1
|
Bhatia P, Singh VA, Rani R, Nath M, Tomar S. Cellular uptake of metal oxide-based nanocomposites and targeting of chikungunya virus replication protein nsP3. J Trace Elem Med Biol 2023; 78:127176. [PMID: 37075567 DOI: 10.1016/j.jtemb.2023.127176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Emergence of new pathogenic viruses along with adaptive potential of RNA viruses has become a major public health concern. Therefore, it is increasingly crucial to investigate and assess the antiviral potential of nanocomposites, which is constantly advancing area of medical biology. In this study, two types of nanocomposites: Ag/NiO and Ag2O/NiO/ZnO with varying molar ratios of silver and silver oxide, respectively have been synthesised and characterised. Three metal/metal oxide (Ag/NiO) composites having different amounts of Ag nanoparticles (NPs) anchored on NiO octahedrons are AN-5 % (5 % Ag), AN-10 % (10 % Ag) and AN-15 % (15 % Ag)) and three ternary metal oxide nanocomposites (Ag2O/NiO/ZnO) i.e., A/N/Z-1, A/N/Z-2, and A/N/Z-3 with different molar ratios of silver oxide (10 %, 20 % and 30 %, respectively) were evaluated for their antiviral potential. Cellular uptake of nanocomposites was confirmed by ICP-MS. Intriguingly, molecular docking of metal oxides in the active site of nsP3 validated the binding of nanocomposites to chikungunya virus replication protein nsP3. In vitro antiviral potential of nanocomposites was tested by performing plaque reduction assay, cytopathic effect (CPE) analysis and qRT-PCR. The nanocomposites showed significant reduction in virus titre. Half-maximal inhibitory concentration (IC50) for A/N/Z-3 and AN-5 % were determined to be 2.828 and 3.277 µg/mL, respectively. CPE observation and qRT-PCR results were consistent with the data obtained from plaque reduction assay for A/N/Z-3 and AN-5 %. These results have opened new avenues for development of nanocomposites based antiviral therapies.
Collapse
Affiliation(s)
- Pooja Bhatia
- Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Vedita Anand Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Ruchi Rani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Mala Nath
- Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand, India.
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
2
|
Ruijter N, Soeteman-Hernández LG, Carrière M, Boyles M, McLean P, Catalán J, Katsumiti A, Cabellos J, Delpivo C, Sánchez Jiménez A, Candalija A, Rodríguez-Llopis I, Vázquez-Campos S, Cassee FR, Braakhuis H. The State of the Art and Challenges of In Vitro Methods for Human Hazard Assessment of Nanomaterials in the Context of Safe-by-Design. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:472. [PMID: 36770432 PMCID: PMC9920318 DOI: 10.3390/nano13030472] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The Safe-by-Design (SbD) concept aims to facilitate the development of safer materials/products, safer production, and safer use and end-of-life by performing timely SbD interventions to reduce hazard, exposure, or both. Early hazard screening is a crucial first step in this process. In this review, for the first time, commonly used in vitro assays are evaluated for their suitability for SbD hazard testing of nanomaterials (NMs). The goal of SbD hazard testing is identifying hazard warnings in the early stages of innovation. For this purpose, assays should be simple, cost-effective, predictive, robust, and compatible. For several toxicological endpoints, there are indications that commonly used in vitro assays are able to predict hazard warnings. In addition to the evaluation of assays, this review provides insights into the effects of the choice of cell type, exposure and dispersion protocol, and the (in)accurate determination of dose delivered to cells on predictivity. Furthermore, compatibility of assays with challenging advanced materials and NMs released from nano-enabled products (NEPs) during the lifecycle is assessed, as these aspects are crucial for SbD hazard testing. To conclude, hazard screening of NMs is complex and joint efforts between innovators, scientists, and regulators are needed to further improve SbD hazard testing.
