1
|
Nadafan M, Hashemi E, Pahlavani N. The presence and absence effect of the template on optical nonlinearity responses of magnetic moleculary imprinted polymer. Sci Rep 2025; 15:12869. [PMID: 40234653 PMCID: PMC12000282 DOI: 10.1038/s41598-025-96844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
A magnetic moleculary imprinted polymer (MMIP) was prepared by polymerization reaction of 4-vinylpyridine, magnetic vinylsilane, and crosslinker agent ethylene glycol dimethacrylate in the presence of octahydroquinazolinone target molecule entitled the "template" which had the selective capability of bonding and rebinding. The effects of the presence and absence of template on third-order nonlinear optical responses (NLO) of MMIP at 532 nm were investigated by the application of the Z-scan technique. All samples had the negative reflective index with self-defocusing effect in the order of 10- 8 cm2/W, and the absorption coefficient in the order of 10- 4 cm/W. Moreover, all samples had a valley in the nonlinear absorption coefficient that shows the two-photon absorption (TPA) effect as a dominant phenomenon. The NLO properties of samples were improved by increasing the incident power of laser. Furthermore, the third-order susceptibility, χ(3), and figure of merit (FOM) of samples were calculated. The polarity, charge transferring and porosity in MMIP are the most important factors for having more nonlinearity responses in comparison with other samples. In addition, the MMIP was investigated using SEM/EDX and TEM measurements to check the quality and homogeneity of them, which was essential in photonic device production.
Collapse
Affiliation(s)
- Marzieh Nadafan
- Department of Physics, Faculty of Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Elaheh Hashemi
- Department of Chemistry, Faculty of Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| | - Nahid Pahlavani
- Department of Chemistry, Faculty of Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
2
|
Zeng Y, Peng J, Liu J, Huang X. On-site extraction of phenoxycarboxylic acid herbicides in environmental waters utilizing monolith-based in-tip microextraction technique. J Chromatogr A 2024; 1736:465351. [PMID: 39260149 DOI: 10.1016/j.chroma.2024.465351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
On-site extraction plays a significant role in the reliable quantification of strong polar phenoxycarboxylic acid herbicides (PCAs) in aqueous samples. In current study, a new technique for the field sample preparation of PCAs was developed by means of three channels in-tip microextraction device (TCIM). To capture PCAs effectively, an extraction phase based on monolith (EPM) using vinylimidazole and divinylbenzene/ethylene dimethacrylate as monomer and cross-linkers, respectively, was in-situ synthesized in pipette tips. The EPM fabricated at optimal conditions were characterized by a series of techniques and employed as the adsorbent of TCIM for the on-site extraction of PCAs. The adsorption isotherm was studied so as to inspect the extraction behaviors of EPM towards PCAs. Results revealed that the proposed EPM/TCIM presented satisfactory extraction performance towards PCAs through multiple interactions. The enrichment factors and adsorption capacity were 74-277 and 20 mg g-1, respectively. Under the most beneficial extraction parameters, the developed EPM/TCIM was successfully employed to on-site extract PCAs, and then combining with HPLC equipped with diode array detector to monitor trace PCAs in actual waters. The limits of detection (LODs) towards investigated PCAs varied from 0.071 μg/L to 0.30 μg/L. In addition, the accuracy of established approach was inspected with documented method. Compared with existing lab-based sample preparation approaches, the introduced field sample preparation technique exhibits some merits such as avoidance of transporting large volume of water, prevention of analytes loss during sampling procedure, less usage of organic solvent and achievement of satisfactory efficient in sample preparation.
