1
|
Wang F, Li X, Addo TSN, Zhang Y, Li H, Jiang S, Li D, Gong W, Yao Z. Hexafluoroisopropanol-based supramolecular solvent for liquid phase microextraction of pesticides in milk. Food Chem 2024; 460:140689. [PMID: 39116767 DOI: 10.1016/j.foodchem.2024.140689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Residues of pesticides in milk may pose a threat to human health. This study aimed to develop a liquid-phase microextraction (LPME) method using hexafluoroisopropanol (HFIP)-based supramolecular solvent (SUPRAS) for the simultaneous extraction and purification of four pesticides (boscalid, novaluron, cypermethrin and bifenthrin) in milk. Pesticides were extracted using SUPRAS prepared with nonanol and HFIP, and the extraction efficiency was analyzed. Results showed satisfactory recoveries ranging from 80.8%-111.0%, with relative standard deviations (RSDs) of <6.4%. Additionally, satisfactory linearities were observed, with correlation coefficients >0.9952. The limits of quantification (LOQs) were in the range of 1.8 μg·L-1-14.0 μg·L-1. The established method demonstrated high extraction efficiency with a short operation time (15 mins) and low solvent consumption (2.7 mL). The HFIP-based SUPRAS LPME method offers a convenient and efficient approach for the extraction of pesticides from milk, presenting a promising alternative to conventional techniques.
Collapse
Affiliation(s)
- Fang Wang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyun Li
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Tay Seyram Nana Addo
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yuchen Zhang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Hui Li
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Shanxue Jiang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Dandan Li
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Wenwen Gong
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Zhiliang Yao
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Roland RM, Bhawani SA, Ibrahim MNM. Synthesis of molecularly imprinted polymer by precipitation polymerization for the removal of ametryn. BMC Chem 2023; 17:165. [PMID: 38001543 PMCID: PMC10668388 DOI: 10.1186/s13065-023-01084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Ametryn (AME) is a triazine herbicide which is mainly used to kill unwanted herbs in crops. Despite its importance in agriculture, the usage of AME also poses a risk to humans and the ecosystem due to its toxicity. Hence, it is important to develop a method for the effective removal of AME from various water sources which is in the form of molecular imprinting polymer (MIP). In this study, MIP of AME was synthesized via precipitation polymerization using AME as the template molecule with three different functional monomers including methacrylic acid (MAA), acrylamide (AAm) and 2-vinylpyridine (2VP). The three different synthesized polymers namely MIP (MAA), MIP (AAm) and MIP (2VP) were characterized using Fourier Infra-red spectroscopy (FTIR) and Field Emission Electron Microscopy (FESEM). Then, the batch binding study was carried out using all three MIPs in which MIP (MAA) attained the highest rebinding efficiency (93.73%) among the synthesized polymers. The Energy-Dispersive X-ray spectroscopy (EDX) analysis, Brunauer-Emmett-Teller (BET) analysis and thermogravimetric analysis (TGA) were also conducted on the selected MIP (MAA). Adsorption studies including initial concentration, pH and polymer dosage were also conducted on MIP (MAA). In this study, the highest adsorption efficiency was attained at the optimum condition of 6 ppm of AME solution at pH 7 with 0.1 g of MIP (MAA). MIP (MAA) was successfully applied to remove AME from spiked distilled water, tap water and river water samples with removal efficiencies of 95.01%, 90.24% and 88.37%, respectively.
