1
|
Figueroa-Quintero L, Cordero-Lanzac T, Ramos-Fernandez EV, Olsbye U, Narciso J. Tailoring Catalysts for CO 2 Hydrogenation: Synthesis and Characterization of NH 2-MIL-125 Frameworks. Molecules 2025; 30:1458. [PMID: 40286045 PMCID: PMC11990164 DOI: 10.3390/molecules30071458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 04/29/2025] Open
Abstract
Copper nanoparticles have been integrated onto the framework of modified NH2-MIL-125(Ti), a metal-organic framework (MOF), and evaluated as catalysts for converting CO2 into valuable products. The modified MOF was achieved through a post-synthetic modification process involving the partial replacement of titanium with zirconium or cerium within the MOF's structure. The objective behind this alteration is to create a synergistic effect between the MOF, serving as a support matrix, and the embedded copper nanoparticles, thereby enhancing the performance of the catalyst. The obtained catalysts were characterized and evaluated in the hydrogenation of CO2 to methanol under different experimental conditions, reaching CO2 conversions of up to 5%, with a selectivity towards methanol that reached values of up to 60%. According to the obtained results, the catalyst composed of Ti, Zr and Cu stood out for having the highest CO2 conversion and selectivity towards methanol, in addition to practically inhibiting the production of methane. These results demonstrate that the interaction of the framework with the Cu nanoparticles, and thus its catalytic properties, can be changed by modifying the properties of the MOF.
Collapse
Affiliation(s)
- Leidy Figueroa-Quintero
- Inorganic Chemistry Department, Laboratory of Advanced Materials, University Materials Institute of Alicante, University of Alicante, 03080 Alicante, Spain; (L.F.-Q.); (E.V.R.-F.)
| | - Tomás Cordero-Lanzac
- SMN Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Sem Saelands Vei 26, 0371 Oslo, Norway; (T.C.-L.); (U.O.)
| | - Enrique V. Ramos-Fernandez
- Inorganic Chemistry Department, Laboratory of Advanced Materials, University Materials Institute of Alicante, University of Alicante, 03080 Alicante, Spain; (L.F.-Q.); (E.V.R.-F.)
| | - Unni Olsbye
- SMN Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Sem Saelands Vei 26, 0371 Oslo, Norway; (T.C.-L.); (U.O.)
| | - Javier Narciso
- Inorganic Chemistry Department, Laboratory of Advanced Materials, University Materials Institute of Alicante, University of Alicante, 03080 Alicante, Spain; (L.F.-Q.); (E.V.R.-F.)
| |
Collapse
|
2
|
Molavi H, Salimi MS. Investigation the effect of exchange solvents on the adsorption performances of Ce-MOFs towards organic dyes. Sci Rep 2025; 15:7074. [PMID: 40016413 PMCID: PMC11868615 DOI: 10.1038/s41598-025-90313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
Cerium-based MOFs (Ce-MOFs) are regarded as attractive porous materials showing various structures, excellent thermal and chemical stability, tunable porous properties, and simple synthetic methods that are useful for wastewater treatment applications. Hence, in the present work, we synthesized a series of Ce-MOFs through a fast and green synthetic method at room temperature using water as a green solvent. Four different solvents including ethanol, chloroform, acetone, and methanol were used in the solvent-exchange process to engineer the properties of prepared Ce-MOFs. The influence of different exchange solvents on the crystalline structure, porous structure, thermal stability, and surface morphology of Ce-MOFs was studied systematically. It was found that exchange solvents can significantly affect the chemical and physical properties of prepared Ce-MOFs. Using ethanol as an exchange solvent results in the production of highly crystalline MOF that has the highest surface area (843 m2/g) and pore volume (0.7518 cm3/g) compared to other prepared Ce-MOFs. The dye adsorption experiments revealed that the activated sample by acetone (Ce-MOF-4) exhibited the highest adsorption capacities toward both anionic (270.27 mg/g for Congo Red (CR)) and cationic (227.27 mg/g for Malachite Green (MG)) dyes. This MOF adsorbs both organic dyes via different mechanisms including hydrogen bonding, pore-filling, π-π stacking, coordination, and electrostatic interactions. Moreover, it exhibited good structural stability in acidic solution, neutral solution, and during consecutive adsorption-desorption cycles, confirming its potential to be applied as a stable adsorbent for simultaneous removal of cationic and anionic organic dyes from water.
