1
|
Liu Z, Wang S, Wang K, Tong J, Zhao Z, Liu X, Liu Y. Digital microfluidic-based fluorescence methods for the automated determination of copper ions in wine. Mikrochim Acta 2025; 192:157. [PMID: 39945961 DOI: 10.1007/s00604-025-07019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/31/2025] [Indexed: 03/15/2025]
Abstract
A novel approach is introduced by combining digital microfluidic technology with click chemistry for automated sample handling on a chip, enabling accurate detection of copper ions in wine. By developing a copper-catalyzed click chemistry reaction using azide coumarin and hexanol, we have introduced a method that offers advantages such as simplicity, minimal by-products, and enhanced resistance to interference compared with other fluorescent methods. Furthermore, optimization of the digital microfluidic chip parameters enabled processing of sub-microliter samples with a droplet coefficient of variation of 0.6%, outperforming the ~ 4.0% error typically seen with conventional pipetting methods. This method processes samples as small as 870 nL, providing cost efficiency, automated detection, reduced errors, and a detection limit of 15.4 μM (0.98 mg/L), meeting testing requirements. Our approach effectively detects copper ion contamination in wine with a recovery of 98.7 to 106%, offering robust technical support for food safety regulations.
Collapse
Affiliation(s)
- Zhihui Liu
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Si Wang
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Kemin Wang
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Jiajun Tong
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Zijun Zhao
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Xiaofeng Liu
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, Hunan, China.
| | - Yiwei Liu
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, Hunan, China.
| |
Collapse
|
2
|
Ren J, Li L, Han H, Chen Y, Qin Z, Song Z. Construction of a New Probe Based on Copper Chaperone Protein for Detecting Cu 2+ in Cells. Molecules 2024; 29:1020. [PMID: 38474532 DOI: 10.3390/molecules29051020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Biomacromolecular probes have been extensively employed in the detection of metal ions for their prominent biocompatibility, water solubility, high selectivity, and easy modification of fluorescent groups. In this study, a fluorescent probe FP was constructed. The probe FP exhibited high specificity recognition for Cu2+. With the combination of Cu2+, the probe was subjected to fluorescence quenching. The research suggested that the probe FP carried out the highly sensitive detection of Cu2+ with detection limits of 1.7 nM. The fluorescence quenching of fluorescamine was induced by Cu2+ perhaps due to the PET (photoinduced electron transfer) mechanism. The FP-Cu2+ complex shows weak fluorescence, which is likely due to the PET quenching effect from Cu2+ to fluorescamine fluorophore. Moreover, the probe FP can be employed for imaging Cu2+ in living cells. The new fluorescent probe developed in this study shows the advantages of good biocompatibility and low cytotoxicity. It can be adopted for the targeted detection of Cu2+ in cells, and it has promising applications in the mechanism research and diagnosis of Cu2+-associated diseases.
Collapse
Affiliation(s)
- Jing Ren
- Laboratory of Protein Based Functional Materials of Shanxi Province, Taiyuan Normal University, Jinzhong 030619, China
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Lin Li
- Laboratory of Protein Based Functional Materials of Shanxi Province, Taiyuan Normal University, Jinzhong 030619, China
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Hongfei Han
- Laboratory of Protein Based Functional Materials of Shanxi Province, Taiyuan Normal University, Jinzhong 030619, China
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Yi Chen
- Laboratory of Protein Based Functional Materials of Shanxi Province, Taiyuan Normal University, Jinzhong 030619, China
| | - Ziying Qin
- Laboratory of Protein Based Functional Materials of Shanxi Province, Taiyuan Normal University, Jinzhong 030619, China
| | - Zhen Song
- Laboratory of Protein Based Functional Materials of Shanxi Province, Taiyuan Normal University, Jinzhong 030619, China
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| |
Collapse
|
3
|
Tan İŞ, Kılınç Y, Zaman BT, Bakırdere S. Deep eutectic solvent-based simultaneous complexation and preconcentration of nickel in Antarctic lake water samples for determination by flame atomic absorption spectrometry. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:309. [PMID: 36652146 DOI: 10.1007/s10661-023-10940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
This study presents a simple, sensitive, and accurate method for the determination of nickel by flame atomic absorption spectrometry (FAAS). Prior to instrumental measurement, a deep eutectic solvent-based simultaneous complexation and preconcentration (DES-SCP) method was used to preconcentrate nickel from aqueous solution into measurable quantities. The efficiency of the extraction method was enhanced by forming a non-ionic complex of nickel using dithizone as ligand. By mixing the ligand with the DES extractant, simultaneous complexation and preconcentration of nickel were achieved in a single step. Under optimum conditions of the extraction method, the limit of detection (LOD) and the limit of quantification (LOQ) values were found to be 2.4 and 8.0 ng/mL, respectively. With respect to direct FAAS measurement, the developed method enhanced the sensitivity of nickel determination by about 169 folds. The accuracy and applicability of the developed method were evaluated by performing spike recovery experiments with lake water sampled from Antarctica. Satisfactory recovery results in the range of 94.0-113.7% were recorded and this validated the developed method as an efficient and green alternative for nickel determination.