Collapse
Affiliation(s)
- Rachel Marcella Roland
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| | - Showkat Ahmad Bhawani
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia.
| | | |
Collapse
|
3
|
Annamalai K, Annamalai A, Ravichandran R, Elumalai S. Recyclable waste Dry-cell batteries derived carbon dots (CDs) for detection of Two-fold metal ions and degradation of BTB dye. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 163:61-72. [PMID: 37001313 DOI: 10.1016/j.wasman.2023.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In modern era, electronic wastes are one of the major threats around us, most of them are reused with less efficiency instead of re-usage, and conversion into valuable products is highly recommended. In this work, we report an innovative approach for the synthesis of highly photoluminescent CDs from waste dry-cell batteries through one-step hydrothermal treatment for the detection and degradation of environmental pollutants. The as-prepared CDs were studied by X-ray photoelectron spectroscopy (XPS), HR-TEM studies, X-ray diffractometer (XRD), Raman spectrometer, FTIR spectroscopy, UV-visible spectrophotometer, and spectrofluorometric measurements. The calculated quantum yield for synthesized CDs was around 13 %. The CDs have uniform particle size distribution, strong photoluminescent behavior, and possess high stability against various environmental conditions. Also, CDs display the selective and sensitive detection of Cr6+ and Co2+ and ions with a detection limit of around 0.11 µM and 0.10 µM respectively. The possible mechanism of CDs was also examined. Moreover, the photocatalytic activity of CDs with Bromothymol Blue (BTB) dye was studied. The degradation efficiency of BTB dye can be achieved at around 84 % over 180 min under the irradiation of direct sunlight in presence of H2O2. To date, it's the first time we have recycled waste dry-cell batteries into CDs as an effective probe for the detection and decomposition of environmental pollution. Furthermore, this work provides not only an easier route to make good quality and improved photoluminescent CDs from waste material like used batteries and also paves way for the reconversion of global treating waste. Finally, the outstanding detection capability with multiple properties of as-prepared CDs provides various environmental applications like the detection of pollutants and carcinogenic polluted water treatment.
Collapse
Affiliation(s)
- Kumaresan Annamalai
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Arun Annamalai
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Ramya Ravichandran
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Sundaravadivel Elumalai
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India.
| |
Collapse
|
4
|
Liu S, Yan R, Humayun M, Zhang H, Qu Y, Jin Y. Pyropheophorbide-a/(001) TiO2 Nanocomposites with Enhanced Charge Separation and O2 Adsorption for High-Efficiency Visible-Light Degradation of Ametryn. Molecules 2022; 27:molecules27175576. [PMID: 36080345 PMCID: PMC9458040 DOI: 10.3390/molecules27175576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
It is highly desired to enhance charge separation and O2 adsorption of the pyropheophorbide-a (Ppa) to promote visible-light activity and stability. Herein, Ppa modified 001-facet-exposed TiO2 nanosheets (Ppa/001T) nanocomposites with different weight ratios were fabricated via the self-assembly approach by OH induced. Compared with the bare Ppa, the 8% amount optimized 8Ppa/001T sample displayed 41-fold enhanced activity for degradation of Ametryn (AME) under visible-light irradiation. The promoted photoactivities could be attributed to the accelerated charge carrier’s separation by coupling TiO2 as thermodynamic platform for accepting the photoelectrons with high energy from Ppa and the promoted O2 adsorption because of the residual fluoride on TiO2. As for this, a distinctive two radicals (•O2− and •OH) involved pathway of AME degradation is carried out, which is different from the radical pathway dominated by •O2− for the bare Ppa. This work is of utmost importance since it gives us detailed information regarding the charge carrier’s separation and the impact of the radical pathway that will pave a new approach toward the design of high activity visible-light driven photocatalysts.
Collapse
Affiliation(s)
- Songtao Liu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Rui Yan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
- Correspondence: (R.Y.); (Y.Q.); (Y.J.)
| | - Muhammad Humayun
- Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, School of Optical & Electronics Information, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Huanli Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yang Qu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin 150080, China
- Correspondence: (R.Y.); (Y.Q.); (Y.J.)
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
- Correspondence: (R.Y.); (Y.Q.); (Y.J.)
| |
Collapse
|
5
|
Hejabri Kandeh S, Amini S, Ebrahimzadeh H. Development of poly(vinyl alcohol)/chitosan/aloe vera gel electrospun composite nanofibers as a novel sorbent for thin-film micro-extraction of pesticides in water and food samples followed by HPLC-UV analysis. NEW J CHEM 2022. [DOI: 10.1039/d1nj05634d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Schematic presentation of applying PVA/CA/CS/AV composite nanofibers as the extraction phase in thin-film micro-extraction (TFME) of six pesticide compounds prior to HPLC-UV analysis.
