1
|
Pogány Simonová M, Chrastinová Ľ, Ščerbová J, Focková V, Plachá I, Tokarčíková K, Žitňan R, Lauková A. The effect of enterocin A/P dipeptide on growth performance, glutathione-peroxidase activity, IgA secretion and jejunal morphology in rabbits after experimental methicillin-resistant Staphylococcus epidermidis P3Tr2a Infection. Vet Res Commun 2024; 48:507-517. [PMID: 38051451 PMCID: PMC10810977 DOI: 10.1007/s11259-023-10277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/02/2023] [Indexed: 12/07/2023]
Abstract
The increasing frequency of methicillin-resistant (MR) staphylococci in humans and animals need special attention for their difficult treatment and zoonotic character, therefore novel antimicrobial compounds on a natural base against antibiotic-resistant bacteria are requested. Currently, bacteriocins/enterocins present a new promising way to overcome this problem, both in prevention and treatment. Therefore, the preventive and medicinal effect of dipeptide enterocin EntA/P was evaluated against MR Staphylococcus epidermidis SEP3/Tr2a strain in a rabbit model, testing their influence on growth performance, glutathione-peroxidase (GPx) enzyme activity, phagocytic activity (PA), secretory (s)IgA, and jejunal morphometry (JM). Eighty-eight rabbits (aged 35 days, meat line M91, both sexes) were divided into experimental groups S (SEP3/Tr2a strain; 1.0 × 105 CFU/mL; dose 500µL/animal/day for 7 days, between days 14 and 21 to simulate the pathogen attack), E (EntA/P; 50 µL/animal/day, 25,600 AU/mL in two intervals, for preventive effect between days 0 and 14; for medicinal effect between days 28 and 42), E + S (EntA/P + SEP3/Tr2a; preventive effect; SEP3/Tr2a + EntA/P; medicinal effect) and control group (C; without additives). Higher body weight was recorded in all experimental groups (p < 0.001) compared to control data. The negative influence/attack of the SEP3Tra2 strain on the intestinal immunity and environment was reflected as decreased GPx activity, worse JM parameters and higher sIgA concentration in infected rabbits. These results suggest the promising preventive use of EntA/P to improve the immunity and growth of rabbits, as well as its therapeutic potential and protective role against staphylococcal infections in rabbit breeding.
Collapse
Affiliation(s)
- Monika Pogány Simonová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 04001, Slovakia.
| | - Ľubica Chrastinová
- Department of Animal Nutrition, National Agricultural and Food Centre, Hlohovecká 2, Nitra-Lužianky, 95141, Slovakia
| | - Jana Ščerbová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 04001, Slovakia
| | - Valentína Focková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 04001, Slovakia
| | - Iveta Plachá
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 04001, Slovakia
| | - Katarína Tokarčíková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 04001, Slovakia
| | - Rudolf Žitňan
- Department of Animal Nutrition, National Agricultural and Food Centre, Hlohovecká 2, Nitra-Lužianky, 95141, Slovakia
| | - Andrea Lauková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 04001, Slovakia
| |
Collapse
|
2
|
Lin H, Song L, Zhou S, Fan C, Zhang M, Huang R, Zhou R, Qiu J, Ma S, He J. A Hybrid Antimicrobial Peptide Targeting Staphylococcus aureus with a Dual Function of Inhibiting Quorum Sensing Signaling and an Antibacterial Effect. J Med Chem 2023; 66:17105-17117. [PMID: 38099725 DOI: 10.1021/acs.jmedchem.3c02027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Community-associated methicillin-resistant Staphylococcus aureus (MRSA) is now a major cause of bacterial infection. Antivirulence therapy does not stimulate evolution of a pathogen toward a resistant phenotype, providing a novel method to treat infectious diseases. Here, we used a cyclic peptide of CP7, an AIP-III variant that specifically inhibited the virulence and biofilm formation of Staphylococcus aureus (S. aureus) in a nonbiocidal manner, to conjugate with a broad-spectrum antimicrobial peptide (AMP) via two N-termini to obtain a hybrid AMP called CP7-FP13-2. This peptide not only specifically inhibited the production of virulence of S. aureus at low micromolar concentrations but also killed S. aureus, including MRSA, by disrupting the integrity of the bacterial cell membrane. In addition, CP7-FP13-2 inhibited the formation of the S. aureus biofilm and showed good antimicrobial efficacy against the S. aureus-infected Kunming mice model. Therefore, this study provides a promising strategy against the resistance and virulence of S. aureus.