Collapse
Affiliation(s)
- Hossein Molavi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Zanjan, 45137- 66731, Iran.
| | - Mohammad Sepehr Salimi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Zanjan, 45137- 66731, Iran
| |
Collapse
|
3
|
Afshariazar F, Morsali A. Mixed-valence metal-organic frameworks: concepts, opportunities, and prospects. Chem Soc Rev 2025; 54:1318-1383. [PMID: 39704326 DOI: 10.1039/d4cs01061b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Owing to increasing global demand for the development of multifunctional advanced materials with various practical applications, great attention has been paid to metal-organic frameworks due to their unique properties, such as structural, chemical, and functional diversity. Several strategies have been developed to promote the applicability of these materials in practical fields. The induction of mixed-valency is a promising strategy, contributing to exceptional features in these porous materials such as enhanced charge delocalization, conductivity, magnetism, etc. The current review provides a detailed study of mixed-valence MOFs, including their fundamental properties, synthesis challenges, and characterization methods. The outstanding applicability of these materials in diverse fields such as energy storage, catalysis, sensing, gas sorption, separation, etc. is also discussed, providing a roadmap for future design strategies to exploit mixed valency in advanced materials. Interestingly, mixed-valence MOFs have demonstrated fascinating features in practical fields compared to their homo-valence MOFs, resulting from an enhanced synergy between mixed-valence states within the framework.
Collapse
Affiliation(s)
- Farzaneh Afshariazar
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, PO Box 14115-4838, Tehran, Islamic Republic of Iran.
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, PO Box 14115-4838, Tehran, Islamic Republic of Iran.
| |
Collapse
|
4
|
Wu W, Yan Y, Xie M, Liu Y, Deng L, Wang H. A critical review on metal organic frameworks (MOFs)-based sensors for foodborne pathogenic bacteria detection. Talanta 2025; 281:126918. [PMID: 39305763 DOI: 10.1016/j.talanta.2024.126918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
The pervasive threat of foodborne pathogenic bacteria necessitates advancements in rapid and reliable detection methods. Traditional approaches suffer from significant limitations including prolonged processing times, limited sensitivity and specificity. This review comprehensively examines the integration of metal organic frameworks (MOFs) with sensor technologies for the enhanced detection of foodborne pathogens. MOFs, with their unique properties such as high porosity, tunable pore sizes, and ease of functionalization, offer new avenues for sensor enhancement. This paper provides a comprehensive analysis of recent developments in MOFs-based sensors, particularly focusing on electrochemical, fluorescence, colorimetric, and surface-enhanced Raman spectroscopy sensors. We have provided a detailed introduction for the operational principles of these sensors, highlighting the role of MOFs play in enhancing their performance. Comparative analyses demonstrate MOFs' superior capabilities in enhancing signal response, reducing response time, and expanding detection limits. This review culminates in presenting MOFs as transformative materials in the detection of foodborne pathogens, paving the way for their broader application in ensuring food safety.
Collapse
Affiliation(s)
- Wenbo Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yueling Yan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Maomei Xie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yidan Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Liyi Deng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for TCM, Tianjin, 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of TCM, Tianjin, 301617, China.
| |
Collapse
|
5
|
Wei F, Yu X, Ren Q, Chen H, Zhang Y, Liang Z. Removal of Moxifloxacin from Aqueous Solutions Using GO/Cr-MOFs. J Phys Chem A 2024; 128:7889-7898. [PMID: 39230386 DOI: 10.1021/acs.jpca.4c03714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The composite material, consisting of graphene oxide (GO) and chromium metal-organic frameworks (Cr-MOFs), was successfully synthesized by using a solvothermal method. The organic ligand employed was 2,5-dihydroxyterephthalic acid, while chromium acetate served as the source of the metal. The resulting material underwent characterization through Fourier transform infrared, scanning electron microscopy, and X-ray diffraction techniques. Subsequently, the adsorption capacity of the composite material toward moxifloxacin was evaluated. The results indicated a gradual increase in the moxifloxacin removal rate from GO/Cr-MOFs over time until reaching an equilibrium with a maximum removal rate of 90.4%. Additionally, it was observed that higher temperatures led to a decrease in the adsorption capacity. By incorporating 30 mg of GO/Cr-MOFs into a solution containing 40 ppm of moxifloxacin, the adsorption capacity could be maximized at 222.25 mg/g. Experimental data on MOF adsorption of moxifloxacin were analyzed using pseudo-first-order kinetics (PFO), pseudo-second-order kinetics (PSO), and Langmuir, Freundlich, and Temkin isotherm models for theoretical research purposes. Results showed that the PSO model exhibited a better correlation than the PFO model did. Furthermore, experimental data demonstrated good agreement with the Freundlich isothermal model, suggesting its effectiveness in accurately describing the adsorption process. Henceforth, it can be concluded that chemisorption plays a significant role in removing moxifloxacin by GO/Cr-MOFs. The van't Hoff equation analysis revealed an exothermic and spontaneous nature of moxifloxacin adsorption onto GO/Cr-MOFs. Compared to other materials, the GO/Cr-MOF composite exhibited high potential for applications such as drug removal or related fields.