Collapse
Affiliation(s)
- Saeed Hejabri Kandeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Shima Amini
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
6
|
Simultaneous selective separation of silver (I) and lead (II) ions from a single dilute source solution through two supported liquid membranes composed of selective crown ethers in supra molecular solvent. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01734-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Ferrofluids-based microextraction systems to process organic and inorganic targets: The state-of-the-art advances and applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Musarurwa H, Tavengwa NT. Supramolecular solvent-based micro-extraction of pesticides in food and environmental samples. Talanta 2021; 223:121515. [PMID: 33303131 DOI: 10.1016/j.talanta.2020.121515] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 11/28/2022]
Abstract
Supramolecular solvent-based micro-extraction is a very important green technique for the isolation and pre-concentration of pesticide residues in food and environmental samples prior to their chromatographic analysis. The attractive features of supramolecular solvent-based micro-extraction include its simplicity, high pre-concentration factor, fastness, accuracy, low cost, less consumption of chemical reagents and environmental friendliness. The supramolecular solvent is generated from a ternary mixture of amphiphiles, water and a water miscible dispersion and coacervating solvent. Tehydrofuran is one of the solvents commonly used as both a dispersion solvent and a coacervating agent. This paper gives a recent comprehensive review on the application of alkanols as amphiphiles during supramolecular solvent-based micro-extraction of pesticide residues in food and environmental samples. Other researchers used long chain fatty acids as amphiphiles during pesticide analysis in food and environmental samples using supramolecular solvent-based micro-extraction, and this is discussed in this paper. The incorporation of ferrofluids in supramolecular solvents enables phase separation using a magnet instead of the time-consuming centrifugation technique. This paper also gives a detailed review of the application of ferrofluid-based supramolecular solvent micro-extraction of pesticide residues in food and environmental samples.
Collapse
Affiliation(s)
- Herbert Musarurwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Nikita Tawanda Tavengwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.
| |
Collapse
|
9
|
Sustainable green solvents for microextraction techniques: Recent developments and applications. J Chromatogr A 2021; 1640:461944. [PMID: 33556679 DOI: 10.1016/j.chroma.2021.461944] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 01/20/2023]
Abstract
The development and application of alternative green solvents in analytical techniques consist of trends in sample preparation, since this subject represents an important step toward sustainability in experimental procedures. This review is focused on the main theoretical aspects related to deep eutectic solvents (DES), switchable hydrophilicity solvents (SHS) and supramolecular solvents (SUPRAS). Recent applications are highlighted, particularly for the extraction of different analytes from environmental, biological and food matrices. Moreover, novel configurations are emphasized, aiming for efficient, automated and high-throughput procedures. This review also provides some critical points regarding the use of these solvents and their green aspects.
Collapse
|
10
|
Abrão LCDC, Silveira AT, de Faria HD, Machado SC, Mendes TV, Plácido RV, Marciano LPDA, Martins I. Toxicological analyses: analytical method validation for prevention or diagnosis. Toxicol Mech Methods 2020; 31:18-32. [PMID: 33081560 DOI: 10.1080/15376516.2020.1839612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The need for reliable results in Toxicological Analysis is recognized and required worldwide. The analytical validation ensures that a method will provide trustworthy information about a particular sample when applied in accordance with a predefined protocol, being able to determine a specific analyte at a distinct concentration range for a well-defined purpose. The driving force for developing method validation for bioanalytical projects comes from the regulatory agencies. Thus, the approach of this work is to present theoretical and practical aspects of method validation based on the analysis objective, whether for prevention or diagnosis. Although various legislative bodies accept differing interpretations of requirements for validation, the process for applying validation criteria should be adaptable for each scientific intent or analytical purpose.
