1
|
Wang Y, Jin M, Yang C, Cai F, Osei R, Ma T, Zhang C, Qi N. Isolation and identification of the causal agent of gummy stem blight disease in Cucumis sativus caused by a bacterial pathogen in China. Sci Rep 2025; 15:836. [PMID: 39755912 PMCID: PMC11700181 DOI: 10.1038/s41598-024-84764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025] Open
Abstract
Recently, a new bacterial disease was detected on cucumber stalks. In order to study the pathogenesis of this disease, the pathogenic bacteria were isolated and identified on the basis of morphological and molecular characteristics, and further analyzed for pathogenicity and antagonistic evaluation. Pathogenicity analysis showed that HlJ-3 caused melting decay and cracking in cucumber stems, and the strain reisolated from re-infected cucumber stalks was morphologically identical to HlJ-3 colonies, which is consistent with the Koch's postulates. The pathogenic strain HlJ-3 was identified as having similar morphological characteristics to Bacillus subtilis. Meanwhile, its internal transcribed spacer sequence (ITS) and DNA gyrase A subunit (gyrA) were both more than 99% homologous and clustered on the same branch with B. subtilis. Therefore, combined with morphological and molecular biological features, strain HlJ-3 was identified as B. subtilis. In addition, B. subtilis, which has a wide range of hosts, was able to infest other common crop species, including potato, tomato, pepper, melon, and radish. Furthermore, antagonistic evaluation confirmed that strain HlJ-3 strongly inhibited the mycelial growth of Colletotrichum coccodes and Alternaria tenuissima in vitro, with antagonistic effects of 69.92% and 68.08%, respectively. In conclusion, our results showed that strain HlJ-3 is B. subtilis, which is pathogenic to cucumber in vivo and can infect plants of Solanaceae, Cucurbitaceae and Brassicaceae with a wide range of hosts. In addition, this strain has good biocontrol effects against C. coccodes and A. tenuissima in vitro. The findings of this research will help to prevent and control the occurrence of this pathogen and regulate its use as a biocontrol agent.
Collapse
Affiliation(s)
- Yidan Wang
- College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China
| | - Mengjun Jin
- College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chengde Yang
- College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Fengfeng Cai
- College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China
| | - Richard Osei
- College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ting Ma
- College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China
| | - Cuiwen Zhang
- College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China
| | - Na Qi
- College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
2
|
Laevens GCS, Dolson WC, Drapeau MM, Telhig S, Ruffell SE, Rose DM, Glick BR, Stegelmeier AA. The Good, the Bad, and the Fungus: Insights into the Relationship Between Plants, Fungi, and Oomycetes in Hydroponics. BIOLOGY 2024; 13:1014. [PMID: 39765681 PMCID: PMC11673877 DOI: 10.3390/biology13121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025]
Abstract
Hydroponic systems are examples of controlled environment agriculture (CEA) and present a promising alternative to traditional farming methods by increasing productivity, profitability, and sustainability. In hydroponic systems, crops are grown in the absence of soil and thus lack the native soil microbial community. This review focuses on fungi and oomycetes, both beneficial and pathogenic, that can colonize crops and persist in hydroponic systems. The symptomatology and mechanisms of pathogenesis for Botrytis, Colletotrichum, Fulvia, Fusarium, Phytophthora, Pythium, and Sclerotinia are explored for phytopathogenic fungi that target floral organs, leaves, roots, and vasculature of economically important hydroponic crops. Additionally, this review thoroughly explores the use of plant growth-promoting fungi (PGPF) to combat phytopathogens and increase hydroponic crop productivity; details of PGP strategies and mechanisms are discussed. The benefits of Aspergillus, Penicillium, Taloromyces, and Trichoderma to hydroponics systems are explored in detail. The culmination of these areas of research serves to improve the current understanding of the role of beneficial and pathogenic fungi, specifically in the hydroponic microbiome.