Collapse
Affiliation(s)
- Fuhua Wei
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou 561000, China
| | - Xiang Yu
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou 561000, China
| | - Qinhui Ren
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou 561000, China
| | - Hongliang Chen
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou 561000, China
| | - Yutao Zhang
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou 561000, China
| | - Zhao Liang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, China
| |
Collapse
|
6
|
Wang Z, Li H, Jiang C, Liu W, Zhang S, Zhou Y, Liu K, Xiao Y, Hou R, Wan X, Liu Y. Mn-modified porphyrin metal-organic framework mediated colorimetric and photothermal dual-channel probe for sensitive detection of organophosphorus pesticides. J Colloid Interface Sci 2024; 661:1060-1069. [PMID: 38335790 DOI: 10.1016/j.jcis.2024.02.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Herein, a novel dual-mode probe for organophosphorus pesticides (OPs) colorimetric and photothermal detection was developed based on manganese modified porphyrin metal-organic framework (PCN-224-Mn). PCN-224-Mn had excellent oxidase-like activity and oxidized colorless 3,3,5,5-tetramethylbenzidine (TMB) to blue-green oxidation state TMB (oxTMB), which exhibited high temperature under near-infrared irradiation. l-ascorbate-2-phosphate was hydrolyzed by acid phosphatase to produce ascorbic acid, which weakened colorimetric and photothermal signals by impacting oxTMB generation. The presence of OPs blocked the production of ascorbic acid by irreversibly inhibiting the activity of acid phosphatase, causing the restoration of chromogenic reaction and the increase of temperature. Under the optimal conditions, the probe showed a good linear response to OPs in the concentration range of 5 ∼ 10000 ng/mL, using glyphosate as the analog. The detection limits of glyphosate in colorimetric mode and photothermal mode were 1.47 ng/mL and 2.00 ng/mL, respectively. The probe was successfully used for sensitive identification of OPs residues in tea, brown rice, and wheat flour. This work proposes a simple and reliable colorimetric/photothermal platform for OPs identification, which overcomes the problem that single-mode detection probes are susceptible to external factors, and has broad application potential in the field of food safety.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chuang Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wenya Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Siyu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yibin Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kang Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yaqing Xiao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yingnan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
7
|
Chen Y, Gong C, Chen K, Wang Z, He M, Wang P, Chen K, Jiao Y, Yang Y. G-quadruplex DNA-based colorimetric biosensor for the ultrasensitive visual detection of strontium ions using MnO 2 nanorods as oxidase mimetics. Mikrochim Acta 2024; 191:213. [PMID: 38512701 DOI: 10.1007/s00604-024-06293-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
Strontium-90 (90Sr) is a major radioactive component that has attracted great attention, but its detection remains challenging since there are no specific energy rays indicative of its presence. Herein, a biosensor that is capable of rapidly detecting Sr2+ ions is demonstrated. Simple colorimetric method for sensitive detection of Sr2+ with the help of single-stranded DNA was developed by preparing MnO2 nanorods as oxidase mimic catalysis 3,3',5,5'-tetramethylbenzidine (TMB). Under weakly acidic conditions, MnO2 exhibited a strong oxidase-mimicking activity to oxidize colorless TMB into blue oxidation products (oxTMB) with discernible absorbance signals. Nevertheless, the introduction of a guanine-rich DNA aptamer inhibited MnO2-mediated TMB oxidation and reduced oxTMB formation, resulting in blue fading and diminished absorbance. Upon the addition of strontium ions to the system, the aptamers formed a stable G-quadruplex structure with strontium ions, thereby restoring the oxidase-mimicking activity of MnO2. Under the best experimental conditions, the absorbance exhibits a linear relationship with the Sr2+ concentration within the range 0.01-200 μM, with a limit of detection of 0.0028 µM. When the concentration of Sr2+ from 10-8 to 10-6 mol L-1, a distinct color change gradient could be observed in paper-based sensor. We successfully applied this approach to determine Sr2+ in natural water samples, obtaining recoveries ranging from 97.6 to 103% with a relative standard deviation of less than 5%. By providing technical solutions for detection, our work contributed to the effective monitoring of transportation of radioactive Sr in the environment.
Collapse
Affiliation(s)
- Yiting Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Chunhui Gong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Kaiwei Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ziwei Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Manli He
- Department of General Education, Army Engineering University of PLA, Nanjing, 211101, China
| | - Peng Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yan Jiao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yi Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
8
|
Molavi H, Salimi MS. Green Synthesis of Cerium-Based Metal-Organic Framework (Ce-UiO-66 MOF) for Wastewater Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38032754 DOI: 10.1021/acs.langmuir.3c02384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Green synthesis of metal-organic frameworks (MOFs) in aqueous solutions under ambient conditions with reduced production costs and environmental effects is an efficient technique to transfer lab-scale production to industrial large scale. Hence, this work proposes a green, low-cost, sustainable, rapid, and innovative synthetic strategy to produce cerium-based (Ce-UiO-66) MOFs under ambient conditions in the presence of water as a green solvent. This synthetic strategy exhibits great potential compared to conventional solvothermal synthetic techniques, and it does not need external activation energy and organic solvents, which can achieve the standards of green chemistry. Ce-UiO-66 MOF was synthesized successfully and utilized as a green adsorbent to efficiently eliminate anionic Congo Red (CR) dye from dye-containing wastewater. The experimental adsorption results were well matched to the pseudo-second-order kinetic and Langmuir isotherm models, in which the maximum CR adsorption capacity was measured to be about 285.71 mg/g. To evidence the applicability of Ce-UiO-66 MOFs in CR adsorption, the CR adsorption reaction was performed in the presence of interfering pollutants [e.g., salts (NaCl, KCl, and MgCl2) and cationic organic dyes (Malachite Green (MG) and Methylene Blue (MB)], where the results prove the promising adsorption performances of Ce-UiO-66 MOFs toward CR dye. Interestingly, the synthesized adsorbent exhibited high structural stability during repeated adsorption-desorption cycles, where the surface area of MOFs decreased from 555 to 376 m2/g after three cycles, while its CR adsorption capacity decreased by only 10% compared to that of the fresh adsorbent. All these outstanding properties indicate that the Ce-UiO-66 MOFs will be an effective adsorbent for water and wastewater treatment applications.