Collapse
Affiliation(s)
| | - Alberto Thalison Silveira
- Laboratory of Toxicant and Drug Analysis, Federal University of Alfenas - Unifal-MG, Alfenas, Brazil
| | - Henrique Dipe de Faria
- Laboratory of Toxicant and Drug Analysis, Federal University of Alfenas - Unifal-MG, Alfenas, Brazil
| | - Simone Caetani Machado
- Laboratory of Toxicant and Drug Analysis, Federal University of Alfenas - Unifal-MG, Alfenas, Brazil
| | - Tássia Venga Mendes
- Laboratory of Toxicant and Drug Analysis, Federal University of Alfenas - Unifal-MG, Alfenas, Brazil
| | - Rodrigo Vicentino Plácido
- Laboratory of Toxicant and Drug Analysis, Federal University of Alfenas - Unifal-MG, Alfenas, Brazil
| | | | - Isarita Martins
- Laboratory of Toxicant and Drug Analysis, Federal University of Alfenas - Unifal-MG, Alfenas, Brazil
| |
Collapse
|
11
|
Soylak M, Agirbas M, Yilmaz E. A new strategy for the combination of supramolecular liquid phase microextraction and UV-Vis spectrophotometric determination for traces of maneb in food and water samples. Food Chem 2020; 338:128068. [PMID: 32950010 DOI: 10.1016/j.foodchem.2020.128068] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/23/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
A novel and green method was developed for enrichment of maneb (manganese ethylene-bisdithiocarbamate) with a supramolecular solvent liquid phase microextraction method. The microextraction method has been used for the first time in the literature for separation-preconcentration of maneb. 1-decanol and tetrahydrofuran were used in the supramolecular solvent formation. The Mn2+ content of maneb was extracted in the supramolecular solvent phase as 1-(2-pyridylazo)-2-naphthol complex at pH 12.0. Manganese concentration was determined by UV-Vis spectrophotometer at 555 nm. Then, the maneb concentration equivalent to manganese concentration was calculated. The analytical parameters which effective in the method, including pH, volume of reagents, and sample volume were optimized. The limit of detection and the limit of quantification values for maneb were calculated as 2.22 μg L-1 and 7.32 μg L-1, respectively. The method was successfully applied in the analysis of the maneb content of water and food samples.
Collapse
Affiliation(s)
- Mustafa Soylak
- Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, 38039 Kayseri, Turkey.
| | - Metin Agirbas
- Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Turkey
| | - Erkan Yilmaz
- Technology Research and Application Center (TAUM), Erciyes University, 38039 Kayseri, Turkey; Erciyes University, Faculty of Pharmacy, Department of Analytical Chemistry, 38039 Kayseri, Turkey; ERNAM Erciyes University, Nanotechnology Application and Research Center, 38039 Kayseri, Turkey
| |
Collapse
|
12
|
Tışlı B, Chormey DS, Ayyıldız MF, Bakırdere S. Experimental Design of Vortex Assisted Switchable Solvent Homogeneous Liquid-Liquid Microextraction for Simultaneous Determination of Four Pesticides in Wastewater. J AOAC Int 2020; 103:1250-1255. [PMID: 33241397 DOI: 10.1093/jaoacint/qsaa047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND Pesticides are chemicals used mainly to protect plant crops in order to increase their production efficiency and quality. OBJECTIVE Switchable-solvent homogeneous liquid-liquid microextraction was optimized using a Box-Behnken experimental design and validated on a gas chromatography mass spectrometry system for the determination of analytes. METHOD The significance of independent variables (switchable solvent volume, sodium hydroxide volume, and vortex period) and their interactions were evaluated by analysis of variance at 95% confidence limits (α = 0.05). RESULTS The LOD and LOQ ranges of the analytes were found to be 0.42-1.90 µg/L and 1.36-6.33 µg/L, respectively. Percentage recovery results were found to be in the range of 87-113% in spiking experiments. CONCLUSIONS A simple, efficient, and accurate analytical method was developed for the simultaneous determination of the selected pesticides. Highlights: Matrix matching was used to enhance quantification accuracy for real samples. HIGHLIGHTS Matrix matching was used to enhance quantification accuracy for real samples.
