1
|
Amorello D, Ferrara M, Orecchio S. Titanium dioxide in face powders and eyeshadows: Developing an analytical methodology for accessing customer safety. J Cosmet Dermatol 2024; 23:3388-3394. [PMID: 38898670 DOI: 10.1111/jocd.16422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Titanium dioxide (TiO2), a white powder, represents the opacifier used in many products, including drugs, foods, cosmetics, paints, and dyes. METHOD The Uv-Vis spectrophotometry was a particularly suitable technique to quantify TiO2 in the solutions obtained from cosmetics. In this work, we determined the TiO2 content in a total of 88 samples of eye shadows and face powders of different brands and costs. Before to analyse the samples, we developed the mineralization and analysis method, in fact, fusion with potassium bisulphate would be very laborious because it must be carried out on one sample at a time and requires very long times, instead, the mineralization with the acid mixture and the aid of microwaves allowed us to solubilize six samples at the same time within 45 min. RESULTS From the results obtained, we can state that the highest concentrations of TiO2 are found in the eyeshadows with a maximum value of 36% in a blue eyeshadow.
Collapse
Affiliation(s)
- Diana Amorello
- Department of Science and Technology Biological, Chemical and Pharmaceutical, University of Palermo, Palermo, Italy
| | - Marzia Ferrara
- Department of Science and Technology Biological, Chemical and Pharmaceutical, University of Palermo, Palermo, Italy
| | - Santino Orecchio
- Department of Science and Technology Biological, Chemical and Pharmaceutical, University of Palermo, Palermo, Italy
| |
Collapse
|
2
|
Grządka E, Bastrzyk A, Orzeł J, Oszczak-Nowińska A, Fliszkiewicz B, Siemieniuk M, Sobczyński K, Spławski O, Gołębiowska K, Ronda O, Cieślik BM. Do You Know What You Drink? Comparative Research on the Contents of Radioisotopes and Heavy Metals in Different Types of Tea from Various Parts of the World. Foods 2024; 13:742. [PMID: 38472854 DOI: 10.3390/foods13050742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to assess the potential health risks of radioactive elements and heavy metals ingested through the consumption of various types of tea imported to the Polish market (black, green, red, oolong and white). The concentrations [Bq/kg] of radionuclides (40K, 137Cs, 226Ra, 210Pb and 228Th) in tea leaves before and after brewing were measured using γ-ray spectrometry with high-purity germanium (HPGe). The concentrations [mg/kg] of the studied elements (Fe, Cr, Cu, Mo, Al, Mn, Ni, P, V, Cd and Pb) were determined using a microwave-induced plasma optical emission spectrometer (MIP-OES). The results presented here will help to expand the database of heavy metals and radioactivity in teas. With regard to the potential health risk, the percentage of leaching of individual elements in different types of tea infusions was determined, and the assessment of the consumption risk was estimated. Since the calculated exposure factors, namely the HQ (Hazard Quotient) and THQ (Target Hazard Quotient), do not exceed critical levels, teas can still be considered health-beneficial products (most of the radionuclides as well as elements remain in the leaves (65-80%) after brewing).
Collapse
Affiliation(s)
- Elżbieta Grządka
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Anna Bastrzyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, C. K. Norwida 4/6 Sq., 50-373 Wroclaw, Poland
| | - Jolanta Orzeł
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Agata Oszczak-Nowińska
- Institute of Chemistry, Military University of Technology, Kaliskiego 2 Str., 00-908 Warszawa, Poland
| | - Bartłomiej Fliszkiewicz
- Institute of Chemistry, Military University of Technology, Kaliskiego 2 Str., 00-908 Warszawa, Poland
| | - Mateusz Siemieniuk
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 Str., 80-233 Gdansk, Poland
| | - Krzysztof Sobczyński
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 Str., 80-233 Gdansk, Poland
| | - Olgierd Spławski
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 Str., 80-233 Gdansk, Poland
| | - Katarzyna Gołębiowska
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Oskar Ronda
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 Str., 80-233 Gdansk, Poland
| | - Bartłomiej Michał Cieślik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 Str., 80-233 Gdansk, Poland
| |
Collapse
|
3
|
Road Runoff Characterization: Ecotoxicological Assessment Combined with (Non-)Target Screenings of Micropollutants for the Identification of Relevant Toxicants in the Dissolved Phase. WATER 2022. [DOI: 10.3390/w14040511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Road runoff (RR) is an important vector of micropollutants towards groundwater and soils, threatening the environment and ecosystems. Through combined chemical and biological approaches, the purpose of this study was to get insights on specific toxicants present in RR from two sites differing by their traffic intensity and their toxicological risk assessment. Non-target screening was performed by HRMS on RR dissolved phase. Ecotoxicological risk was evaluated in a zebrafish embryos model and on rat liver mitochondrial respiratory chain. Specific HRMS fingerprints were obtained for each site, reflecting their respective traffic intensities. Several micropollutants, including 1,3-diphenylguanidine (DPG) and benzotriazole (BZT) were identified in greater concentrations at the high-traffic site. The origin of DPG was confirmed by analyzing HRMS fingerprints from shredded tires. RR samples from each site, DPG and BZT were of relatively low toxicity (no mortality) to zebrafish embryos, but all generated distinct and marked stress responses in the light–dark transition test, while DPG/BZT mixes abolished this effect. The moderate-traffic RR and DPG inhibited mitochondrial complex I. Our study highlights (i) the unpredictability of pollutants cocktail effect and (ii) the importance of a multi-approaches strategy to characterize environmental matrices, essential for their management at the source and optimization of depollution devices.