Collapse
Affiliation(s)
- Nienke Ruijter
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | | | - Marie Carrière
- Univ. Grenoble-Alpes, CEA, CNRS, SyMMES-CIBEST, 17 rue des Martyrs, 38000 Grenoble, France
| | - Matthew Boyles
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Polly McLean
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Julia Catalán
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | | | | | | | - Isabel Rodríguez-Llopis
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | - Flemming R. Cassee
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Hedwig Braakhuis
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
3
|
Zorraquín-Peña I, Cueva C, González de Llano D, Bartolomé B, Moreno-Arribas MV. Glutathione-Stabilized Silver Nanoparticles: Antibacterial Activity against Periodontal Bacteria, and Cytotoxicity and Inflammatory Response in Oral Cells. Biomedicines 2020; 8:E375. [PMID: 32977686 PMCID: PMC7598685 DOI: 10.3390/biomedicines8100375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been proposed as new alternatives to limit bacterial dental plaque because of their antimicrobial activity. Novel glutathione-stabilized silver nanoparticles (GSH-AgNPs) have proven powerful antibacterial properties in food manufacturing processes. Therefore, this study aimed to evaluate the potentiality of GSH-AgNPs for the prevention/treatment of oral infectious diseases. First, the antimicrobial activity of GSH-AgNPs against three oral pathogens (Porphyromonas gingivalis, Fusobacterium nucleatum, and Streptococcus mutans) was evaluated. Results demonstrated the efficiency of GSH-AgNPs in inhibiting the growth of all bacteria, especially S. mutans (IC50 = 23.64 μg/mL, Ag concentration). Second, GSH-AgNPs were assayed for their cytotoxicity (i.e., cell viability) toward a human gingival fibroblast cell line (HGF-1), as an oral epithelial model. Results indicated no toxic effects of GSH-AgNPs at low concentrations (≤6.16 µg/mL, Ag concentration). Higher concentrations resulted in losing cell viability, which followed the Ag accumulation in cells. Finally, the inflammatory response in the HGF-1 cells after their exposure to GSH-AgNPs was measured as the production of immune markers (interleukins 6 and 8 (IL-6 and IL-8) and tumor necrosis factor-alpha (TNF-α)). GSH-AgNPs activates the inflammatory response in human gingival fibroblasts, increasing the production of cytokines. These findings provide new insights for the use of GSH-AgNPs in dental care and encourage further studies for their application.
Collapse
Affiliation(s)
| | | | | | | | - M. Victoria Moreno-Arribas
- Institute of Food Science Research (CIAL), CSIC-UAM, C/Nicolás Cabrera, 9, Campus de Cantoblanco, 28049 Madrid, Spain; (I.Z.-P.); (C.C.); (D.G.d.L.); (B.B.)
| |
Collapse
|
4
|
Gliga AR, De Loma J, Di Bucchianico S, Skoglund S, Keshavan S, Odnevall Wallinder I, Karlsson HL, Fadeel B. Silver nanoparticles modulate lipopolysaccharide-triggered Toll-like receptor signaling in immune-competent human cell lines. NANOSCALE ADVANCES 2020; 2:648-658. [PMID: 36133225 PMCID: PMC9417054 DOI: 10.1039/c9na00721k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/08/2020] [Indexed: 05/21/2023]
Abstract
Silver (Ag) nanoparticles are commonly used in consumer products due to their antimicrobial properties. Here we studied the impact of Ag nanoparticles on immune responses by using cell lines of monocyte/macrophage and lung epithelial cell origin, respectively. Short-term experiments (24 h) showed that Ag nanoparticles reduced the lipopolysaccharide (LPS)-induced secretion of pro-inflammatory cytokines in THP-1 cells under serum-free conditions. ICP-MS analysis revealed that cellular uptake of Ag was higher under these conditions. Long-term exposure (up to 6 weeks) of BEAS-2B cells to Ag nanoparticles also suppressed pro-inflammatory cytokine production following a brief challenge with LPS. Experiments using reporter cells revealed that Ag nanoparticles as well as AgNO3 inhibited LPS-triggered Toll-like receptor (TLR) signaling. Furthermore, RNA-sequencing of BEAS-2B cells indicated that Ag nanoparticles affected TLR signaling pathways. In conclusion, Ag nanoparticles reduced the secretion of pro-inflammatory cytokines in response to LPS, likely as a result of the release of silver ions leading to an interference with TLR signaling. This could have implications for the use of Ag nanoparticles as antibacterial agents. Further in vivo studies are warranted to study this.