Collapse
Affiliation(s)
- Büşra Tışlı
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, İstanbul, 34220, Turkey
| | - Dotse Selali Chormey
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, İstanbul, 34220, Turkey
| | - Merve Fırat Ayyıldız
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, İstanbul, 34220, Turkey
| | - Sezgin Bakırdere
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, İstanbul, 34220, Turkey
| |
Collapse
|
13
|
de Oliveira LL, Kudo MV, Lopes CT, Tarley CR. Development and multivariate optimization of nanostructured supramolecular liquid-liquid microextraction validated method for highly sensitive determination of methyl parathion in water samples. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Saraji M, Mohammadipour L, Mehrafza N. An effective configuration for automated magnetic micro solid-phase extraction of phenylurea herbicides from water samples followed by high-performance liquid chromatography. J Chromatogr A 2020; 1617:460829. [DOI: 10.1016/j.chroma.2019.460829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/25/2019] [Accepted: 12/25/2019] [Indexed: 12/25/2022]
|
15
|
Oliveira FMD, Scheel GL, Augusti R, Tarley CRT, Nascentes CC. Supramolecular microextraction combined with paper spray ionization mass spectrometry for sensitive determination of tricyclic antidepressants in urine. Anal Chim Acta 2020; 1106:52-60. [DOI: 10.1016/j.aca.2020.01.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 11/16/2022]
|
16
|
Deng H, Wang H, Liang M, Su X. A novel approach based on supramolecular solvent microextraction and UPLC-Q-Orbitrap HRMS for simultaneous analysis of perfluorinated compounds and fluorine-containing pesticides in drinking and environmental water. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104250] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Supramolecular Solvent-Based Liquid Phase Microextraction Combined with Ion-Pairing Reversed-Phase HPLC for the Determination of Quats in Vegetable Samples. TOXICS 2019; 7:toxics7040060. [PMID: 31779095 PMCID: PMC6958504 DOI: 10.3390/toxics7040060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 11/17/2022]
Abstract
In this study, we used anion supramolecular solvent (SUPRAS) prepared from a mixture of an anionic surfactant, sodium dodecyl sulfate (SDS), and a cationic surfactant, tetrabutylammonium bromide (TBABr), as the extraction solvent in liquid phase microextraction (LPME) of paraquat (PQ) and diquat (DQ). The enriched PQ and DQ in the SUPRAS phase were simultaneously analyzed by ion-pairing reversed-phase high performance liquid chromatography. PQ and DQ were successfully extracted by LPME via electrostatic interaction between the positive charge of the quats and the negative charge of SUPRAS. PQ, DQ, and ethyl viologen (the internal standard) were separated within 15 min on a C18 column, with the mobile phase containing 1-dodecanesulfonic acid and triethylamine, via UV detection. The optimized conditions for the extraction of 10 mL aqueous solution are 50 μL of SUPRAS prepared from a mixture of SDS and TBABr at a mole ratio of 1:0.5, vortexed for 10 s at 1800 rpm, and centrifugation for 1 min at 3500 rpm. The obtained enrichment factors were 22 and 26 with limits of detection of 1.5 and 2.8 µg L-1 for DQ and PQ, respectively. The precision was good with relative standard deviations less than 3.86%. The proposed method was successfully applied for the determination of PQ and DQ in vegetable samples and recoveries were found in the range of 75.0% to 106.7%.
Collapse
|
18
|
Najafi A, Hashemi M. Vortex-assisted supramolecular solvent microextraction based on solidification of floating drop for preconcentration and speciation of inorganic arsenic species in water samples by molybdenum blue method. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Selahle SK, Nomngongo PN. Supramolecular Solvent Based Liquid-Liquid Microextraction for Preconcentration of Selected Fluoroquinolone Antibiotics in Environmental Water Sample Prior to High Performance Liquid Chromatographic Determination. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180523093933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background and Objective:
A rapid, simple and environmental friendly supramolecular
solvent (SUPRAS) based liquid-liquid microextraction method for preconcentration of ciprofloxacin
(CIPRO), danofloxacin (DANO) and enrofloxacin (ENRO) from wastewater was developed.