Collapse
Affiliation(s)
- Hossein Molavi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), GavaZang, Zanjan 45137-66731, Iran
| | - Mohammad Sepehr Salimi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), GavaZang, Zanjan 45137-66731, Iran
| |
Collapse
|
9
|
Shi C, Pu S, Wu L, Hou X. Concentration- and Self-Catalysis-Dominated Rapid Synthesis of Multifunctional UiO-66(Ce) for Dual-Mode Sensing of Tetracycline. Inorg Chem 2023; 62:18573-18582. [PMID: 37917528 DOI: 10.1021/acs.inorgchem.3c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Simple and rapid synthesis of multifunctional metal-organic frameworks (MOFs) at room temperature (RT) with their multifunction controllable is still appealing for further expansion of the practical applications of MOFs. Herein, in this work, rapid RT synthesis of a multifunctional UiO-66(Ce) [M-UiO-66(Ce)] with both oxidase-like activity and fluorescence emission properties was facilely achieved within 15 min through a straightforward reactant concentration modulation and self-catalytic postmodification strategy. Appropriate concentrations of cerium ammonium nitrate or 1,4-benzenedicarboxylic acid (BDC) were beneficial for the synthesis of UiO-66(Ce) with better crystallization. During the postmodification process, through regulation of the self-photocatalysis of UiO-66(Ce), a high conversion rate from BDC to BDC-OH of up to 14% can be obtained, resulting in a significantly enhanced fluorescence signal of M-UiO-66(Ce) within 2 min. Moreover, M-UiO-66(Ce) enabled the accurate and reliable detection of tetracycline (TC) in real samples. Besides, the colorimetric and fluorescence modes complemented each other, expanding the linear range of TC detection and exhibiting its great potential for practical applications. This work provides new insights for the convenient and rapid synthesis of multifunctional materials based on MOFs, which is favorable for promoting the large-scale preparation of MOFs and their practical application in on-site environmental pollutant sensing.
Collapse
Affiliation(s)
- Chaoting Shi
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shan Pu
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lan Wu
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiandeng Hou
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
10
|
Tati A, Ahmadipouya S, Molavi H, Mousavi SA, Rezakazemi M. Efficient removal of organic dyes using electrospun nanofibers with Ce-based UiO-66 MOFs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115584. [PMID: 37866034 DOI: 10.1016/j.ecoenv.2023.115584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
Cerium-based UiO-66 (Ce-UiO-66) metal-organic frameworks (MOFs) were synthesized via a facile solvothermal method and fully characterized using FTIR, XRD, BET, SEM, EDX, and zeta potential techniques. The synthesized Ce-UiO-66 particles were embedded into an electrospun cross-linked polyvinyl alcohol (PVA)/chitosan (CTS) nanofiber (EPCNF), and then employed to remove organic dyes from water. The adsorption results demonstrated that the adsorption capacities of both anionic (Congo Red (CR), Methyl Orange (MO) and Methyl Red (MR)) and cationic (Methylene Blue (MB)) dyes over the fabricated electrospun nanofibers (ENFs) increased with increasing the loadings of Ce-UiO-66 MOFs. Accordingly, the adsorption performance of EPCNF-10 (containing 10 wt% of Ce-UiO-66 MOFs) adsorbent toward these organic dyes is in the order of CR (102.04 mg/g) > MO (87.71 mg/g) > MR (65.35 mg/g) > MB (34.24 mg/g). Moreover, it was found that the Freundlich isotherm model and the pseudo-second-order kinetic model were appropriate for describing the adsorption behaviors of EPCNF-10 adsorbent toward both anionic and cationic dyes. Thus, it can be proposed that the fabricated EPCNF-10 adsorbent would be effective adsorbent materials for the removal of anionic and cationic dyes from water due to its excellent adsorption performance, facile preparation, good regeneration, and simple separation from aqueous solutions.