Collapse
Affiliation(s)
- Yufeng Zeng
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies; College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Jinghe Peng
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies; College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Jun Liu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies; College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Xiaojia Huang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies; College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China.
| |
Collapse
|
3
|
Samadi-Maybodi A, Ghezel-Sofla H, BiParva P. Simultaneous removal of phenoxy herbicides, 2-methyl-4-chlorophenoxyacetic acid and 2,4-dichlorophenoxyacetic acid from aqueous media by magnetized MgAl-LDH@Fe 3O 4 composite: application of partial least squares and Doehlert experimental design. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:97-121. [PMID: 39524115 PMCID: PMC11549278 DOI: 10.1007/s40201-023-00877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/27/2023] [Indexed: 11/16/2024]
Abstract
Today, the excessive and increasing use of phenoxy family herbicides such as 2-methyl-4-chlorophenoxyacetic acid (MCPA) and (2,4- dichlorophenoxy) acetic acid (2,4-DCPA) for reasons such as indestructibility and pollution of groundwater resources is one of the most important environmental problems. Pesticide adsorbents like layered double hydroxides (LDHs) are commonly utilized due to their straightforward synthesis, substantial specific surface area resulting from their layered structure, and the potential for surface modification. These natural minerals serve as effective options for adsorption. In this study, a co-precipitation approach was used to create an MgAl-LDH@Fe3O4 magnetic adsorbent for the simultaneous removal of MCPA and 2,4-DCPA herbicides from aqueous solution. Using different techniques such as TGA, XRD, FESEM, EDS and zeta potential, we investigated the properties of the prepared adsorbent. The partial least squares method measures the concentration of each herbicide in their mixture. The optimization of MCPA and 2,4-DCPA simultaneous adsorption by LDH was achieved through Doehlert experimental design and the response surface method. The optimal conditions for absorption were determined to be an adsorbent dose of 40.20 mg L-1, a pH of 6.8, and an initial concentration of 28.35 mg L-1. In this work, the equilibrium, kinetic, and thermodynamic absorption data of the absorption process were studied, and the obtained results were well described by the Freundlich model, and the pseudo-second-order model, respectively, and showed the spontaneity of the absorption process in this research. The highest absorption capacities of MCPA and 2.4-DCPA herbicides on the prepared adsorbent were 134.50 and 131.30 mg g-1, respectively. Graphical abstract
Collapse
Affiliation(s)
| | - Hashem Ghezel-Sofla
- Analytical Division, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Pourya BiParva
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| |
Collapse
|
4
|
Firoozichahak A, Rahmani A, Kazemi M, Rahimpoor R. Magnetic layered double hydroxides for the sensitive dispersive solid phase microextraction of hippuric acid in urine samples prior to HPLC-UV analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1224:123761. [PMID: 37269707 DOI: 10.1016/j.jchromb.2023.123761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/05/2023]
Abstract
The core- shell structural layered double hydroxide (Fe3O4-SiO2-EN@Zn-Al-LDH) was successfully synthesized and applied as a solid sorbent in the magnetic dispersive micro solid-phase-extraction (M-DµSPE) method. It was combined with high-performance liquid chromatography for the trace analysis of hippuric acid (HA) from urine samples. The obtained magnetic layered double hydroxides (LDHs) were characterized by XRD, FT-IR, VSM, FE-SEM, and BET techniques. The characterization analysis indicated that Fe3O4- SiO2- EN@ Zn-Al-LDH has a sufficient surface area and good saturation magnetism. The affecting variables on the extraction of HA by the proposed method were optimized. Excellent adsorption capacity (127.8 mg g-1), wide linearity dynamic range (0.015-500 µg mL-1), and satisfactory limits of detection and quantification (0.055 and 0.014 µg mL-1, respectively) could be obtained under optimum conditions. The good repeatability and low relative standard deviation (7.2 %), low carry-over (2.7%), good matrix effect (93.6%), high reusability (up to 19 times), and an acceptable percent recovery value (97.2%) proved the selectivity and applicability of the proposed method for the extraction of the trace levels of HA in real urine samples.