Collapse
Affiliation(s)
- Haixing Lin
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
- Department of Urology, Tongren Municipal People's Hospital, 120 Taoyuan Avenue, Tongren, Guizhou 554300, P. R. China
| | - Li Song
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Shaofen Zhou
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Cuiqiong Fan
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Minna Zhang
- Department of Nephrology, Tongren Municipal People's Hospital, 120 Taoyuan Avenue, Tongren, Guizhou 554300, P. R. China
| | - Ruifeng Huang
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Runhong Zhou
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Jingnan Qiu
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Shuaiqi Ma
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Jian He
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| |
Collapse
|
3
|
Ladjouzi R, Dussert E, Teiar R, Belguesmia Y, Drider D. A Review on Enterocin DD14, the Leaderless Two-Peptide Bacteriocin with Multiple Biological Functions and Unusual Transport Pathway. Antibiotics (Basel) 2023; 12:1188. [PMID: 37508284 PMCID: PMC10376788 DOI: 10.3390/antibiotics12071188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Enterocin DD14 (EntDD14) is a two-peptide leaderless bacteriocin (LLB) produced by Enterococcus faecalis 14, a human strain isolated from meconium. Studies performed on EntDD14 enabled it to show its activity against Gram-positive bacteria such as Listeria monocytogenes, Clostridium perfringens, Enterococcus faecalis, and Staphylococcus aureus. EntDD14 was also shown to potentiate the activity of different antibiotics such as erythromycin, kanamycin, and methicillin when assessed against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and in vivo in the NMRI-F holoxenic mouse model. Additionally, EntDD14 has an antiviral activity and decreased the secretion of pro-inflammatory IL-6 and IL-8 in inflamed human intestinal Caco-2 cells. The genome of E. faecalis 14 was sequenced and annotated. Molecular tools such as Bagel4 software enabled us to locate a 6.7kb-EntDD14 cluster. Transport of EntDD14 outside of the cytoplasm was shown to be performed synergistically by a channel composed of two pleckstrin-homology-domain-containing proteins, namely DdE/DdF and the ABC transporter DdGHIJ. This latter could also protect the bacteriocinogenic strain against extracellular EntDD14. Here, we focus on academic data and potential therapeutic issues of EntDD14, as a model of two-peptide LLB.