Collapse
Affiliation(s)
- Ali Tati
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Salman Ahmadipouya
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hossein Molavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran.
| | - Seyyed Abbas Mousavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
11
|
Zhang L, Bi X, Liu X, He Y, Li L, You T. Advances in the application of metal-organic framework nanozymes in colorimetric sensing of heavy metal ions. NANOSCALE 2023; 15:12853-12867. [PMID: 37490007 DOI: 10.1039/d3nr02024j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Nanozymes, which can be defined as nanomaterials with excellent catalytic function, are well known to the scientific community due to their distinct merits, such as low cost and high stability, which render them preferable to natural enzymes. As porous organic-inorganic coordination materials, metal-organic frameworks (MOFs) possess a large number of active sites and thus can effectively mimic the properties of natural enzymes. Recently, MOF-based nanozymes have also exhibited good application potential for the analysis of heavy metal ions. In comparison to the traditional detection methods for heavy metal ions, nanozyme-based colorimetric sensing permits intuitive visual analysis by using relatively simple instruments, facilitating rapid and simple on-site screening. In this minireview, the preparation of MOF-based nanozymes and the different nanozyme activity types are briefly described, such as peroxidase-like and oxidase-like, and the relevant catalytic mechanisms are elaborated. Based on this, different response mechanisms of MOF-based colorimetric methods to heavy metal ions, such as turn-off, turn-on, and turn-off-on, are discussed. In addition, the colorimetric sensing applications of MOF-based nanozymes for the detection of heavy metal ions are summarized. Finally, the current research status of MOF-based nanozymes and the future development direction are discussed.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaoya Bi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaohong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Yi He
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
12
|
Dong L, Wang W, Ning Y, Deng X, Gao Y. Detection of trace antimony by vanadium (IV) ion assisted photochemical vapor generation with inductively coupled plasma mass spectrometry measurement. Anal Chim Acta 2023; 1251:341006. [PMID: 36925311 DOI: 10.1016/j.aca.2023.341006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
In this work, a method for sensitive detection of trace antimony (Sb) was developed by inductively coupled plasma mass spectrometry (ICP MS) coupled with photochemical vapor generation (PVG). V(IV) ions were used as new "sensitizers" for improving the PVG efficiency of Sb. Factors influenced the PVG and the detection of Sb by ICP MS were investigated, including the type and concentration of low molecular weight organic acids, the UV irradiation time, the concentration of V(IV) ions, the air-liquid interface, the flow rate of Ar carrier gas, and interferences from co-existing ions. It was found that efficient reduction of Sb was obtained in the medium of 10% (v/v) formic acid (FA), 10% (v/v) acetic acid (AA), and 80 mg L-1 of V(IV) with 100 s UV irradiation. Under the selected conditions, there was no significant difference in analytical sensitivity between Sb(III) and Sb(V). The limit of detection (LOD, 3σ) was 4.7 ng L-1 for Sb with ICP MS measurement. Compared to traditional direct solution nebulization, the analytical sensitivity obtained in this work was enhanced about 19-fold. Relative standard deviations (RSDs, n = 7) were 1.9% and 2.3% for replicate measurement of 0.5 μg L-1 Sb(III) and Sb(V) standard solutions, respectively. The proposed method was applied for the determination of trace Sb in water samples and two certified reference materials (CRMs) of sediments with satisfactory results. Moreover, the generated volatile species of Sb in this work was found to be (CH3)3Sb.
Collapse
Affiliation(s)
- Liang Dong
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Weigao Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Yongyan Ning
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Xiuqin Deng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Ying Gao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Sichuan, 610059, China.
| |
Collapse
|
13
|
Hu J, Song J, Han X, Wen Q, Yang W, Pan W, Jian S, Jiang S. Fabrication of Ce-La-MOFs for defluoridation in aquatic systems: A kinetics, thermodynamics and mechanisms study. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
14
|
Zhao H, Zhang Z, Han Y, Yang W, Tang W, Yue T, Li Z. Visual detection of vitamin C in fruits and vegetables using UiO-66 loaded Ce-MnO 2 mimetic oxidase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121900. [PMID: 36170775 DOI: 10.1016/j.saa.2022.121900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
A nanocomposite (UiO-66/Ce-MnO2) was fabricated by combining UiO-66 with cerium-doped manganese dioxide (Ce-MnO2) for colorimetric detecting vitamin C (Vc). Compared with traditional artificial enzymes, the as-synthesized UiO-66/Ce-MnO2 were simple to prepare and did not require the participation of other active substances. The doping of cerium increased the oxygen vacancies and the UiO-66 as a carrier improved the dispersibility. The formation of superoxide anion (O2-) and the inside Ce4+/Ce3+ and Mn4+/Mn3+ redox couples of UiO-66/Ce-MnO2 endowed UiO-66/Ce-MnO2 with a high catalytic capability, which could catalytically oxidize 3, 3', 5, 5'-tetramethylbenzidine (TMB) into oxidation state TMB (oxTMB) without H2O2, accompanying with color change and a prominent peak at 652 nm in UV-vis spectra. Based on the inhibitory effects of Vc on catalytic oxidation of TMB, detection of Vc can be achieved, exhibiting a linear relationship in the concentration of 1.13-17.01 μmol L-1 with a low detection limit of 65.82 nmol L-1. This system can also be detected by smartphone, the linear detection range is 12.47-22.67 μmol L-1. Vc contents in fruits and vegetables detected by the sensor were in good agreement with the 2, 4-Dinitrophenylhydrazine colorimetry method (P > 0.05), indicating a reliable sensor for Vc detection.