Collapse
Affiliation(s)
- Anda R Gliga
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet Stockholm Sweden
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet Stockholm Sweden
| | - Jessica De Loma
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet Stockholm Sweden
| | - Sebastiano Di Bucchianico
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet Stockholm Sweden
| | - Sara Skoglund
- Department of Chemistry, Surface and Corrosion Science, KTH Royal Institute of Technology Stockholm Sweden
| | - Sandeep Keshavan
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet Stockholm Sweden
| | - Inger Odnevall Wallinder
- Department of Chemistry, Surface and Corrosion Science, KTH Royal Institute of Technology Stockholm Sweden
| | - Hanna L Karlsson
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet Stockholm Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet Stockholm Sweden
| |
Collapse
|
5
|
Garcia EB, Alms C, Hinman AW, Kelly C, Smith A, Vance M, Loncarek J, Marr LC, Cimini D. Single-Cell Analysis Reveals that Chronic Silver Nanoparticle Exposure Induces Cell Division Defects in Human Epithelial Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2061. [PMID: 31212667 PMCID: PMC6603987 DOI: 10.3390/ijerph16112061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022]
Abstract
Multiple organizations have urged a paradigm shift from traditional, whole animal, chemical safety testing to alternative methods. Although these forward-looking methods exist for risk assessment and predication, animal testing is still the preferred method and will remain so until more robust cellular and computational methods are established. To meet this need, we aimed to develop a new, cell division-focused approach based on the idea that defective cell division may be a better predictor of risk than traditional measurements. To develop such an approach, we investigated the toxicity of silver nanoparticles (AgNPs) on human epithelial cells. AgNPs are the type of nanoparticle most widely employed in consumer and medical products, yet toxicity reports are still confounding. Cells were exposed to a range of AgNP doses for both short- and-long term exposure times. The analysis of treated cell populations identified an effect on cell division and the emergence of abnormal nuclear morphologies, including micronuclei and binucleated cells. Overall, our results indicate that AgNPs impair cell division, not only further confirming toxicity to human cells, but also highlighting the propagation of adverse phenotypes within the cell population. Furthermore, this work illustrates that cell division-based analysis will be an important addition to future toxicology studies.
Collapse
Affiliation(s)
- Ellen B Garcia
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Cynthia Alms
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Albert W Hinman
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Conor Kelly
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Adam Smith
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Marina Vance
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Jadranka Loncarek
- Center for Cancer Research, National Institute of Health, Frederick, MD 21702, USA.
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
6
|
Rodríguez-León E, Íñiguez-Palomares RA, Navarro RE, Rodríguez-Beas C, Larios-Rodríguez E, Alvarez-Cirerol FJ, Íñiguez-Palomares C, Ramírez-Saldaña M, Hernández Martínez J, Martínez-Higuera A, Galván-Moroyoqui JM, Martínez-Soto JM. Silver nanoparticles synthesized with Rumex hymenosepalus extracts: effective broad-spectrum microbicidal agents and cytotoxicity study. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1194-1206. [DOI: 10.1080/21691401.2017.1366332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ericka Rodríguez-León
- Departamento de Física, Universidad de Sonora, Rosales y Luis Encinas, Hermosillo, México
| | | | - Rosa Elena Navarro
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo, México
| | - César Rodríguez-Beas
- Departamento de Física, Universidad de Sonora, Rosales y Luis Encinas, Hermosillo, México
| | | | | | | | | | | | - Aarón Martínez-Higuera
- Departamento de Física, Universidad de Sonora, Rosales y Luis Encinas, Hermosillo, México
| | | | | |
Collapse
|
7
|
Guehrs E, Schneider M, Günther CM, Hessing P, Heitz K, Wittke D, López-Serrano Oliver A, Jakubowski N, Plendl J, Eisebitt S, Haase A. Quantification of silver nanoparticle uptake and distribution within individual human macrophages by FIB/SEM slice and view. J Nanobiotechnology 2017; 15:21. [PMID: 28327151 PMCID: PMC5359962 DOI: 10.1186/s12951-017-0255-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/08/2017] [Indexed: 11/25/2022] Open
Abstract
Background Quantification of nanoparticle (NP) uptake in cells or tissues is very important for safety assessment. Often, electron microscopy based approaches are used for this purpose, which allow imaging at very high resolution. However, precise quantification of NP numbers in cells and tissues remains challenging. The aim of this study was to present a novel approach, that combines precise quantification of NPs in individual cells together with high resolution imaging of their intracellular distribution based on focused ion beam/ scanning electron microscopy (FIB/SEM) slice and view approaches. Results We quantified cellular uptake of 75 nm diameter citrate stabilized silver NPs (Ag 75 Cit) into an individual human macrophage derived from monocytic THP-1 cells using a FIB/SEM slice and view approach. Cells were treated with 10 μg/ml for 24 h. We investigated a single cell and found in total 3138 ± 722 silver NPs inside this cell. Most of the silver NPs were located in large agglomerates, only a few were found in clusters of fewer than five NPs. Furthermore, we cross-checked our results by using inductively coupled plasma mass spectrometry and could confirm the FIB/SEM results. Conclusions Our approach based on FIB/SEM slice and view is currently the only one that allows the quantification of the absolute dose of silver NPs in individual cells and at the same time to assess their intracellular distribution at high resolution. We therefore propose to use FIB/SEM slice and view to systematically analyse the cellular uptake of various NPs as a function of size, concentration and incubation time.