Collapse
Affiliation(s)
- Rabia Ladjouzi
- UMR Transfrontalière BioEcoAgro, INRAe 1158, ICV-Institut Charles Viollette, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d'Opale, F-59000 Lille, France
| | - Elodie Dussert
- UMR Transfrontalière BioEcoAgro, INRAe 1158, ICV-Institut Charles Viollette, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d'Opale, F-59000 Lille, France
| | - Radja Teiar
- UMR Transfrontalière BioEcoAgro, INRAe 1158, ICV-Institut Charles Viollette, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d'Opale, F-59000 Lille, France
| | - Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro, INRAe 1158, ICV-Institut Charles Viollette, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d'Opale, F-59000 Lille, France
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro, INRAe 1158, ICV-Institut Charles Viollette, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d'Opale, F-59000 Lille, France
| |
Collapse
|
4
|
Kabrah A, Bahwerth F, Alghamdi S, Alkhotani A, Alahmadi A, Alhuzali M, Aljerary I, Alsulami A. Antibiotics Usage and Resistance among Patients with Severe Acute Respiratory Syndrome Coronavirus 2 in the Intensive Care Unit in Makkah, Saudi Arabia. Vaccines (Basel) 2022; 10:2148. [PMID: 36560558 PMCID: PMC9784728 DOI: 10.3390/vaccines10122148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Antibiotic resistance is a global health and development threat, especially during the Severe Acute Respiratory Syndrome Coronavirus 2 (COVID-19) pandemic. Therefore, the current study was conducted to describe antibiotic usage and resistance among patients with COVID-19 in the intensive care unit (ICU) in Makkah, Saudi Arabia. In this cross-sectional study, only patients with positive COVID-19 status (42 patients) admitted to the ICU at the King Faisal Hospital were selected using a census sampling method. The susceptibility test of bacteria was carried out according to the standard protocol. The identified strains were tested in-vitro against several antibiotics drugs. Statistical analysis was performed using SPSS version 24. A total of 42 patients were included, with a mean age of 59.35 ± 18 years. Of them, 38.1% were males, and 61.9% were females. 35.7% have blood group O +. For age and blood groups, statistically significant associations were found between males and females, with p-values = 0.037 and 0.031, respectively. A large percentage (42.7%) of the obtained samples contained Klebsiella Pneumoniae; all bacteria were multidrug-resistance bacteria. Furthermore, 76.2% of bacteria were resistant to Ampicillin, 66.7% were resistant to Ciprofloxacin, 64.3% were resistant to Levofloxacin, 57.1% were resistant to Imipenem, and 57.1% were resistant to Moxifloxacin. On the contrary, among the 40 examined antibiotics, the effective antibiotics were Daptomycin, Linezolid, Mupirocin, Synercid, Teicoplanin, Vancomycin, and Nitrofurantoin. Our study demonstrates that antibiotic resistance is highly prevalent among ICU patients with COVID-19 at the King Faisal Hospital. Additionally, all bacteria were multidrug-resistance bacteria. Therefore, this high prevalence should be seriously discussed and urgently considered.
Collapse
Affiliation(s)
- Ahmed Kabrah
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Fayez Bahwerth
- Molecular Genetics Department, King Faisal Hospital, Ministry of Health, Makkah 21955, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Alaa Alkhotani
- Diagnostic Microbiology Department, King Faisal Hospital, Ministry of Health, Makkah 21955, Saudi Arabia
| | - Ahmed Alahmadi
- Medical Genetics Department, King Faisal Hospital, Ministry of Health, Makkah 21955, Saudi Arabia
| | - Mashari Alhuzali
- Diagnostic Microbiology Department, King Faisal Hospital, Ministry of Health, Makkah 21955, Saudi Arabia
| | - Ibrahim Aljerary
- Pharmaceutical Department, King Faisal Hospital, Ministry of Health, Makkah 21955, Saudi Arabia
| | - Anwar Alsulami
- Health Administration, King Faisal Hospital, Ministry of Health, Makkah 21955, Saudi Arabia
| |
Collapse
|
5
|
Bian N, Chen X, Ren X, Yu Z, Jin M, Chen X, Liu C, Luan Y, Wei L, Chen Y, Song W, Zhao Y, Wang B, Jiang T, Zhang C, Shu Z, Su X, Wang L. 7,8-Dihydroxyflavone attenuates the virulence of Staphylococcus aureus by inhibiting alpha-hemolysin. World J Microbiol Biotechnol 2022; 38:200. [PMID: 35995893 DOI: 10.1007/s11274-022-03378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus (S. aureus), a Gram-positive bacteria, is an incurable cause of hospital and community-acquired infections. Inhibition bacterial virulence is a viable strategy against S. aureus infections based on the multiple virulence factors secreted by S. aureus. Alpha-hemolysin (Hla) plays a crucial role in bacteria virulence without affecting bacterial viability. Here, we identified that 7,8-Dihydroxyflavone (7,8-DHF), a natural compound, was able to decrease the expression of and did not affect the in vitro growth of S. aureus USA300 at a concentration of 32 μg/mL. It was verified by western blot and RT-qPCR that the natural compound could inhibit the transcription and translation of Hla. Further mechanism studies revealed that 7,8-DHF has a negative effect on transcriptional regulator agrA and RNAIII, preventing the upregulation of virulence gene. Cytotoxicity assays showed that 7,8-DHF did not produce significant cytotoxicity to A549 cells. Animal experiments showed that the combination of 7,8-DHF and vancomycin had a more significant therapeutic effect on S. aureus infection, reflecting the synergistic effect of 7,8-DHF with antibiotics. In conclusion, 7,8-DHF was able to target Hla to protect host cells from hemolysis while limiting the development of bacterial resistance.