Collapse
Affiliation(s)
- Ali Firoozichahak
- Department of Occupational Health Engineering, Faculty of Health, Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abdolrasoul Rahmani
- Department of Occupational Health Engineering, Research Center for Health Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Masoumeh Kazemi
- Department of Occupational Health Engineering, Research Center for Health Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Razzagh Rahimpoor
- Department of Occupational Health Engineering, Research Center for Health Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran.
| |
Collapse
|
5
|
Sianglam P, Ngamdee K, Ittisanronnachai S, Promarak V, Ren XK, Ngeontae W. An effective strategy for the detection of tetracycline by N,S-doped carbon nanodots after preconcentration with a hybrid functional nanocomposite. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Grover A, Mohiuddin I, Lee J, Brown RJC, Malik AK, Aulakh JS, Kim KH. Progress in pre-treatment and extraction of organic and inorganic pollutants by layered double hydroxide for trace-level analysis. ENVIRONMENTAL RESEARCH 2022; 214:114166. [PMID: 36027961 DOI: 10.1016/j.envres.2022.114166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Continuous release of pollutants into the environment poses serious threats to environmental sustainability and human health. For trace-level analysis of pollutants, layered double hydroxide (LDH) is an attractive option to impart enhanced sorption capability and sensitivity toward pollutants because of its unique layered structure, tunable interior architecture, high anion-exchange capacities, and high porosity (e.g., Zn/Cr LDH/DABCO-IL, Ni/Al LDH, CS-Ni/Fe LDH, SDS-Fe3O4@SiO2@Mg-Al LDH, Boeh/Mg/Al LDH/pC, and Fe@NiAl LDH). In concert with the well-defined analytical methodologies (e.g., HPLC and GC), the LDH materials can be employed to detect trace-level targets (e.g., as low as ∼ 20 fg/L for phenols) in aqueous environments. This review highlights LDH as a promising material for pre-treatment of a variety of organic and inorganic target pollutants in complex real matrices. Challenges and future requirements for research into LDH-based analytical methods are also discussed.
Collapse
Affiliation(s)
- Aman Grover
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Irshad Mohiuddin
- Department of Chemistry, Panjab University, Sector-14, Chandigarh, 160014, India
| | - Jechan Lee
- Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Richard J C Brown
- Atmospheric Environmental Science Department, National Physical Laboratory, Teddington, TW11 0LW, United Kingdom
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India.
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul, 04763, Republic of Korea.
| |
Collapse
|
7
|
Hexagonal boron nitride nanosheets based magnetic solid phase extraction for the extraction of phenoxy carboxylic acid herbicides from water samples followed by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2022; 1682:463519. [PMID: 36162251 DOI: 10.1016/j.chroma.2022.463519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/23/2022]
Abstract
High-efficiency caption of pesticide residue is of vital significance for environmental safety monitoring. Herein, a hexagonal boron nitride nanosheets-based magnetic composite (Fe3O4@h-BNNSs) was synthesized and applied for the magnetic solid phase extraction (MSPE) of five phenoxy carboxylic acid (PCA) herbicides from water samples. Based on the π-π interaction, hydrogen bond and halogen bond, the Fe3O4@h-BNNSs composite showed excellent adsorption ability towards PCA herbicides. Several main variables that influenced the extraction efficiencies of PCA herbicides were investigated and optimized via single-factor experiment. Combining this Fe3O4@h-BNNSs composite-based MSPE with high-performance liquid chromatography-tandem mass spectrometry, a novel sensitive method for the analysis of PCA herbicides was developed. Under the most favorable conditions, the proposed method displayed good linear ranges (20.0-10000.0 ng L-1), low limits of detection (5.6-10.3 ng L-1), satisfactory precisions (1.1-6.8%) and recoveries (76.6-107.2%). Overall, the present work can be a versatile and worthy utility for the determination of PCA herbicides from different water samples.