Collapse
Affiliation(s)
- Erik Guehrs
- Institute for Optics and Atomic Physics, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Michael Schneider
- Institute for Optics and Atomic Physics, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.,Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489, Berlin, Germany
| | - Christian M Günther
- Institute for Optics and Atomic Physics, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Piet Hessing
- Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489, Berlin, Germany
| | - Karen Heitz
- Institute for Optics and Atomic Physics, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Doreen Wittke
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Ana López-Serrano Oliver
- Division 1.1 Inorganic Trace Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Norbert Jakubowski
- Division 1.1 Inorganic Trace Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Johanna Plendl
- Institute of Veterinary Anatomy, Free University Berlin, Koserstr. 20, 14195, Berlin, Germany
| | - Stefan Eisebitt
- Institute for Optics and Atomic Physics, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.,Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489, Berlin, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
8
|
Field flow fractionation techniques to explore the “nano-world”. Anal Bioanal Chem 2017; 409:2501-2518. [DOI: 10.1007/s00216-017-0180-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/17/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
|
9
|
Hsiao IL, Bierkandt FS, Reichardt P, Luch A, Huang YJ, Jakubowski N, Tentschert J, Haase A. Quantification and visualization of cellular uptake of TiO2 and Ag nanoparticles: comparison of different ICP-MS techniques. J Nanobiotechnology 2016; 14:50. [PMID: 27334629 PMCID: PMC4918130 DOI: 10.1186/s12951-016-0203-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/09/2016] [Indexed: 12/22/2022] Open
Abstract
Background Safety assessment of nanoparticles (NPs) requires techniques that are suitable to quantify tissue and cellular uptake of NPs. The most commonly applied techniques for this purpose are based on inductively coupled plasma mass spectrometry (ICP-MS). Here we apply and compare three different ICP-MS methods to investigate the cellular uptake of TiO2 (diameter 7 or 20 nm, respectively) and Ag (diameter 50 or 75 nm, respectively) NPs into differentiated mouse neuroblastoma cells (Neuro-2a cells). Cells were incubated with different amounts of the NPs. Thereafter they were either directly analyzed by laser ablation ICP-MS (LA-ICP-MS) or were lysed and lysates were analyzed by ICP-MS and by single particle ICP-MS (SP-ICP-MS). Results All techniques confirmed that smaller particles were taken up to a higher extent when values were converted in an NP number-based dose metric. In contrast to ICP-MS and LA-ICP-MS, this measure is already directly provided through SP-ICP-MS. Analysis of NP size distribution in cell lysates by SP-ICP-MS indicates the formation of NP agglomerates inside cells. LA-ICP-MS imaging shows that some of the 75 nm Ag NPs seemed to be adsorbed onto the cell membranes and were not penetrating into the cells, while most of the 50 nm Ag NPs were internalized. LA-ICP-MS confirms high cell-to-cell variability for NP uptake. Conclusions Based on our data we propose to combine different ICP-MS techniques in order to reliably determine the average NP mass and number concentrations, NP sizes and size distribution patterns as well as cell-to-cell variations in NP uptake and intracellular localization. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0203-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- I-Lun Hsiao
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.,Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Frank S Bierkandt
- Division of Inorganic Trace Analysis, German Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Philipp Reichardt
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Yuh-Jeen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Norbert Jakubowski
- Division of Inorganic Trace Analysis, German Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Jutta Tentschert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| |
Collapse
|
10
|
Kettler K, Krystek P, Giannakou C, Hendriks AJ, de Jong WH. Exploring the effect of silver nanoparticle size and medium composition on uptake into pulmonary epithelial 16HBE14o-cells. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2016; 18:182. [PMID: 27433139 PMCID: PMC4930793 DOI: 10.1007/s11051-016-3493-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/22/2016] [Indexed: 05/20/2023]
Abstract