Collapse
Affiliation(s)
- Nan Bian
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiangqian Chen
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xinran Ren
- School of Pharmaceutical Science, Jilin University, Changchun, 130021, China
| | - Zishu Yu
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mengli Jin
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiaoyu Chen
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chang Liu
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yanhe Luan
- The First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Lin Wei
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ying Chen
- The First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Tao Jiang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chi Zhang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zunhua Shu
- The Third Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130118, China.
| | - Xin Su
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
6
|
Application and challenge of bacteriophage in the food protection. Int J Food Microbiol 2022; 380:109872. [PMID: 35981493 DOI: 10.1016/j.ijfoodmicro.2022.109872] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022]
Abstract
In recent years, foodborne diseases caused by pathogens have been increasing. Therefore, it is essential to control the growth and transmission of pathogens. Bacteriophages (phages) have the potential to play an important role in the biological prevention, control, and treatment of these foodborne diseases due to their favorable advantages. Phages not only effectively inhibit pathogenic bacteria and prolong the shelf life of food, but also possess the advantages of specificity and an absence of chemical residues. Currently, there are many cases of phage applications in agriculture, animal disease prevention and control, food safety, and the treatment of drug-resistant disease. In this review, we summarize the recent research progress on phages against foodborne pathogenic bacteria, including Escherichia coli, Salmonella, Campylobacter, Listeria monocytogenes, Shigella, Vibrio parahaemolyticus, and Staphylococcus aureus. We also discuss the main issues and their corresponding solutions in the application of phages in the food industry. In recent years, although researchers have discovered more phages with potential applications in the food industry, most researchers use these phages based on their host spectrum, and the application environment is mostly in the laboratory. Therefore, the practical application of these phages in different aspects of the food industry may be unsatisfactory and even have some negative effects. Thus, we suggest that before using these phages, it is necessary to identify their specific receptors. Using their specific receptors as the selection basis for their application and combining phages with other phages or phages with traditional antibacterial agents may further improve their safety and application efficiency. Collectively, this review provides a theoretical reference for the basic research and application of phages in the food industry.
Collapse
|
7
|
Mutuku C, Gazdag Z, Melegh S. Occurrence of antibiotics and bacterial resistance genes in wastewater: resistance mechanisms and antimicrobial resistance control approaches. World J Microbiol Biotechnol 2022; 38:152. [PMID: 35781751 PMCID: PMC9250919 DOI: 10.1007/s11274-022-03334-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/10/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial pharmaceuticals are classified as emergent micropollutants of concern, implying that even at low concentrations, long-term exposure to the environment can have significant eco-toxicological effects. There is a lack of a standardized regulatory framework governing the permissible antibiotic content for monitoring environmental water quality standards. Therefore, indiscriminate discharge of antimicrobials at potentially active concentrations into urban wastewater treatment facilities is rampant. Antimicrobials may exert selective pressure on bacteria, leading to resistance development and eventual health consequences. The emergence of clinically important multiple antibiotic-resistant bacteria in untreated hospital effluents and wastewater treatment plants (WWTPs) has been linked to the continuous exposure of bacteria to antimicrobials. The levels of environmental exposure to antibiotics and their correlation to the evolution and spread of resistant bacteria need to be elucidated to help in the formulation of mitigation measures. This review explores frequently detected antimicrobials in wastewater and gives a comprehensive coverage of bacterial resistance mechanisms to different antibiotic classes through the expression of a wide variety of antibiotic resistance genes either inherent and/or exchanged among bacteria or acquired from the reservoir of antibiotic resistance genes (ARGs) in wastewater systems. To complement the removal of antibiotics and ARGs from WWTPs, upscaling the implementation of prospective interventions such as vaccines, phage therapy, and natural compounds as alternatives to widespread antibiotic use provides a multifaceted approach to minimize the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Christopher Mutuku
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Ifjúság u. 6, Pecs, 7624, Hungary.