Collapse
|
4
|
Study on the Stability of Antibiotics, Pesticides and Drugs in Water by Using a Straightforward Procedure Applying HPLC-Mass Spectrometric Determination for Analytical Purposes. SEPARATIONS 2021. [DOI: 10.3390/separations8100179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The stability of analytes is a critical point in chemical analysis, especially in the field of trace levels residue analysis. Nowadays, due to advances in analytical technology and in separation sciences, the analyses of water have been improved. Unfortunately, in this context, one of the most critical issues in water analysis include compound stability from sampling station to laboratory procedures. This study was carried out to explore the stability of several compounds in water from sampling to analysis concerning analytes reported in implementing decision 2018/840—Watch List. During method development and validation, the stability of compounds was investigated to detect the best operating conditions concerning sampling, extraction and analysis. In this paper, we report a study on the stability of antibiotics, pesticides and drugs in water determined using a straight-forward procedure applying mass spectrometric detection for analytical purposes. The laboratory tests were performed in Milli-Q water and surface water by analyzing samples through direct injection, solvent mixture (Water/ACN) and solid phase extraction system from time 0 to 168 h. All the analytes of the WL are stable in aqueous solutions with the addition of at least 25% ACN even after 168 h, and the analytes have shown a matrix effect on recovery of some analytes such as Famoxadone from sampling results (recovery in surface water 72%). For all the analytes investigated, recoveries were between 70 and 130% by using SPE procedures before UHPLC-MS/MS analysis, which is in good agreement with method validation procedures.
Collapse
|
5
|
Heavy metals content in ashes of wood pellets and the health risk assessment related to their presence in the environment. Sci Rep 2021; 11:17952. [PMID: 34504178 PMCID: PMC8429764 DOI: 10.1038/s41598-021-97305-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022] Open
Abstract
Efforts to reduce air pollution in developing countries may require increased use of biomass fuels. Even biomass fuels are a sustainable alternative to fossil fuels there is limited quantitative information concerning heavy metal content in their ashes. Therefore, this study focuses on the determination of the heavy metal concentrations in wood pellet ash obtained from the combustion of 10 pellet brans from Bosnia and Herzegovina and Italy, the effects of adding the ashes to soils, and the assessment of health risk assessment. Ash content was determined by gravimetric method. The amount and composition of ash remaining after combustion of wood pellets varies considerably according to the type of biomass and wood from which the pellet is made. Samples were prepared by wet digestion using HNO3, and heavy metals are determined by atomic absorption spectroscopy-flame and graphite furnace. The results showed that the lowest concentration in ashes was obtained for Co 0.01 mg kg−1 and the highest for Fe 571.63 mg kg−1. The Hazard Index (HI), calculated for non-cancerous substances for children was 2.23E−01, and the total Risk index was 4.54E−05. As for adults, HI was 1.51E−02, while the Risk index value was 3.21E−06. Human health risk calculated through HI and Risk index for children and adults associated with analyzed pellets is not of significant concern. The calculated enrichment factor and metal pollution index for wood pellet ashes indicate the risk of soil contamination with heavy metals. From this point of view, analyzed samples of ashes could be a serious contaminant of soil, so further monitoring is required.