Collapse
Affiliation(s)
- Haiping Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziyi Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yong Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weixia Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenzhi Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
15
|
Visible light-responsive vanadium-based metal–organic framework supported pepsin with high oxidase mimic activity for food spoilage monitoring. Mikrochim Acta 2022; 189:448. [DOI: 10.1007/s00604-022-05554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022]
|
16
|
Wang Y, Zulpya M, Zhang X, Xu S, Sun J, Dong B. Recent Advances of Metal-Organic Frameworks-based Nanozymes for Bio-applications. Chem Res Chin Univ 2022; 38:1324-1343. [DOI: 10.1007/s40242-022-2256-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
|
17
|
The application of Bimetallic metal–organic frameworks for antibiotics adsorption. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
|
19
|
A cerium-based metal-organic framework as adsorbent for the 99Mo/99mTc generator. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Hu J, Li C, Zhen Y, Chen H, He J, Hou X. Current advances of chemical vapor generation in non-tetrahydroborate media for analytical atomic spectrometry. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Liu H, Cheng M, Liu Y, Zhang G, Li L, Du L, Li B, Xiao S, Wang G, Yang X. Modified UiO-66 as photocatalysts for boosting the carbon-neutral energy cycle and solving environmental remediation issues. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214428] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Mixed valence state cerium metal organic framework with prominent oxidase-mimicking activity for ascorbic acid detection: Mechanism and performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Fonseca de Lima J, Moreno FVS, Menezes BAT, da Silva Barbosa J, Waddington MC, Franklin SA, Clarkson GJ, Walker M, Serra OA, Walton RI. Investigation of the preparation and reactivity of metal-organic frameworks of cerium and pyridine-2,4,6-tricarboxylate. Dalton Trans 2021; 51:145-155. [PMID: 34870659 DOI: 10.1039/d1dt03514b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The synthesis of three coordination polymers of cerium(III) and the ligand pyridine-2,4,6-tricarboxylate (PTC) is reported. Two of the materials crystallise under hydrothermal conditions at 180 °C, with [Ce(PTC)(H2O)2]·1.5H2O, (1), being formed on extended periods of reaction time, 3 days or longer, and Ce(PTC)(H2O)3, (2), crystallising after 1 day. Both phases contain Ce(III) but are prepared using the Ce(IV) salt Ce(SO4)2·4H2O as reagent. Under solvothermal conditions (mixed water-N,N-dimethylformamide (DMF)), the phase [Ce(PTC)(H2O)(DMF)]·H2O (3) is crystallised. The structures of the three materials are resolved by single crystal X-ray diffraction, with the phase purity of the samples determined by powder X-ray diffraction and thermogravimetric analysis. (1) is constructed from helical chains cross-linked by the PTC linkers to give a three-dimensional structure that contains clusters of water molecules in channels that are hydrogen-bonded to each other and to additional waters that are coordinated to cerium. (2) also contains nine-coordinate cerium but these are linked to give a dense framework, in which water is directly coordinated to cerium. (3) contains corner-shared nine-coordinate cerium centres, linked to give a framework in which Ce-coordinated DMF fills space. Upon heating the material (1) in air all water is irreversibly lost to give a poorly crystalline anhydrous phase Ce(PTC), as deduced from X-ray thermodiffractometry and thermogravimetric analysis. The material (1), however, is hydrothermally stable, and is also stable under oxidising conditions, where immersion in 30% H2O2 gives no loss in crystallinity. Oxidation of around 50% of surface Ce to the +4 oxidation state is thus possible, as evidenced by X-ray photoelectron spectroscopy, which is accompanied by a colour change from yellow to orange. Photocatalytic activity of (1) is screened and the material shows effective degradation of methyl orange.