Collapse
Affiliation(s)
- İpek Şahin Tan
- Department of Chemistry, Yıldız Technical University, Istanbul, 34220, Türkiye
| | - Yağmur Kılınç
- Department of Environmental Engineering, Zonguldak Bülent Ecevit University, Institute of Science, Zonguldak, 67100, Türkiye
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, Istanbul, 34220, Türkiye
| | - Buse Tuğba Zaman
- Department of Chemistry, Yıldız Technical University, Istanbul, 34220, Türkiye
| | - Sezgin Bakırdere
- Department of Chemistry, Yıldız Technical University, Istanbul, 34220, Türkiye.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, Çankaya, Ankara, 06670, Türkiye.
| |
Collapse
|
4
|
Guirado-Moreno JC, González-Ceballos L, Carreira-Barral I, Ibeas S, Fernández-Muiño MA, Teresa Sancho M, García JM, Vallejos S. Smart sensory polymer for straightforward Zn(II) detection in pet food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121820. [PMID: 36116204 DOI: 10.1016/j.saa.2022.121820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
We report on an innovative method to measure the Zn(II) concentration in commercial pet food samples, both wet and dry food. It is based on a colorimetric sensory polymer prepared from commercial monomers and 0.5 % of a synthetic monomer having a quinoline sensory core (N-(8-(2-azidoacetamido)quinolin-5-yl)methacrylamide). We obtained the sensory polymer as crosslinked films by thermally initiated bulk radical polymerization of the monomers of 100 μm thickness, which we punched into Ø6 mm sensory discs. The immersion of the discs in water solutions containing Zn(II) turned the fluorescence on, allowing for the titration of this cation using the G parameter of a digital picture taken to the discs. The limits of detection and quantification were 29 and 87 µg/L, respectively. Furthermore, we measured the concentration of Zn(II) even in the presence of other cations, detecting no significant interferences. Thus, in a further step, we obtained the concentration of Zn(II) from 15 commercial pet food samples, ranging from 19 to 198 mg/kg, following a simple extraction procedure and contacting the extractant with our sensory discs. These results were contrasted with that obtained by ICP-MS as a reference method.
Collapse
Affiliation(s)
- José Carlos Guirado-Moreno
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Lara González-Ceballos
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Israel Carreira-Barral
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Saturnino Ibeas
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Miguel A Fernández-Muiño
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - M Teresa Sancho
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - José M García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Saúl Vallejos
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| |
Collapse
|
5
|
Yang H, Li K, Wang Y, Yuan X, Zhang M. A label-free strategy for H2O2 assay by chemical vapor generation-atomic fluorescence spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Luo J, Hu Z, Xu F, Geng D, Tang X. MIL-125-NH2 catalyzed photochemical vapor generation coupled with HPLC-ICPMS for speciation analysis of selenium. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Li K, Yang H, Yuan X, Zhang M. A novel and indirect method for L-cysteine detection in traditional Chinese medicines by chemical vapor generation-atomic fluorescence spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Tian X, Li Y, Zhang Y, Gao E. A FLUORESCENT PROBE OF THE Zn(II) COMPLEX CONSTRUCTED BY TERPHENYL- 3,2″,3″,5,5″,5′′′-HEXACARBOXYLIC ACID AND 3,5-BIS(1-IMIDAZOLE)PYRIDINE. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621120076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Wang Z, Zhang J, Jian R, Liao J, Xiong X, Huang K. Room temperature ultrafast synthesis of zinc oxide nanomaterials via hydride generation for non-enzymatic glucose detection. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Ultrasonic assisted glass bead loaded gas liquid separator-photochemical vapor generation-T-shaped slotted quartz tube-flame atomic absorption spectrophotometry system for antimony determination in tap water and wastewater samples. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01392-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Wu MF, Tsai HP, Hsieh CH, Lu YC, Pan LC, Yang H. Water-Soluble Chemical Vapor Detection Enabled by Doctor-Blade-Coated Macroporous Photonic Crystals. SENSORS 2020; 20:s20195503. [PMID: 32992878 PMCID: PMC7582252 DOI: 10.3390/s20195503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/17/2022]
Abstract