Collapse
Affiliation(s)
- Grace C. S. Laevens
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | - William C. Dolson
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | - Michelle M. Drapeau
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | - Soufiane Telhig
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada; (S.T.)
| | - Sarah E. Ruffell
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | - Danielle M. Rose
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada; (S.T.)
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | | |
Collapse
|
3
|
de Oliveira JA, Custódio FA, Pereira OL. Cultivable root endophytic fungi associated with Acrocomia aculeata and its antagonistic activity against phytopathogenic oomycetes. Braz J Microbiol 2024; 55:4077-4090. [PMID: 39190259 PMCID: PMC11711853 DOI: 10.1007/s42770-024-01482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/03/2024] [Indexed: 08/28/2024] Open
Abstract
Macaw palm (Acrocomia aculeata Jacq.) is a palm, native to Brazilian territory that stands out due to the amount of oil produced with applications in the biodiesel industry, cosmetics, and food. Its commercial exploitation in Brazil, including phytosanitary management is based on concepts and practices of regenerative agriculture, which has the responsibility of sustainable cultivation by avoiding, for example, the use of chemical pesticides. Recently, root and stem rot disease were reported in macaw palm seedlings caused by Phytophthora palmivora. Managing this plant pathogen is complex, and the chemical control of this soil-borne oomycete is not viable, in addition to the negative impact on the environment. Many microorganisms are studied and used as biological control agents (BCAs) against pathogens, among them the community of endophytic fungi associated with plants. This is a sustainable biotechnological alternative for plant disease control. The community of cultivable endophytic fungi associated with healthy roots of macaw palm was explored using the extinction cultivation technique and a screening was carried out to select potential antagonists against oomycetes through the dual culture test. Specific gene regions from the best isolates were amplified for identification. A total of 250 isolates were obtained, and 46 were selected for in vitro tests against representatives of phytopathogenic oomycetes. After tests against Phytophthora heterospora, Phytophthora palmivora, Pythium aphanidermatum, and Pythium deliense, two isolates were selected as potential antagonists. The phylogenetic analysis of selected isolates showed that they belong to two different species: Talaromyces sayulitensis COAD 3605 and Epicoccum italicum COAD 3608. The percentage of inhibition of phytopathogenic oomycetes testedwas until 82% in the antagonism tests conducted. From the 46 isolates selected, only 2 were selected which showed great antagonistic activity towards all oomycetes tested. These fungi will be used in upcoming studies that aim to determine the effectiveness of endophytes in controlling diseases caused by oomycetes in the field.
Collapse
Affiliation(s)
| | - Fábio Alex Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Olinto Liparini Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Li J, Hou R, Zhang F. A new Schizophyllum commune strain as a potential biocontrol agent against blueberry root rot. Arch Microbiol 2024; 206:235. [PMID: 38722413 DOI: 10.1007/s00203-024-03959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 05/20/2024]
Abstract
In recent years, blueberry root rot has been caused mainly by Fusarium commune, and there is an urgent need for a green and efficient method to control this disease. To date, research on Schizophyllum commune has focused on antioxidant mechanisms, reactive dye degradation, etc., but the mechanism underlying the inhibition of pathogenic microorganisms is still unclear. Here, the control effects of S. commune on F. commune and blueberry root rot were studied using adversarial culture, tissue culture, and greenhouse pot experiments. The results showed that S. commune can dissolve insoluble phosphorus and secrete various extracellular hydrolases. The results of hyphal confrontation and fermentation broth antagonism experiments showed that S. commune had a significant inhibitory effect on F. commune, with inhibition rates of 70.30% and 22.86%, respectively. Microscopy results showed distortion of F. commune hyphae, indicating that S. commune is strongly parasitic. S. commune had a significant growth-promoting effect on blueberry tissue-cultured seedlings. After inoculation with S. commune, inoculation with the pathogenic fungus, or inoculation at a later time, the strain significantly reduced the root rot disease index in the potted blueberry seedlings, with relative control effects of 79.14% and 62.57%, respectively. In addition, S. commune G18 significantly increased the antioxidant enzyme contents in the aboveground and underground parts of potted blueberry seedlings. We can conclude that S. commune is a potential biocontrol agent that can be used to effectively control blueberry root rot caused by F. commune in the field.