Collapse
|
8
|
Phosiri P, Santaladchaiyakit Y, Burakham R. Natural deep eutectic solvent-decorated magnetic layered double hydroxide as a sorbent for the enrichment of organochlorine pesticides in environmental samples. J Chromatogr A 2022; 1673:463111. [DOI: 10.1016/j.chroma.2022.463111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
|
9
|
Tahsiri Z, Niakousari M, Hosseini SMH, Majdinasab M. Magnetic layered double hydroxide nanosheet as a biomolecular vessel for enzyme immobilization. Int J Biol Macromol 2022; 209:1422-1429. [PMID: 35461871 DOI: 10.1016/j.ijbiomac.2022.04.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/20/2022] [Accepted: 04/15/2022] [Indexed: 11/05/2022]
Abstract
Magnetic nanoparticle coated with manganese‑aluminum layered double hydroxide (Fe3O4/Mg-Al-CO3-LDH) was prepared and used as porous support for ficin (EC 3.4.22.3) as a model enzyme. Structural characteristics were studied by XRD, FTIR, SEM and light scattering. The quantity of immobilized ficin on the mentioned LDH and non-magnetic LDH was measured and enzyme activity, stability and reusability were compared. Results revealed that the core and shell structure of Fe3O4/Mg-Al-CO3-LDH makes it better dispersion compared to the pristine Mg-Al-CO3-LDH. Ficin showed strong affinity to absorption of the surface of mentioned LDHs nanosheet especially magnetic LDH, confirmed that the existence of Fe3O4 in the core structure of magnetic Fe3O4/Mg-Al-CO3-LDH caused better dispersion of LDH nanocrystal shell compared to pristine LDH moreover, enzyme which immobilized on the magnetic LDH supports, can be recovered by magnetic interaction. The storage stability of free ficin, immobilized ficin on the Mg-Al-CO3-LDH and Fe3O4/Mg-Al-CO3-LDH during a period of 120 days lost about 75%, 30%, and 20% of their initial activities, respectively.
Collapse
Affiliation(s)
- Z Tahsiri
- Department of Food Science and Technology, Shiraz University, Shiraz, Iran
| | - M Niakousari
- Department of Food Science and Technology, Shiraz University, Shiraz, Iran.
| | - S M H Hosseini
- Department of Food Science and Technology, Shiraz University, Shiraz, Iran
| | - M Majdinasab
- Department of Food Science and Technology, Shiraz University, Shiraz, Iran
| |
Collapse
|
10
|
Tölgyesi Á, Korozs G, Tóth E, Bálint M, Ma X, Sharma VK. Automation in quantifying phenoxy herbicides and bentazon in surface water and groundwater using novel solid phase extraction and liquid chromatography tandem mass spectrometry. CHEMOSPHERE 2022; 286:131927. [PMID: 34418651 DOI: 10.1016/j.chemosphere.2021.131927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of phenoxy herbicides is a financial and regulatory concern for drinking water treatment plants. This paper presents a new method of quantification for nine phenoxy-acids and bentazon in different water samples using liquid chromatography tandem mass spectrometry (LC-MS/MS). The method is based on an automated solid phase extraction (SPE) process that applied hydrophilic modified polystyrene and divinylbenzene cartridges at low pH (<2.0). Main advantages of the presented method include the reduced consumption of organic solvent in extraction and the fully automated sample pre-concentration. The method is thus more environmentally-friendly. In the quantification step, five stable isotopically labelled analogues were used as internal standards to account for the losses during sample preparation and to calibrate the ion source response under the mass spectrometric detection. The method was optimized in terms of sample preparation and subsequent LC-MS/MS separation to obtain reliable measurement of the analyte concentration during real sample analysis. The method quantification limit was between 1.5 and 10.0 ng/L for target compounds in surface water and groundwater samples. The method was validated at three fortification levels between 10.0 and 1000 ng/L, and the results showed fit-for-purpose recovery with appropriate precision at low concentration levels. The method was also utilized to analyse thirty-two actual water samples from different sources. Forty percent of the analysed samples contained detectable level of herbicides, ranging from 1.91 to 40.5 ng/L. The concentrations of targeted herbicides in our study were comparable to those found in water samples in other regions of world.
