. oryzae CBMB20 inoculation.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Sandipan Samaddar
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
- Department of Biology, University of Louisville, Louisville, KY, 40292, USA
| | - Tong-Min Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia.
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia.
| |
Collapse
|
28
|
Ganie SA, Molla KA, Henry RJ, Bhat KV, Mondal TK. Advances in understanding salt tolerance in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:851-870. [PMID: 30759266 DOI: 10.1007/s00122-019-03301-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/02/2019] [Indexed: 05/03/2023]
Abstract
This review presents a comprehensive overview of the recent research on rice salt tolerance in the areas of genomics, proteomics, metabolomics and chemical genomics. Salinity is one of the major constraints in rice cultivation globally. Traditionally, rice is a glycophyte except for a few genotypes that have been widely used in salinity tolerance breeding of rice. Both seedling and reproductive stages of rice are considered to be the salt-susceptible stages; however, research efforts have been biased towards improving the understanding of seedling-stage salt tolerance. An extensive literature survey indicated that there have been very few attempts to develop reproductive stage-specific salt tolerance in rice probably due to the lack of salt-tolerant phenotypes at the reproductive stage. Recently, the role of DNA methylation, genome duplication and codon usage bias in salinity tolerance of rice have been studied. Furthermore, the study of exogenous salt stress alleviants in rice has opened up another potential avenue for understanding and improving its salt tolerance. There is a need to not only generate additional genomic resources in the form of salt-responsive QTLs and molecular markers and to characterize the genes and their upstream regulatory regions, but also to use them to gain deep insights into the mechanisms useful for developing tolerant varieties. We analysed the genomic locations of diverse salt-responsive genomic resources and found that rice chromosomes 1-6 possess the majority of these salinity-responsive genomic resources. The review presents a comprehensive overview of the recent research on rice salt tolerance in the areas of genomics, proteomics, metabolomics and chemical genomics, which should help in understanding the molecular basis of salinity tolerance and its more effective improvement in rice.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Kutubuddin Ali Molla
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - K V Bhat
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India.
- ICAR-National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, 110012, India.
| |
Collapse
|
29
|
Ek-Ramos MJ, Gomez-Flores R, Orozco-Flores AA, Rodríguez-Padilla C, González-Ochoa G, Tamez-Guerra P. Bioactive Products From Plant-Endophytic Gram-Positive Bacteria. Front Microbiol 2019; 10:463. [PMID: 30984118 PMCID: PMC6449470 DOI: 10.3389/fmicb.2019.00463] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/21/2019] [Indexed: 11/13/2022] Open
Abstract
Endophytes constitute plant-colonizing microorganisms in a mutualistic symbiosis relationship. They are found in most ecosystems reducing plant crops' biotic and abiotic stressors by stimulating immune responses, excluding plant pathogens by niche competition, and participating in antioxidant activities and phenylpropanoid metabolism, whose activation produces plant defense, structural support, and survival molecules. In fact, metabolomic studies have demonstrated that endophyte genes associated to specific metabolites are involved in plant growth promotion (PGP) by stimulating plant hormones production such as auxins and gibberellins or as plant protective agents against microbial pathogens, cancer, and insect pests, but eco-friendly and eco-safe. A number of metabolites of Gram-positive endophytes isolated from agriculture, forest, mangrove, and medicinal plants, mainly related to the Firmicutes phyla, possess distinctive biocontrol and plant growth-promoting activities. In general, Actinobacteria and Bacillus endophytes produce aromatic compounds, lipopeptides, plant hormones, polysaccharides, and several enzymes linked to phenylpropanoid metabolism, thus representing high potential for PGP and crop management strategies. Furthermore, Actinobacteria have been shown to produce metabolites with antimicrobial and antitumor activities, useful in agriculture, medicine, and veterinary areas. The great endophytes diversity, their metabolites production, and their adaptation to stress conditions make them a suitable and unlimited source of novel metabolites, whose application could reduce agrochemicals usage in food and drugs production.
Collapse
Affiliation(s)
- María J. Ek-Ramos
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Ricardo Gomez-Flores
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Alonso A. Orozco-Flores
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Cristina Rodríguez-Padilla
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Guadalupe González-Ochoa
- Departamento de Ciencias Químico Biológicas, División de Ciencias e Ingeniería, Universidad de Sonora, Navojoa, Mexico
| | - Patricia Tamez-Guerra
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| |
Collapse
|
30
|
Chatterjee P, Kanagendran A, Samaddar S, Pazouki L, Sa TM, Niinemets Ü. Inoculation of Brevibacterium linens RS16 in Oryza sativa genotypes enhanced salinity resistance: Impacts on photosynthetic traits and foliar volatile emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:721-732. [PMID: 30031330 PMCID: PMC6354898 DOI: 10.1016/j.scitotenv.2018.07.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/14/2018] [Accepted: 07/14/2018] [Indexed: 05/05/2023]
Abstract
The emission of volatiles in response to salt stress in rice cultivars has not been studied much to date. Studies addressing the regulation of stress induced volatile emission by halotolerant plant growth promoting bacteria containing ACC (1-aminocyclopropane-1-carboxylate) deaminase are also limited. The objective of the present study was to investigate the salt alleviation potential of bacteria by regulating photosynthetic characteristics and volatile emissions in rice cultivars, and to compare the effects of the bacteria inoculation and salt responses between two rice genotypes. The interactive effects of soil salinity (0, 50, and 100 mM NaCl) and inoculation with Brevibacterium linens RS16 on ACC accumulation, ACC oxidase activity, carbon assimilation and stress volatile emissions after stress application were studied in the moderately salt resistant (FL478) and the salt-sensitive (IR29) rice (Oryza sativa L.) cultivars. It was observed that salt stress reduced foliage photosynthetic rate, but induced foliage ACC accumulation, foliage ACC oxidase activity, and the emissions of all the major classes of volatile organic compounds (VOCs) including the lipoxygenase pathway volatiles, light-weight oxygenated volatiles, long-chained saturated aldehydes, benzenoids, geranylgeranyl diphosphate pathway products, and mono- and sesquiterpenes. All these characteristics scaled up quantitatively with increasing salt stress. The effects of salt stress were more pronounced in the salt-sensitive genotype IR29 compared to the moderately salt resistant FL478 genotype. However, the bacterial inoculation significantly enhanced photosynthesis, and decreased ACC accumulation and the ACC oxidase activity, and VOC emissions both in control and salt-treated plants. Taken together, these results suggested that the ACC deaminase-containing Brevibacterium linens RS16 reduces the temporal regulation of VOC emissions and increases the plant physiological activity by reducing the availability of ethylene precursor ACC and the ACC oxidase activity under salt stress.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Sandipan Samaddar
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia; Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Tong-Min Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia.
| |
Collapse
|