| | - Zoltan Gazdag
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Ifjúság u. 6, Pecs, 7624, Hungary
| | - Szilvia Melegh
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7622, Pecs, Hungary
| |
Collapse
|
8
|
Anti-adhesion and Anti-inflammatory Potential of the Leaderless Class IIb Bacteriocin Enterocin DD14. Probiotics Antimicrob Proteins 2022; 14:613-619. [PMID: 35604525 PMCID: PMC9125348 DOI: 10.1007/s12602-022-09954-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 12/01/2022]
Abstract
In this study, we investigate the interactions between the leaderless class IIb bacteriocin, enterocin DD14 (EntDD14), or the methicillin or the combination of these antibacterials, and two methicillin-resistant Staphylococcus aureus strains (MRSA-S1 and USA 300) which are respectively a clinical strain and a reference strain. The results obtained showed that EntDD14 alone or in combination with the antibiotic could significantly prevent the adhesion of these pathogenic bacteria to human cells. On the other hand, we investigated the anti-inflammatory effect of EntDD14 on the secretion of pro-inflammatory interleukins, including IL-6 and IL-8. The results show that EntDD14 is able to decrease significantly the secretion of both interleukins on Caco-2 cells following their treatments with lipopolysaccharides. These novel data provide insightful informations to support applications of bacteriocins as therapeutic agents capable as well to defeat pathogenic bacteria and concomitantly limit their inflammatory reactions.
Collapse
|
9
|
Yaacob SN, Wahab RA, Misson M, Sabullah MK, Huyop F, Zin NM. Lactic acid bacteria and their bacteriocins: new potential weapons in the fight against methicillin-resistant Staphylococcus aureus. Future Microbiol 2022; 17:683-699. [PMID: 35414206 DOI: 10.2217/fmb-2021-0256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alternative solutions are eminently needed to combat the escalating number of infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Bacteriocins produced by lactic acid bacteria are promising candidates for next-generation antibiotics. Studies have found that these stable and nontoxic ribosomally synthesized antimicrobial peptides exhibit significant potency against other bacteria, including antibiotic-resistant strains. Here the authors review previous studies on bacteriocins that have been effectively employed to manage MRSA infections. The authors' review focuses on the beneficial traits of bacteriocins for further application as templates for the design of novel drugs. Treatments that combine bacteriocins with other antimicrobials to combat pervasive MRSA infections are also highlighted. In short, future studies should focus on the pharmacodynamics and pharmacokinetics of bacteriocins-antimicrobials to understand their interactions, as this aspect would likely determine their efficacy in MRSA inhibition.
Collapse
Affiliation(s)
- Syariffah Ns Yaacob
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Roswanira A Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Mailin Misson
- Biotechnology Research Institute, Jalan Universiti Malaysia Sabah, Kota Kinabalu, Sabah, 88400, Malaysia
| | - Mohd K Sabullah
- Faculty of Science and Natural Resources, Jalan Universiti Malaysia Sabah, Kota Kinabalu, Sabah, 88400, Malaysia
| | - Fahrul Huyop
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Noraziah M Zin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
10
|
Yap PG, Lai ZW, Tan JS. Bacteriocins from lactic acid bacteria: purification strategies and applications in food and medical industries: a review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00227-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Background
Bacteriocins are generally defined as ribosomally synthesized peptides, which are produced by lactic acid bacteria (LAB) that affect the growth of related or unrelated microorganisms. Conventionally, the extracted bacteriocins are purified by precipitation, where ammonium sulphate is added to precipitate out the protein from the solution.