Collapse
Affiliation(s)
- Juliana Fonseca de Lima
- Instituto de Química, Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, Brazil
| | - Fernanda V S Moreno
- Instituto de Química, Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, Brazil
| | - Bruno A T Menezes
- Instituto de Química, Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, Brazil
| | - Jader da Silva Barbosa
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida dos Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | | | - Siân A Franklin
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Guy J Clarkson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Marc Walker
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Osvaldo A Serra
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida dos Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Richard I Walton
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
24
|
Selective adsorption of dyes and pharmaceuticals from water by UiO metal–organic frameworks: A comprehensive review. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Rego RM, Sriram G, Ajeya KV, Jung HY, Kurkuri MD, Kigga M. Cerium based UiO-66 MOF as a multipollutant adsorbent for universal water purification. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125941. [PMID: 34492868 DOI: 10.1016/j.jhazmat.2021.125941] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Herein, we demonstrate the use of cerium (Ce)-UiO-66 metal organic framework (MOF) for the removal of a variety of potentially toxic pollutants. The Ce-UiO-66 MOF, with similar framework topologies to Zr-UiO-66, has not been explored for its adsorptive properties in water remediation. The replacement of Zr metal center with Ce yields a MOF that can be synthesized in shorter durations with lesser energy consumptions and with excellent multipollutant adsorption properties. Further, the Ce-UiO-66 MOF was also studied for its adsorption abilities in the binary component system. Interestingly, the adsorbent showed higher adsorption capacities in the presence of other pollutants. Removal studies for other potentially toxic anionic and cationic dyes showed that the Ce-UiO-66 MOF has a wide range of contaminant removal abilities. Investigations of individual adsorption capacities revealed that the Ce-UiO-66 MOF has a maximum adsorption capacity of 793.7 mg/g for congo red (CR), 110 mg/g for methylene blue (MB), 66.1 mg/g for fluoride (F-), 30 mg/g for Cr6+ and 485.4 mg/g for the pharmaceutical waste diclofenac sodium (DCF). To imply the practical applications of the Ce-UiO-66 MOF we have also demonstrated an adaptable filter that could separate all the potentially toxic pollutants.
Collapse
Affiliation(s)
- Richelle M Rego
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - Ganesan Sriram
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - Kanalli V Ajeya
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Ho-Young Jung
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Mahaveer D Kurkuri
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru 562112, Karnataka, India.
| | - Madhuprasad Kigga
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru 562112, Karnataka, India.
| |
Collapse
|
26
|
Rojas-Buzo S, Concepción P, Olloqui-Sariego JL, Moliner M, Corma A. Metalloenzyme-Inspired Ce-MOF Catalyst for Oxidative Halogenation Reactions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31021-31030. [PMID: 34176269 PMCID: PMC9131423 DOI: 10.1021/acsami.1c07496] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
The structure of UiO-66(Ce) is formed by CeO2-x defective nanoclusters connected by terephthalate ligands. The initial presence of accessible Ce3+ sites in the as-synthesized UiO-66(Ce) has been determined by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR)-CO analyses. Moreover, linear scan voltammetric measurements reveal a reversible Ce4+/Ce3+ interconversion within the UiO-66(Ce) material, while nanocrystalline ceria shows an irreversible voltammetric response. This suggests that terephthalic acid ligands facilitate charge transfer between subnanometric metallic nodes, explaining the higher oxidase-like activity of UiO-66(Ce) compared to nanoceria for the mild oxidation of organic dyes under aerobic conditions. Based on these results, we propose the use of Ce-based metal-organic frameworks (MOFs) as efficient catalysts for the halogenation of activated arenes, as 1,3,5-trimethoxybenzene (TMB), using oxygen as a green oxidant. Kinetic studies demonstrate that UiO-66(Ce) is at least three times more active than nanoceria under the same reaction conditions. In addition, the UiO-66(Ce) catalyst shows an excellent stability and can be reused after proper washing treatments. Finally, a general mechanism for the oxidative halogenation reaction is proposed when using Ce-MOF as a catalyst, which mimics the mechanistic pathway described for metalloenzymes. The superb control in the generation of subnanometric CeO2-x defective clusters connected by adequate organic ligands in MOFs offers exciting opportunities in the design of Ce-based redox catalysts.
Collapse
Affiliation(s)
- Sergio Rojas-Buzo
- Instituto
de Tecnología Química, Universitat Politècnica
de València—Consejo Superior de Investigaciones Cientificas, Av. de los Naranjos, s/n, 46022 Valencia, Spain
| | - Patricia Concepción
- Instituto
de Tecnología Química, Universitat Politècnica
de València—Consejo Superior de Investigaciones Cientificas, Av. de los Naranjos, s/n, 46022 Valencia, Spain
| | - José Luis Olloqui-Sariego
- Departamento
de Química Física, Universidad
de Sevilla, Profesor García González, 1, 41012 Sevilla, Spain
| | - Manuel Moliner
- Instituto
de Tecnología Química, Universitat Politècnica
de València—Consejo Superior de Investigaciones Cientificas, Av. de los Naranjos, s/n, 46022 Valencia, Spain
| | - Avelino Corma
- Instituto
de Tecnología Química, Universitat Politècnica
de València—Consejo Superior de Investigaciones Cientificas, Av. de los Naranjos, s/n, 46022 Valencia, Spain