Collapse
Affiliation(s)
- Ádám Tölgyesi
- Bálint Analitika Ltd, Fehérvári út 144, 1116, Budapest, Hungary.
| | - Gerda Korozs
- Bálint Analitika Ltd, Fehérvári út 144, 1116, Budapest, Hungary
| | - Edgár Tóth
- Bálint Analitika Ltd, Fehérvári út 144, 1116, Budapest, Hungary
| | - Mária Bálint
- Bálint Analitika Ltd, Fehérvári út 144, 1116, Budapest, Hungary
| | - Xingmao Ma
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Rd., 1266, TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
11
|
Vichapong J, Kachangoon R, Burakham R, Santaladchaiyakit Y, Srijaranai S. In-Situ Formation of Modified Nickel–Zinc-Layered Double Hydroxide Followed by HPLC Determination of Neonicotinoid Insecticide Residues. Molecules 2021; 27:molecules27010043. [PMID: 35011271 PMCID: PMC8746430 DOI: 10.3390/molecules27010043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
A single-step preconcentration procedure using the in-situ formation of modified nickel–zinc-layered double hydroxides (LDHs) prior to high-performance liquid chromatography (HPLC) is investigated for the determination of neonicotinoid insecticide residues in honey samples. The LDHs could be prepared by the sequential addition of sodium hydroxide, sodium dodecyl sulfate, nickel nitrate 6-hydrate and zinc nitrate 6-hydrate, which were added to the sample solution. The co-precipitate phase and phase separation were obtained by centrifugation, and then the precipitate phase was dissolved in formic acid (concentrate) prior to HPLC analysis. Various analytical parameters affecting extraction efficiency were studied, and the characterization of the LDHs phase was performed using Fourier-transformed infrared spectroscopy and scanning electron microscopy. Under optimum conditions, the limit of detection of the studied neonicotinoids, in real samples, were 30 μg L−1, for all analytes, lower than the maximum residue limits established by the European Union (EU). The developed method provided high enrichment, by a factor of 35. The proposed method was utilized to determine the target insecticides in honey samples, and acceptable recoveries were obtained.
Collapse
Affiliation(s)
- Jitlada Vichapong
- Creative Chemistry and Innovation Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand;
- Correspondence: ; Tel./Fax: +66-4375-4246
| | - Rawikan Kachangoon
- Creative Chemistry and Innovation Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand;
| | - Rodjana Burakham
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (R.B.); (S.S.)
| | - Yanawath Santaladchaiyakit
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand;
| | - Supalax Srijaranai
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (R.B.); (S.S.)
| |
Collapse
|
12
|
Santaladchaiyakit Y, Sila-Am W, Sribunrueng S, Gissawong N, Srijaranai S. Co-precipitation based on layered double hydroxides and anionic surfactants for preconcentration of six benzoylurea insecticides in soft drinks before simultaneous analysis by high-performance liquid chromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5735-5748. [PMID: 34812804 DOI: 10.1039/d1ay01435h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Layered-double hydroxides (LDHs) modified with anionic surfactants via a co-precipitation method were developed for preconcentrating and simultaneous analysis of six benzoylurea insecticides (BUs) by high-performance liquid chromatography (HPLC). The anionic surfactants with different chain lengths, including sodium dodecylbenzene sulfonate (SDBS), sodium dodecyl sulfate (SDS), sodium 1-nonane sulfonate (SNS), and sodium 1-hexane sulfonate monohydrate (SHS) were investigated to improve the extraction efficiency of LDHs. The SDBS-LDHs provided the highest efficiency for the enrichment of the BUs studied. Under the chosen conditions, enrichment factors in the range of 38-69 and detection limits in the range of 0.1-0.3 μg L-1 were achieved. Good reproducibilities (RSD < 13.8%) and recoveries (71.4-118.7%) were also obtained. The proposed preconcentration method, used as an in situ procedure offers rapid and simple simultaneous preparation of LDHs and extraction of BUs. The method was successfully applied for residue analysis of BUs in fruit- and flower-derived soft drink samples.