The increasing number of nanotechnology products on the market poses increasing human health risks by particle exposures. Adverse effects of silver nanoparticles (AgNPs) in various cell lines have been measured based on exposure dose after a fixed time point, but NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Even though knowledge about relevant timescales for NP uptake is essential, e.g. for time- and cost-effective risk assessment through modelling, insufficient data are available. Therefore, the authors examined uptake rates for three different AgNP sizes (20, 50 and 75 nm) and two tissue culture medium compositions (with and without foetal calf serum, FCS) under realistic exposure concentrations in pulmonary epithelial 16HBE14o-cells. The quantification of Ag in cells was carried out by high-resolution inductively coupled plasma mass spectrometry. We show for the first time that uptake kinetics of AgNPs into 16HBE14o-cells was highly influenced by medium composition. Uptake into cells was higher in medium without FCS, reaching approximately twice the concentration after 24 h than in medium supplemented with FCS, showing highest uptake for 50-nm AgNPs when expressed on a mass basis. This optimum shifts to 20 nm on a number basis, stressing the importance of the measurand in which results are presented. The importance of our research identifies that not just the uptake after a certain time point should be considered as dose but also the process of uptake (timing) might need to be considered when studying the mechanism of toxicity of nanoparticles.
Collapse
Affiliation(s)
- Katja Kettler
- />Department of Environmental Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Petra Krystek
- />Institute for Environmental Studies (IVM), VU University, Amsterdam, The Netherlands
- />IVAM UvA BV, Amsterdam, The Netherlands
| | - Christina Giannakou
- />National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- />Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - A. Jan Hendriks
- />Department of Environmental Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Wim H. de Jong
- />National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
11
|
Braakhuis HM, Kloet SK, Kezic S, Kuper F, Park MVDZ, Bellmann S, van der Zande M, Le Gac S, Krystek P, Peters RJB, Rietjens IMCM, Bouwmeester H. Progress and future of in vitro models to study translocation of nanoparticles. Arch Toxicol 2015; 89:1469-95. [PMID: 25975987 PMCID: PMC4551544 DOI: 10.1007/s00204-015-1518-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/01/2015] [Indexed: 10/28/2022]
Abstract
The increasing use of nanoparticles in products likely results in increased exposure of both workers and consumers. Because of their small size, there are concerns that nanoparticles unintentionally cross the barriers of the human body. Several in vivo rodent studies show that, dependent on the exposure route, time, and concentration, and their characteristics, nanoparticles can cross the lung, gut, skin, and placental barrier. This review aims to evaluate the performance of in vitro models that mimic the barriers of the human body, with a focus on the lung, gut, skin, and placental barrier. For these barriers, in vitro models of varying complexity are available, ranging from single-cell-type monolayer to multi-cell (3D) models. Only a few studies are available that allow comparison of the in vitro translocation to in vivo data. This situation could change since the availability of analytical detection techniques is no longer a limiting factor for this comparison. We conclude that to further develop in vitro models to be used in risk assessment, the current strategy to improve the models to more closely mimic the human situation by using co-cultures of different cell types and microfluidic approaches to better control the tissue microenvironments are essential. At the current state of the art, the in vitro models do not yet allow prediction of absolute transfer rates but they do support the definition of relative transfer rates and can thus help to reduce animal testing by setting priorities for subsequent in vivo testing.
Collapse
Affiliation(s)
- Hedwig M. Braakhuis
- />Department of Toxicogenomics, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
- />Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Samantha K. Kloet
- />Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Sanja Kezic
- />AMC, Coronel Institute of Occupational Health, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Frieke Kuper
- />TNO, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | - Margriet V. D. Z. Park
- />Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | | | | | - Séverine Le Gac
- />UT BIOS, Lab on a Chip Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Petra Krystek
- />Philips Innovation Services, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - Ruud J. B. Peters
- />RIKILT- Wageningen UR, PO Box 230, 6700 AE Wageningen, The Netherlands
| | - Ivonne M. C. M. Rietjens
- />Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Hans Bouwmeester
- />RIKILT- Wageningen UR, PO Box 230, 6700 AE Wageningen, The Netherlands
| |
Collapse
|