| |
Collapse
|
27
|
Abdelhamid HN, Sharmoukh W. Intrinsic catalase-mimicking MOFzyme for sensitive detection of hydrogen peroxide and ferric ions. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105873] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Hu Z, Wang Y, Zhao D. The chemistry and applications of hafnium and cerium(iv) metal-organic frameworks. Chem Soc Rev 2021; 50:4629-4683. [PMID: 33616126 DOI: 10.1039/d0cs00920b] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The coordination connection of organic linkers to the metal clusters leads to the formation of metal-organic frameworks (MOFs), where the metal clusters and ligands are spatially entangled in a periodic manner. The immense availability of tuneable ligands of different length and functionalities gives rise to robust molecular porosity ranging from several angstroms to nanometres. Among the large family of MOFs, hafnium (Hf) based MOFs have been demonstrated to be highly promising for practical applications due to their unique and outstanding characteristics such as chemical, thermal, and mechanical stability, and acidic nature. Since the report of UiO-66(Hf) and DUT-51(Hf) in 2012, less than 200 Hf-MOFs (ca. 50 types of structures) have been reported. Besides, tetravalent cerium [Ce(iv)] has been proven to be capable of forming similar topological MOF structures to Zr and Hf since its first discovery in 2015. So far, ca. 40 Ce(iv) MOFs with 60% having UiO-66-type structure have been reported. This review will offer a holistic summary of the chemistry, uniqueness, synthesis, and applications of Hf/Ce(iv)-MOFs with a focus on presenting the development in the Hf/Ce(iv)-clusters, topologies, ligand structures, synthetic strategies, and practical applications of Hf/Ce(iv)-MOFs. In the end, we will present the research outlook for the development of Hf/Ce(iv)-MOFs in the future, including fundamental design of Hf/Ce(iv)-clusters, defect engineering, and various applications including membrane development, diversified types of catalytic reactions, irradiation absorption in nuclear waste treatment, water production and wastewater treatment, etc. We will also present the emerging computational approaches coupled with machine-learning algorithms that can be applied in screening Hf and Ce(iv) based MOF structures and identifying the best-performing MOFs for tailor-made applications in future practice.
Collapse
Affiliation(s)
- Zhigang Hu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | | | | |
Collapse
|
29
|
Ultrasonic assisted glass bead loaded gas liquid separator-photochemical vapor generation-T-shaped slotted quartz tube-flame atomic absorption spectrophotometry system for antimony determination in tap water and wastewater samples. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01392-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Nagarjun N, Concepcion P, Dhakshinamoorthy A. Influence of oxophilic behavior of UiO‐66(Ce) metal–organic framework with superior catalytic performance in Friedel‐Crafts alkylation reaction. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Patricia Concepcion
- Instituto de Tecnologia Quimica CSIV‐UPVUniversitat Politecnica de Valencia Av. De los Naranjos s/n 46022 Valencia Spain
| | | |
Collapse
|
31
|
Novel advanced nanomaterial based on ferrous metal–organic framework and its application as chemosensors for mercury in environmental and biological samples. Anal Bioanal Chem 2020; 412:3153-3165. [DOI: 10.1007/s00216-020-02566-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
|
32
|
Jacobsen J, Ienco A, D'Amato R, Costantino F, Stock N. The chemistry of Ce-based metal-organic frameworks. Dalton Trans 2020; 49:16551-16586. [PMID: 33146175 DOI: 10.1039/d0dt02813d] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Metal-organic frameworks (MOFs) have gained widespread attention due to their modular construction that allows the tuning of their properties. Within this vast class of compounds, metal carboxylates containing tri- and tetravalent metal ions have been in the focus of many studies due to their often high thermal and chemical stabilities. Cerium has a rich chemistry, which depends strongly on its oxidation state. Ce(iii) exhibits properties typically observed for rare earth elements, while Ce(iv) is mostly known for its oxidation behaviour. In MOF chemistry this is reflected in their unique optical and catalytic properties. The synthetic parameters for Ce(iii)- and Ce(iv)-MOFs also differ substantially and conditions must be chosen to prevent reduction of Ce(iv) for the formation of the latter. Ce(iii)-MOFs are usually reported in comprehensive studies together with those constructed with other RE elements and normally they are isostructural. They exhibit a greater structural diversity, which is reflected in the larger variety of inorganic building units. In contrast, the synthesis conditions of Ce(iv)-MOFs were only recently (2015) established. These lead selectively to hexanuclear Ce-O clusters that are well-known for Zr-MOFs and therefore very similar structural and isoreticluar chemistry is found. Hence Ce(iv)-MOFs exhibit often high porosity, while only a few porous Ce(iii)-MOFs have been described. Some of these show structural flexibility which makes them interesting for separation processes. For Ce(iv)-MOFs the redox properties are most relevant. Thus, they are intensively discussed for catalytic, photocatalytic and sensing applications. In this perspective, the synthesis, structural chemistry and properties of Ce-MOFs are summarized.
Collapse
Affiliation(s)
- Jannick Jacobsen
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität, Max-Eyth Straße 2, D-24118 Kiel, Germany.
| | | | | | | | | |
Collapse
|
33
|
Zhen Y, Yu Y, Zhang A, Gao Y. Matrix-assisted photochemical vapor generation for determination of trace bismuth in Fe Ni based alloy samples by inductively coupled plasma mass spectrometry. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|