Collapse
Affiliation(s)
- Jinziyue Li
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Rui Hou
- College of Forestry, Guizhou University, Guiyang, 550025, China.
| | - Fumei Zhang
- College of Forestry, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
5
|
Bhat MP, Rudrappa M, Hugar A, Gunagambhire PV, Suresh Kumar R, Nayaka S, Almansour AI, Perumal K. In-vitro investigation on the biological activities of squalene derived from the soil fungus Talaromyces pinophilus. Heliyon 2023; 9:e21461. [PMID: 38027970 PMCID: PMC10654146 DOI: 10.1016/j.heliyon.2023.e21461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/25/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
The consistent increase in multidrug resistance among pathogens and increased cancer incidence are serious public health concerns and threaten humans by killing countless lives. In the present study, Talaromyces pinophilus CJ15 was characterized and evaluated for its antibacterial, candidicidal and cytotoxic activities. The selected isolate Talaromyces pinophilus CJ15 with 18S rRNA gene sequence of 1021 base pairs exhibited antifungal activity on plant pathogens via dual culture. The GC-MS profiling of crude extract illustrated the existence of many bioactive macromolecules which include squalene belonging to the terpenoids family. The biological macromolecules in the bioactive fraction of CJ15 exhibited increasing antibacterial activity with an increase in concentration such that the highest activity was recorded against Shigella flexneri with 15, 18, 20, and 24 mm inhibition zones at 25, 50, 75 and 100 μl concentrations, respectively. The squalene, having a molecular weight of 410.718 g/mol, displayed candidicidal activity with a right-side shifted log phase in the growth curve of all the treated Candida species, indicating delayed exponential growth. In cytotoxic activity, the extracted squalene exhibited an IC50 concentration of 26.22 μg/ml against JURKAT cells and induced apoptosis-induced cell death. This study's outcomes encourage the researchers to explore further the development of new and improved bioactive macromolecules that could help to prevent infections and human blood cancer.
Collapse
Affiliation(s)
| | - Muthuraj Rudrappa
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580001, Karnataka, India
| | - Anil Hugar
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580001, Karnataka, India
| | | | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580001, Karnataka, India
| | - Abdulrahman I. Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH, 43210, USA
| |
Collapse
|
6
|
Fan R, Liu Y, Bin Y, Huang J, Yi B, Tang X, Li Y, Cai Y, Yang Z, Yang M, Song J, Pan Q, Liu Z, Ghani MI, Hu X, Chen X. Identification of Colletotrichum aenigma as the new causal agent of leaf blight disease on Aucuba japonica Thunb., and screenings of effective fungicides for its sustainable management. Front Microbiol 2023; 14:1222844. [PMID: 37692385 PMCID: PMC10483284 DOI: 10.3389/fmicb.2023.1222844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Aucuba japonica Thunb is an evergreen woody ornamental plant with significant economic and ecological values. It also produces aucubin, showing a variety of biological activities. It is widely planted in the southwest region of China, including karst landscape areas in Guizhou Province. In January 2022, a serious leaf blight disease was observed on the leaves of A. japonica in the outdoor gardens of Guizhou University, Guiyang, Guizhou, China. The causal agent was identified as Colletotrichum aenigma through amplification and sequencing of the internal transcribed spacer (ITS) region, translation of the chitin synthase (CHS) and actin (ACT) genes, and morphological characterizations. Koch's postulates were confirmed by its pathogenicity on healthy leaves, including re-isolation and identification. To our knowledge, this is the first report of C. aenigma causing leaf blight on A. japonica worldwide. To identify pathogen characteristics that could be utilized for future disease management, the effects of temperature and light on mycelial growth, conidia production, and conidial germination, and the effects of humidity on conidial germination were studied. Optimal temperatures for mycelial growth of C. aenigma BY827 were 25-30°C, while 15°C and 35°C were favorable for conidia production. Concurrently, alternating 10-h