Methods:
This microextraction technique was coupled with high-performance liquid chromatography
equipped with a diode array detector (HPLC-PDA) for detection and separation of the antibiotics. The
SUPRAS composed of decanoic acid and tricaprylymethylammonium chloride. Optimum conditions for
the extraction and preconcentration of all the antibiotics were obtained using surface response methodology
(RSM) based on Box-Behnken design.
Results:
Under optimum conditions, the limits of detection (LOD) and limit of quantification (LOQ)
ranged from 0.06-0.14 µg L−1 and 0.22-0.47 μg L−1, respectively with the preconcentration factors ranging
from 153-241. The linear dynamic ranges were between LOQ and 850 µg L−1 with correlation coefficients
ranging from 0.9928 to 0.9999. The intra-day (n = 15) and inter-day (n = 5) precisions (expressed
in terms of %RSD) for 50 µg L−1 of CIPRO, DANO and ENRO were in the range of 3.3–4%
and 4.1–5.8%, respectively.
Conclusion:
Lastly, the developed method was used for the extraction, preconcentration and quantification
of selected CIPRO, DANO and ENRO in influent and effluent wastewater samples.
Collapse
Affiliation(s)
- Shirley K. Selahle
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Philiswa N. Nomngongo
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| |
Collapse
|
20
|
Vesicular supramolecular solvent-based microextraction followed by high performance liquid chromatographic analysis of tetracyclines. Talanta 2019; 200:203-211. [DOI: 10.1016/j.talanta.2019.03.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 01/23/2023]
|
21
|
Deep eutectic solvent microextraction of lead(II), cobalt(II), nickel(II) and manganese(II) ions for the separation and preconcentration in some oil samples from Turkey prior to their microsampling flame atomic absorption spectrometric determination. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Suquila FAC, Scheel GL, de Oliveira FM, Tarley CRT. Assessment of ultrasound-assisted extraction combined with supramolecular solvent-based microextraction for highly sensitive cadmium determination in medicinal plant sample by TS-FF-AAS. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
de Oliveira DM, Cavalcante RP, da Silva LDM, Sans C, Esplugas S, de Oliveira SC, Junior AM. Identification of intermediates, acute toxicity removal, and kinetics investigation to the Ametryn treatment by direct photolysis (UV 254), UV 254/H 2O 2, Fenton, and photo-Fenton processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4348-4366. [PMID: 29427279 DOI: 10.1007/s11356-018-1342-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
This paper reports the degradation of 10 mg L-1 Ametryn solution with different advanced oxidation processes and by ultraviolet (UV254) irradiation alone with the main objective of reducing acute toxicity and increase biodegradability. The investigated factors included Fe2+ and H2O2 concentrations. The effectiveness of the UV254 and UV254/H2O2 processes were investigated using a low-pressure mercury UV lamp (254 nm). Photo-Fenton process was explored using a blacklight blue lamp (BLB, λ = 365 nm). The UV254 irradiation process achieved complete degradation of Ametryn solution after 60 min. The degradation time of Ametryn was greatly improved by the addition of H2O2. It is worth pointing out that a high rate of Ametryn removal was attained even at low concentrations of H2O2. The kinetic constant of the reaction between Ametryn and HO● for UV254/H2O2 was 3.53 × 108 L mol-1 s-1. The complete Ametryn degradation by the Fenton and photo-Fenton processes was observed following 10 min of reaction for various combinations of Fe2+ and H2O2 under investigation. Working with the highest concentration (150 mg L-1 H2O2 and 10 mg L-1 Fe2+), around 30 and 70% of TOC removal were reached within 120 min of treatment by Fenton and photo-Fenton processes, respectively. Although it did not obtain complete mineralization, the intermediates formed in the degradation processes were hydroxylated and did not promote acute toxicity of Vibrio fischeri. Furthermore, a substantial improvement of biodegradability was obtained for all studied processes.