Collapse
|
6
|
Toward a Better Understanding of Metal Nanoparticles, a Novel Strategy from Eucalyptus Plants. PLANTS 2021; 10:plants10050929. [PMID: 34066925 PMCID: PMC8148548 DOI: 10.3390/plants10050929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Nanotechnology is a promising tool that has opened the doors of improvement to the quality of human's lives through its potential in numerous technological aspects. Green chemistry of nanoscale materials (1-100 nm) is as an effective and sustainable strategy to manufacture homogeneous nanoparticles (NPs) with unique properties, thus making the synthesis of green NPs, especially metal nanoparticles (MNPs), the scientist's core theme. Researchers have tested different organisms to manufacture MNPs and the results of experiments confirmed that plants tend to be the ideal candidate amongst all entities and are suitable to synthesize a wide variety of MNPs. Natural and cultivated Eucalyptus forests are among woody plants used for landscape beautification and as forest products. The present review has been written to reflect the efficacious role of Eucalyptus in the synthesis of MNPs. To better understand this, the route of extracting MNPs from plants, in general, and Eucalyptus, in particular, are discussed. Furthermore, the crucial factors influencing the process of MNP synthesis from Eucalyptus as well as their characterization and recent applications are highlighted. Information gathered in this review is useful to build a basis for new prospective research ideas on how to exploit this woody species in the production of MNPs. Nevertheless, there is a necessity to feed the scientific field with further investigations on wider applications of Eucalyptus-derived MNPs.
Collapse
|
7
|
Marcotte S, Castilla C, Morin C, Merlet-Machour N, Carrasco-Cabrera L, Medaerts F, Lavanant H, Afonso C. Particulate inorganic salts and trace element emissions of a domestic boiler fed with five commercial brands of wood pellets. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18221-18231. [PMID: 32173780 DOI: 10.1007/s11356-020-08329-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Pellet stoves arouse a real interest from consumers because they are perceived as a renewable and carbon neutral energy. However, wood combustion can contribute significantly to air pollution, in particular through the emission of particulate matter (PM). In this article, five brands of wood pellets were burnt under optimal combustion conditions and trace element and inorganic salt emission factors (EFs) in PM were determined. Results show that a significant proportion of metals such as lead, zinc, cadmium, and copper initially present in pellets were emitted into the air during combustion with 20 ± 6%, 31 ± 12%, and 19 ± 6% of the initial content respectively for Zn, Pb, and Cd. The median emission factors for Pb, Cu, Cd, As, Zn, and Ni were respectively 188, 86, 9.3, 8.7, 2177, and 3.5 μg kg-1. The inorganic fraction of the PM emissions was dominated by K+, SO42-, and Cl- with respective EFs of 33, 28.7, and 11.2 mg kg-1. Even taking into account a consumption of 40.1 million tons by 2030 in the EU, the resulting pollution in terms of heavy metal emissions remains minimal in comparison with global emissions in the EU.
Collapse
Affiliation(s)
- Stéphane Marcotte
- Normandie University, UNIROUEN, INSA de Rouen, UMR 6014 CNRS COBRA, 1 rue Tesnière Bât. IRCOF - 76821 Mont Saint Aignan Cedex, Rouen, France.
| | - Clément Castilla
- Normandie University, UNIROUEN, INSA de Rouen, UMR 6014 CNRS COBRA, 1 rue Tesnière Bât. IRCOF - 76821 Mont Saint Aignan Cedex, Rouen, France
| | - Christophe Morin
- Normandie University, UNIROUEN, INSA de Rouen, UMR 6014 CNRS COBRA, 1 rue Tesnière Bât. IRCOF - 76821 Mont Saint Aignan Cedex, Rouen, France
| | - Nadine Merlet-Machour
- Normandie University, UNIROUEN, INSA de Rouen, UMR 6014 CNRS COBRA, 1 rue Tesnière Bât. IRCOF - 76821 Mont Saint Aignan Cedex, Rouen, France.