light and 14-h dark, proved to be beneficial for mycelial growth and conidial germination. Additionally, conidial germination was enhanced at 90% humidity. In vitro screenings of ten chemical pesticides to assess their efficacy in suppressing C. aenigma representative strain BY827. Among them, difenoconazole showed the best inhibition rate, with an EC50 (concentration for 50% of maximal effect) value of 0.0148 μg/ml. Subsequently, field experiment results showed that difenoconazole had the highest control efficiency on A. japonica leaf blight (the decreasing rate of disease incidence and decreasing rate of disease index were 44.60 and 47.75%, respectively). Interestingly, we discovered that C. aenigma BY827 may develop resistance to mancozeb, which is not reported yet among Colletotrichum spp. strains. In conclusion, our study provided new insights into the causal agent of A. japonica leaf blight, and the effective fungicides evaluated provided an important basis and potential resource for the sustainable control of A. japonica leaf blight caused by C. aenigma in the field.
Collapse
Affiliation(s)
- Ruidong Fan
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Yanjiang Liu
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
- School of Ecology and Environment, Tibet University, Lhasa, China
| | - Yalan Bin
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Jingyi Huang
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Benlin Yi
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Xiaoli Tang
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Yingxue Li
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Yu Cai
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Ziyan Yang
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Mingxuan Yang
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Jiahao Song
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Qi Pan
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Zengliang Liu
- Microbiology Research Institute, Guangxi Agricultural Science Academy, Nanning, China
| | - Muhammad Imran Ghani
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Xiaojing Hu
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Xiaoyulong Chen
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
- School of Ecology and Environment, Tibet University, Lhasa, China
| |
Collapse
|
7
|
Nicoletti R, Bellavita R, Falanga A. The Outstanding Chemodiversity of Marine-Derived Talaromyces. Biomolecules 2023; 13:1021. [PMID: 37509057 PMCID: PMC10377321 DOI: 10.3390/biom13071021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Fungi in the genus Talaromyces occur in every environment in both terrestrial and marine contexts, where they have been quite frequently found in association with plants and animals. The relationships of symbiotic fungi with their hosts are often mediated by bioactive secondary metabolites, and Talaromyces species represent a prolific source of these compounds. This review highlights the biosynthetic potential of marine-derived Talaromyces strains, using accounts from the literature published since 2016. Over 500 secondary metabolites were extracted from axenic cultures of these isolates and about 45% of them were identified as new products, representing a various assortment of chemical classes such as alkaloids, meroterpenoids, isocoumarins, anthraquinones, xanthones, phenalenones, benzofurans, azaphilones, and other polyketides. This impressive chemodiversity and the broad range of biological properties that have been disclosed in preliminary assays qualify these fungi as a valuable source of products to be exploited for manifold biotechnological applications.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Rosa Bellavita
- Department of Pharmacy, University of Naples Federico II, 80100 Napoli, Italy
| | - Annarita Falanga
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
8
|