Collapse
Affiliation(s)
- Dirce Martins de Oliveira
- Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul, Cidade Universitária, CP 549, Campo Grande, MS, 79070-900, Brazil
| | - Rodrigo Pereira Cavalcante
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, CP 549, Campo Grande, MS, 79074-460, Brazil
| | - Lucas de Melo da Silva
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, CP 549, Campo Grande, MS, 79074-460, Brazil
| | - Carme Sans
- Department of Chemical Engineering, University of Barcelona, C/Martí i Franquès, 1, 08028, Barcelona, Spain
| | - Santiago Esplugas
- Department of Chemical Engineering, University of Barcelona, C/Martí i Franquès, 1, 08028, Barcelona, Spain
| | - Silvio Cesar de Oliveira
- Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul, Cidade Universitária, CP 549, Campo Grande, MS, 79070-900, Brazil
| | - Amilcar Machulek Junior
- Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul, Cidade Universitária, CP 549, Campo Grande, MS, 79070-900, Brazil.
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, CP 549, Campo Grande, MS, 79074-460, Brazil.
| |
Collapse
|
24
|
Ezoddin M, Adlnasab L, Kaveh AA, Karimi MA. Ultrasonically formation of supramolecular based ultrasound energy assisted solidification of floating organic drop microextraction for preconcentration of methadone in human plasma and saliva samples prior to gas chromatography-mass spectrometry. ULTRASONICS SONOCHEMISTRY 2019; 50:182-187. [PMID: 30287181 DOI: 10.1016/j.ultsonch.2018.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
In this work, an ultrasonic-assisted supramolecular based on solidification of floating organic drop microextraction (UA-SM-SFO-ME) was developed as a green method for preconcentration of methadone prior to gas chromatography-mass spectrometry (GC-MS). The supramolecular solvent aggregates containing reverse micelles of 1-dodecanol in tetrahydrofuran (THF) were formed by ultrasonication that subsequently dispersed in the sample solution. Ultrasonic waves caused the fast formation of supramolecular solvent aggregates. In this work, ultrasonication was used in two phases: First phase, the formation of reverse micelles and the second phase, the dispersion of supramolecular solvent in the sample solution. Actually, ultrasonication was basic of this presented work. In order to provide the highest extraction efficiency, the influence of various parameters on the method performance (supramolecular solvent type and volume, disperser solvent condition, pH, extraction time and salt concentration) was investigated. Based on the obtained optimum conditions, the limits of detection (LODs) and the limits of quantitation (LOQs) were obtained 0.5-1.2 µg L-1 and 1.2-2.5 µg L-1 with preconcentration factors in the range of 182-191, in water and biological samples, respectively. Subsequently, the method was assessed for preconcentration of the methadone in human plasma and saliva samples.
Collapse
Affiliation(s)
- Maryam Ezoddin
- Department of Chemistry, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran
| | - Laleh Adlnasab
- Department of Chemistry and Polymer, Faculty of Chemistry and Petrochemical Engineering, Standard Research Institute, P.O. Box: 31745-139, Karaj, Iran.