Water-soluble chemicals, involving a wide range of toxic chemicals in aqueous solutions, remain essential in both daily living or industrial uses. However, most toxicants are evaporated with water through their use and thus cause deleterious effects on the domestic environment and health in humans. Unfortunately, most current low-dose chemical vapor detection technologies are restricted by the use of sophisticated instruments and unable to promptly detect the quantity of diverse toxicants in a single analysis. To address these issues, this study reports the development of simple and fast chemical vapor detection using doctor-blade-coated macroporous poly(2-hydroxyethyl methacrylate)/poly(ethoxylated trimethylolpropane triacrylate) photonic crystals, in which the poly(2-hydroxyethyl methacrylate) has strong affinity to insecticide vapor owing to a favorable Gibbs free energy change for their mixing. The condensation of water-soluble chemical vapor therefore results in a significant reflection peak shift and an obvious color change. The visual colorimetric readout can be further improved by increasing the lattice spacing of the macroporous photonic crystals. Furthermore, the dependence of the reflection peak position on vapor pressure under actual conditions and the reproducibility of vapor detecting are also evaluated in this study.
Collapse
Affiliation(s)
- Min-Fang Wu
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan; (M.-F.W.); (C.-H.H.); (Y.-C.L.); (L.-C.P.)
| | - Hui-Ping Tsai
- Department of Civil Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan;
| | - Chia-Hua Hsieh
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan; (M.-F.W.); (C.-H.H.); (Y.-C.L.); (L.-C.P.)
| | - Yi-Cheng Lu
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan; (M.-F.W.); (C.-H.H.); (Y.-C.L.); (L.-C.P.)
| | - Liang-Cheng Pan
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan; (M.-F.W.); (C.-H.H.); (Y.-C.L.); (L.-C.P.)
| | - Hongta Yang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan; (M.-F.W.); (C.-H.H.); (Y.-C.L.); (L.-C.P.)
- Correspondence:
| |
Collapse
|
12
|
Casanueva-Marenco MJ, Díaz-de-Alba M, Herrera-Armario A, Galindo-Riaño MD, Granado-Castro MD. Design and optimization of a single-use optical sensor based on a polymer inclusion membrane for zinc determination in drinks, food supplement and foot health care products. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110680. [PMID: 32204108 DOI: 10.1016/j.msec.2020.110680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/21/2019] [Accepted: 01/19/2020] [Indexed: 12/29/2022]
Abstract
A single-use optical sensor was designed for Zn(II) determination based on the immobilisation of the colorimetric reagent 2-acetylpyridine benzoylhydrazone (2-APBH) in a polymer inclusion membrane (PIM) adhered on the surface of an inert rectangular strip of polyester (Mylar). Different components for the membrane preparation were tested and those resulting in membrane with good appearance, proper physical and optical properties and ease of preparation were selected. Factorial design 23 with three replicates of the central point was applied for the optimisation of the membrane composition. The optimal composition consisted of 2.5 g of poly(vinyl chloride) (PVC), 4 mL of tributyl phosphate (TBP) and 0.04 g of 2-APBH. The optode showed a linear dynamic range from 0.03 (detection limit) to 1 mg L-1 of Zn(II) ions with a response time of 30 min in aqueous solution at pH 6 and a relative standard deviation of 3.90% for 0.4 mg L-1 of Zn(II). The sensor exhibited good selectivity to Zn(II) over other commonly ions. It was successfully applied to the determination of Zn(II) in a water certified reference material, spiked tap water, vitamin-mineral drink, food supplement and foot health care products, as contribution to the concern about this heavy metal due to its significant role in many biological and physiological processes although toxicant at high doses.
Collapse
Affiliation(s)
- M J Casanueva-Marenco
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain
| | - M Díaz-de-Alba
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain
| | - A Herrera-Armario
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain
| | - M D Galindo-Riaño
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain.
| | - M D Granado-Castro
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
13
|
Astolfi ML, Protano C, Marconi E, Piamonti D, Massimi L, Brunori M, Vitali M, Canepari S. Simple and rapid method for the determination of mercury in human hair by cold vapour generation atomic fluorescence spectrometry. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104186] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|