Segaran G, Sathiavelu M. Fungicidal and plant growth-promoting traits of Lasiodiplodia pseudotheobromae, an endophyte from Andrographis paniculata. FRONTIERS IN PLANT SCIENCE 2023; 14:1125630. [PMID: 37426966 PMCID: PMC10329105 DOI: 10.3389/fpls.2023.1125630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Introdution Fungal endophytes are widespread and dwell inside plant cells for at least part of their life without producing any symptoms of infection. Distinct host plants may have different fungal endophyte rates and community compositions. Despite this, the endophytic fungi connected with the host plant and their hostile behaviors, remain unknown. Methods The objective of the current research was to isolate and identify endophytic fungal species from the root of Andrographis paniculata. The effects of fungal isolate APR5 on the mycelial growth of phytopathogens and the production of plant-promoting traits were assessed. Results and discussion Endophytic fungal isolate APR5 showed higher inhibitory efficacy in dual and double plate assay against the tested phytopathogenic fungi. The scanning electron microscope analysis demonstrated that the phytopathogenic fungal hyphae were coiled by endophytes which makes them shrink and disintegrate. Further, an ethyl acetate crude extract effectively suppressed the mycelium growth of Rhizoctonia solani by 75 ± 0.1% in an agar well diffusion assay. The fungal isolate APR5 was identified as Lasiodiplodia pseudotheobromae using the nuclear ribosomal DNA internal transcribed spacer (ITS) region and qualitatively evaluated for their capacity to produce plant growth-promoting hormones. Gas chromatography-mass spectrometry was implemented to acquire a preliminary understanding of the secondary metabolic profile of ethyl acetate crude extract. 1-octadecene, erythritol, niacin, oleic acid, phenol, pantolactone, phenyl ethyl alcohol, p-cresol, and tbutyl hydroquinone are the metabolites analyzed in a crude extract of APR5 isolate and are reported to have antimicrobial properties.
Collapse
|
9
|
Devi R, Verma R, Dhalaria R, Kumar A, Kumar D, Puri S, Thakur M, Chauhan S, Chauhan PP, Nepovimova E, Kuca K. A systematic review on endophytic fungi and its role in the commercial applications. PLANTA 2023; 257:70. [PMID: 36856911 DOI: 10.1007/s00425-023-04087-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
MAIN CONCLUSION EF have been explored for its beneficial impact on environment and for its commercial applications. It has proved its worth in these sectors and showed an impact on biological properties of plants by producing various bioactive molecules and enzymes. Endophytes are plant mutualists that live asymptomatically within plant tissues and exist in almost every plant species. Endophytic fungi benefit from the host plant nutrition, and the host plant gains improved competitive abilities and tolerance against pathogens, herbivores, and various abiotic stresses. Endophytic fungi are one of the most inventive classes which produce secondary metabolites and play a crucial role in human health and other biotic aspects. This review is focused on systematic study on the biodiversity of endophytic fungi in plants, and their role in enhancing various properties of plants such as antimicrobial, antimycobacterial, antioxidant, cytotoxic, anticancer, and biological activity of secondary metabolites produced by various fungal endophytes in host plants reported from 1994 to 2021. This review emphasizes the endophytic fungal population shaped by host genotype, environment, and endophytic fungi genotype affecting host plant. The impact of endophytic fungi has been discussed in detail which influences the commercial properties of plants. Endophytes also have an influence on plant productivity by increasing parameters such as nutrient recycling and phytostimulation. Studies focusing on mechanisms that regulate attenuation of secondary metabolite production in EF would provide much needed impetus on ensuring continued production of bioactive molecules from a indubitable source. If this knowledge is further extensively explored regarding fungal endophytes in plants for production of potential phytochemicals, then it will help in exploring a keen area of interest for pharmacognosy.
Collapse
Affiliation(s)
- Reema Devi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India.
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand, 249405, India
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Business Management, Solan, H.P., 173229, India
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Monika Thakur
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Saurav Chauhan
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Prem Parkash Chauhan
- Lal Bahadur Shastri Government Degree College, Saraswati Nagar, Shimla, H.P., 171206, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic.