| | - Akram Afshari Kaveh
- Department of Chemistry, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran
| | - Mohammad Ali Karimi
- Department of Chemistry, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran
| |
Collapse
|
25
|
Gouda AA, Elmasry MS, Hashem H, EL-Sayed HM. Eco-friendly environmental trace analysis of thorium using a new supramolecular solvent-based liquid-liquid microextraction combined with spectrophotometry. Microchem J 2018. [DOI: 10.1016/j.microc.2018.06.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Carasek E, Merib J, Mafra G, Spudeit D. A recent overview of the application of liquid-phase microextraction to the determination of organic micro-pollutants. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Guiñez M, Bazan C, Martinez LD, Cerutti S. Determination of nitrated and oxygenated polycyclic aromatic hydrocarbons in water samples by a liquid–liquid phase microextraction procedure based on the solidification of a floating organic drop followed by solvent assisted back-extraction and liquid chromatography–tandem mass spectrometry. Microchem J 2018. [DOI: 10.1016/j.microc.2018.02.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Pirsaheb M, Fattahi N. Development of a liquid-phase microextraction based on the freezing of a deep eutectic solvent followed by HPLC-UV for sensitive determination of common pesticides in environmental water samples. RSC Adv 2018; 8:11412-11418. [PMID: 35542816 PMCID: PMC9079125 DOI: 10.1039/c8ra00912k] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/19/2018] [Indexed: 12/30/2022] Open
Abstract
In this research, a new extraction method based on liquid-phase microextraction and the freezing of deep eutectic solvent has been developed for the determination of pesticides in water prior to their analysis by HPLC-UV.
Collapse
Affiliation(s)
- Meghdad Pirsaheb
- Research Center for Environmental Determinants of Health (RCEDH)
- Kermanshah University of Medical Sciences
- Kermanshah
- Iran
| | - Nazir Fattahi
- Research Center for Environmental Determinants of Health (RCEDH)
- Kermanshah University of Medical Sciences
- Kermanshah
- Iran
| |
Collapse
|
29
|
Mpupa A, Mashile GP, Nomngongo PN. Vortex assisted-supramolecular solvent based microextraction coupled with spectrophotometric determination of triclosan in environmental water samples. OPEN CHEM 2017. [DOI: 10.1515/chem-2017-0032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AbstractA simple, fast and environmental friendly vortex assisted-supramolecular solvent based microextraction (VA-SSME) method was developed for the preconcetration of triclosan in wastewater prior to UV spectrophotometric determination. To achieve maximum sensitivity and accuracy for the target analyte, the experimental parameters affecting the VA-SSME procedure were optimized using response surface methodology (RSM). Under optimised conditions, the correlation coefficient (R2) and recoveries were 0.9994 and 100.31-118.5%, respectively. The intra-day (repeatability) and inter-day (reproducibility) precisions expressed in terms of relative standard deviation (RSD) were 2-4% and 5.2%, respectively. The preconcentration factor and limits of detection (LOD) and quantification (LOQ) were found to be 90, 0.28 μg L−1 and 0.92 μg L−1, respectively. The developed VA-SSME/UV method was applied for the determination of triclosan in real samples collected over a period of three months. The analytical results obtained showed that triclosan was frequently detected in influent wastewater samples but was not detected in effluent samples.
Collapse
Affiliation(s)
- Anele Mpupa
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa
| | - Geaneth P. Mashile
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa
| | - Philiswa N. Nomngongo
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa
| |
Collapse
|
30
|
Teixeira Tarley CR, Segatelli MG, Casarin J, Justo da Fonseca R. New sorbents based on poly(methacrylic acid-TRIM) and poly(vinylimidazole-TRIM) for simultaneous preconcentration of herbicides in water samples with posterior determination by HPLC-DAD. RSC Adv 2017. [DOI: 10.1039/c7ra04124a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study, poly(methacrylic acid-trimethylolpropane trimethacrylate) (PMA-TRIM) and poly(vinylimidazole-TRIM) (PV-TRIM) have been used for simultaneous extraction of tebuthiuron, hexazinone, diuron, and ametryn with posterior determination by HPLC-DAD.
Collapse
Affiliation(s)
| | - Mariana Gava Segatelli
- Universidade Estadual de Londrina (UEL)
- Departamento de Química
- Centro de Ciências Exatas
- Londrina
- Brazil
| | - Juliana Casarin
- Universidade Estadual de Londrina (UEL)
- Departamento de Química
- Centro de Ciências Exatas
- Londrina
- Brazil
| | - Raquel Justo da Fonseca
- Universidade Estadual de Londrina (UEL)
- Departamento de Química
- Centro de Ciências Exatas
- Londrina
- Brazil
| |
Collapse
|