Main text
To achieve the high purity of bacteriocins, a combination with chromatography is used where the hydrophobicity and cationic properties of bacteriocins are employed. The complexity column inside the chromatography can afford to resolve the loss of bacteriocins during the ammonium sulphate precipitation. Recently, an aqueous two-phase system (ATPS) has been widely used in bacteriocins purification due to the several advantages of its operational simplicity, mild process conditions and versatility. It reduces the operation steps and processing time yet provides high recovery products which provide alternative ways to conventional methods in downstream processing. Bacteriocins are widely approached in the food and medical industry. In food application, nisin, which is produced by Lactococcus lactis subsp. has been introduced as food preservative due to its natural, toxicology safe and effective against the gram-positive bacteria. Besides, bacteriocins provide a board range in medical industries where they are used as antibiotics and probiotics.
Short conclusion
In summary, this review focuses on the downstream separation of bacteriocins from various sources using both conventional and recent ATPS techniques. Finally, recommendations for future interesting areas of research that need to be pursued are highlighted.
Collapse
|
11
|
Madi-Moussa D, Belguesmia Y, Charlet A, Drider D, Coucheney F. Lacticaseicin 30 and Colistin as a Promising Antibiotic Formulation against Gram-Negative β-Lactamase-Producing Strains and Colistin-Resistant Strains. Antibiotics (Basel) 2021; 11:20. [PMID: 35052897 PMCID: PMC8772908 DOI: 10.3390/antibiotics11010020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial resistance is a global health concern across the world and it is foreseen to swell if no actions are taken now. To help curbing this well announced crisis different strategies are announced, and these include the use of antimicrobial peptides (AMP), which are remarkable molecules known for their killing activities towards pathogenic bacteria. Bacteriocins are ribosomally synthesized AMP produced by almost all prokaryotic lineages. Bacteriocins, unlike antibiotics, offer a set of advantages in terms of cytotoxicity towards eukaryotic cells, their mode of action, cross-resistance and impact of microbiota content. Most known bacteriocins are produced by Gram-positive bacteria, and specifically by lactic acid bacteria (LAB). LAB-bacteriocins were steadily reported and characterized for their activity against genetically related Gram-positive bacteria, and seldom against Gram-negative bacteria. The aim of this study is to show that lacticaseicin 30, which is one of the bacteriocins produced by Lacticaseibacillus paracasei CNCM I-5369, is active against Gram-negative clinical strains (Salmonella enterica Enteritidis H10, S. enterica Typhimurium H97, Enterobacter cloacae H51, Escherichia coli H45, E. coli H51, E. coli H66, Klebsiella oxytoca H40, K. pneumoniae H71, K. variicola H77, K. pneumoniae H79, K. pneumoniae H79), whereas antibiotics failed. In addition, lacticaseicin 30 and colistin enabled synergistic interactions towards the aforementioned target Gram-negative clinical strains. Further, the combinations of lacticaseicin 30 and colistin prompted a drastic downregulation of mcr-1 and mcr-9 genes, which are associated with the colistin resistance phenotypes of these clinical strains. This report shows that lacticaseicin 30 is active against Gram-negative clinical strains carrying a rainbow of mcr genes, and the combination of these antimicrobials constitutes a promising therapeutic option that needs to be further exploited.
Collapse
Affiliation(s)
- Désiré Madi-Moussa
- UMR Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France; (D.M.-M.); (Y.B.); (D.D.)
| | - Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France; (D.M.-M.); (Y.B.); (D.D.)
| | - Audrey Charlet
- Centre Hospitalier de Lille, Centre de Biologie Pathologie, Laboratoire de Bactériologie, F-59000 Lille, France;
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France; (D.M.-M.); (Y.B.); (D.D.)
| | - Françoise Coucheney
- UMR Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France; (D.M.-M.); (Y.B.); (D.D.)
| |
Collapse
|