| |
Collapse
|
10
|
Zhang J, Lu J, Zhu Y, Huang Q, Qin L, Zhu B. Rhizosphere microorganisms of Crocus sativus as antagonists against pathogenic Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2022; 13:1045147. [PMID: 36483959 PMCID: PMC9722746 DOI: 10.3389/fpls.2022.1045147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Introduction Several microorganisms in the plant root system, especially in the rhizosphere, have their own compositions and functions. Corm rot is the most severe disease of Crocus sativus, leading to more than 50% mortality in field production. Methods In this study, metagenomic sequencing was used to analyze microbial composition and function in the rhizosphere of C. sativus for possible microbial antagonists against pathogenic Fusarium oxysporum. Results The microbial diversity and composition were different in the C. sativus rhizosphere from different habitats. The diversity index (Simpson index) was significantly lower in the C. sativus rhizospheric soil from Chongming (Rs_CM) and degenerative C. sativus rhizospheric soil from Chongming (RsD_CM) than in others. Linear discriminant analysis effect size results showed that differences among habitats were mainly at the order (Burkholderiales, Micrococcales, and Hypocreales) and genus (Oidiodendron and Marssonina) levels. Correlation analysis of the relative lesion area of corm rot showed that Asanoa was the most negatively correlated bacterial genus (ρ = -0.7934, p< 0.001), whereas Moniliophthora was the most negatively correlated fungal genus (ρ = -0.7047, p< 0.001). The relative lesion area result showed that C. sativus from Qiaocheng had the highest resistance, followed by Xiuzhou and Jiande. C. sativus groups with high disease resistance had abundant pathogen resistance genes, such as chitinase and β-1,3-glucanase genes, from rhizosphere microorganisms. Further, 13 bacteria and 19 fungi were isolated from C. sativus rhizosphere soils, and antagonistic activity against pathogenic F. oxysporum was observed on potato dextrose agar medium. In vivo corm experiments confirmed that Trichoderma yunnanense SR38, Talaromyces sp. SR55, Burkholderia gladioli SR379, and Enterobacter sp. SR343 displayed biocontrol activity against corm rot disease, with biocontrol efficiency of 20.26%, 31.37%, 39.22%, and 14.38%, respectively. Discussion This study uncovers the differences in the microbial community of rhizosphere soil of C. sativus with different corm rot disease resistance and reveals the role of four rhizospheric microorganisms in providing the host C. sativus with resistance against corm rot. The obtained biocontrol microorganisms can also be used for application research and field management.
Collapse
Affiliation(s)
| | | | | | | | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Wu J, Shi Z, Zhu J, Cao A, Fang W, Yan D, Wang Q, Li Y. Taxonomic response of bacterial and fungal populations to biofertilizers applied to soil or substrate in greenhouse-grown cucumber. Sci Rep 2022; 12:18522. [PMID: 36323754 PMCID: PMC9630312 DOI: 10.1038/s41598-022-22673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Reductions in the quality and yield of crops continuously produced in the same location for many years due to annual increases in soil-borne pathogens. Environmentally-friendly methods are needed to produce vegetables sustainably and cost effectively under protective cover. We investigated the impact of biofertilizers on cucumber growth and yield, and changes to populations of soil microorganisms in response to biofertilizer treatments applied to substrate or soil. We observed that some biofertilizers significantly increased cucumber growth and decreased soil-borne pathogens in soil and substrate. Rhizosphere microbial communities in soil and substrate responded differently to different biofertilizers, which also led to significant differences in microbial diversity and taxonomic structure at different times in the growing season. Biofertilizers increase the prospects of re-using substrate for continuously producing high-quality crops cost-effectively from the same soil each year while at the same time controlling soil-borne disease.
Collapse
Affiliation(s)
- Jiajia Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhaoai Shi
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiahong Zhu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Aocheng Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Beijing Innovation Consortium of Agriculture Research System, Beijing, 100193, China
| | - Wensheng Fang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Beijing Innovation Consortium of Agriculture Research System, Beijing, 100193, China
| | - Dongdong Yan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Beijing Innovation Consortium of Agriculture Research System, Beijing, 100193, China
| | - Qiuxia Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Beijing Innovation Consortium of Agriculture Research System, Beijing, 100193, China
| | - Yuan Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Beijing Innovation Consortium of Agriculture Research System, Beijing, 100193, China.
| |
Collapse
|