| | - Luis Carrasco-Cabrera
- Normandie University, UNIROUEN, INSA de Rouen, UMR 6014 CNRS COBRA, 1 rue Tesnière Bât. IRCOF - 76821 Mont Saint Aignan Cedex, Rouen, France
| | - Florence Medaerts
- Normandie University, UNIROUEN, INSA de Rouen, UMR 6014 CNRS COBRA, 1 rue Tesnière Bât. IRCOF - 76821 Mont Saint Aignan Cedex, Rouen, France
| | - Hélène Lavanant
- Normandie University, UNIROUEN, INSA de Rouen, UMR 6014 CNRS COBRA, 1 rue Tesnière Bât. IRCOF - 76821 Mont Saint Aignan Cedex, Rouen, France
| | - Carlos Afonso
- Normandie University, UNIROUEN, INSA de Rouen, UMR 6014 CNRS COBRA, 1 rue Tesnière Bât. IRCOF - 76821 Mont Saint Aignan Cedex, Rouen, France
| |
Collapse
|
8
|
Grießmeier V, Gescher J. Influence of the Potential Carbon Sources for Field Denitrification Beds on Their Microbial Diversity and the Fate of Carbon and Nitrate. Front Microbiol 2018; 9:1313. [PMID: 29988389 PMCID: PMC6023987 DOI: 10.3389/fmicb.2018.01313] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/30/2018] [Indexed: 12/02/2022] Open
Abstract
Nitrogen based eutrophication of ecosystems is a global problem that gains momentum through a growing global population. The water quality of nitrate or ammonium contaminated rivers and streams cannot always be amended in centralized waste water treatment plants. Field denitrification plants were suggested as a solution for a decentralized reduction of nitrate to dinitrogen. Here, stable and cheap organic carbon sources serve as carbon and electron source for a microbial community. Still, our knowledge on the impact of these organic carbon sources on the development and diversity of these cultures is sparse. Moreover, the stability of these denitrification plants at different nitrate loading rates especially in the higher concentration regime were not tested so far. In this study, we compare the fate of carbon and nitrogen as well as the microbial community of wood pellet (WP) (pressed sawdust), wheat straw, and wood chips (WC) based laboratory denitrification reactors. Our study reveals that the diversity and composition of the community is strongly dependent on the carbon source. The diversity decreased in the order WC, wheat straw, and WPs. The three reactor types were characterized by different nitrate reduction kinetics and were affected differently by high nitrate loading rates. While the nitrate reduction kinetics were negatively influenced by higher nitrate doses in the wheat straw reactors, WPs as carbon source sustained the opposite trend and WC lead to an overall slower but concentration independent nitrate reduction rate. Counterintuitively, the concentration of soluble organic carbon was highest in the WP reactors but methane emission was not detectable. This is corroborated by the microbial diversity data in which methanogenic species were highly underrepresented compared to the other two reactor types. In contrary, the methane emissions in the wheat straw and WC reactors were comparable to each other.
Collapse
Affiliation(s)
- Victoria Grießmeier
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Johannes Gescher
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute for Biological Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
9
|
Ishtiaq M, Jehan N, Khan SA, Muhammad S, Saddique U, Iftikhar B. Potential harmful elements in coal dust and human health risk assessment near the mining areas in Cherat, Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018. [PMID: 29532380 DOI: 10.1007/s11356-018-1655-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This study was aimed to investigate the potential harmful element (PHE) concentrations in coal dust and evaluate the human risk assessment and health effects near coal mining areas. For this purpose, dust samples were collected near various coal mines in Cherat, Pakistan, and analyzed for the PHE concentrations. Determined PHE concentrations were evaluated for the health risk assessment. Results revealed that ingestion was the major pathway as compared to others for PHE exposure. Individual chronic daily intake (CDI) of PHEs was higher than their respective permissible exposure limits set for oral exposure routes by the Agency for Toxic Substances and Disease Registry (ATSDR). Chronic risk or health index (HI) values were observed < 1 for all PHEs and in the order of Pb > Cr > Cd > Ni > Cu > Co > Zn. Higher HI values of Pb, Cr, and Cd could attribute to various chronic health problems as observed during the medical examination survey of this study. Cancer risk (CR) values for this study were observed within the US Environmental Protection Agency (EPA) limits. However, if current practices continued, the PHEs will cross these limits in a near future. Therefore, this study strongly recommends the provision of safety measures, rules, and regulation to avoid health hazards in the future.
Collapse
Affiliation(s)
- Muhammad Ishtiaq
- Department of Community Medicine and Public Health, Khyber Medical College, Peshawar, Pakistan
| | - Noor Jehan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Said Akbar Khan
- Department of Earth and Environmental Sciences, Bahria University, Islamabad, 44000, Pakistan
| | - Said Muhammad
- Department of Earth Sciences, COMSATS University, Abbottabad, 22060, Pakistan.
| | - Umar Saddique
- Department of Chemistry, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Bushra Iftikhar
- Department of Community Medicine and Public Health, Khyber Medical College, Peshawar, Pakistan
| |
Collapse
|
10
|
Amorello D, Barreca S, Bruno M, Milia A, Orecchio S, Pettignano A. Chemical characterization of ancient liturgical vestment (chasuble) by Inductively Coupled Plasma–Optical Emission Spectrometry (ICP–OES). Microchem J 2016. [DOI: 10.1016/j.microc.2016.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|