Collapse
Affiliation(s)
- Yanawath Santaladchaiyakit
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand.
| | - Wisansaya Sila-Am
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand.
| | - Suwanida Sribunrueng
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand.
| | - Netsirin Gissawong
- Materials Chemistry Research Unit, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supalax Srijaranai
- Materials Chemistry Research Unit, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
13
|
Meseguer-Lloret S, Torres-Cartas S, Gómez-Benito C, Herrero-Martínez JM. Magnetic molecularly imprinted polymer for the simultaneous selective extraction of phenoxy acid herbicides from environmental water samples. Talanta 2021; 239:123082. [PMID: 34823860 DOI: 10.1016/j.talanta.2021.123082] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023]
Abstract
A selective magnetic molecularly imprinted polymer (MMIP) was synthetized with 4-chloro-2-methylphenoxyacetic acid as template and 4-vinylpiridine as monomer in presence of vinylized magnetite nanoparticles. Scanning electron microscopy, nitrogen adsorption-desorption isotherms, Fourier transform infrared spectrometry and vibrating sample magnetometry were applied to characterize the resulting material. The synthesized MMIP was applied as sorbent in magnetic molecularly imprinted solid-phase extraction (MMISPE) for selective extraction of a mixture of the five herbicides 4-chloro-2-methylphenoxyacetic acid (MCPA), 4-(4-chloro-2-methylphenoxy)butyric acid (MCPB), mecoprop (MCPP), fenoxaprop (FEN) and haloxyfop (HAL). Several parameters affecting the extraction conditions were optimized to achieve the best extraction performance. The best MMISPE combined with HPLC-DAD gave detection and quantification limits between 0.33 and 0.71 μg L-1 and 1.1-2.4 μg L-1, respectively, were obtained. The precision of the whole method provided RSD values below 7.3%, and the accuracy was demonstrated by the analysis of several water samples of different origins, with recoveries ranged from 77 to 98%. Moreover, a remarkable re-usability of the MMIP sorbent, more than 65 uses without losses in extraction capacity, was obtained.
Collapse
Affiliation(s)
- Susana Meseguer-Lloret
- Institut d'Investigació per a la Gestió Integrada de Zones Costaneres, Campus de Gandia, Universitat Politècnica de València, C/ Paranimf 1, 46730, Grao de Gandia, València, Spain.
| | - Sagrario Torres-Cartas
- Institut d'Investigació per a la Gestió Integrada de Zones Costaneres, Campus de Gandia, Universitat Politècnica de València, C/ Paranimf 1, 46730, Grao de Gandia, València, Spain
| | - Carmen Gómez-Benito
- Institut d'Investigació per a la Gestió Integrada de Zones Costaneres, Campus de Gandia, Universitat Politècnica de València, C/ Paranimf 1, 46730, Grao de Gandia, València, Spain
| | | |
Collapse
|
14
|
Yang Y, Zhang J, Li Y, Yin S, Jiang Y, Sun C. Determination of seven tetracyclines in milk by dissolvable layered double hydroxide-based solid-phase extraction coupled with high-performance liquid chromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1618-1624. [PMID: 33734258 DOI: 10.1039/d1ay00154j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A dissolvable layered double hydroxide-based solid-phase extraction combined with high-performance liquid chromatography was developed for the analysis of minocycline, oxytetracycline, tetracycline, demeclocycline, metacycline, chlortetracycline and doxycycline in milk samples. In situ formation of the layered double hydroxide was achieved by the addition of MgCl2-AlCl3 solution to alkaline deproteinized milk. The analytes were efficiently extracted by the Mg/Al layered double hydroxide. After centrifugation, the co-precipitates were dissolved in 0.1 mol L-1 Na2EDTA-McIlvaine buffer prior to HPLC analysis. Under optimized conditions, the method achieved low detection limits of 0.414-0.986 μg L-1 and quantification limits of 1.38-3.29 μg L-1, and good recoveries of 93.5-100% with intra- and inter-day RSDs of 0.498-4.08% and 1.23-10.0%, respectively. This method is convenient, accurate, sensitive, rapid, cost-effective, eco-friendly, and suitable for the determination of seven tetracycline antibiotics in milk samples.
Collapse
Affiliation(s)
- Yi Yang
- School of Public Health, Southwest Medical University, Luzhou 646000, China
| | | | | | | | | | | |
Collapse
|
15
|
Grover A, Mohiuddin I, Malik AK, Aulakh JS, Kukkar D, Kim KH. Chitosan-Ni/Fe layered double hydroxide composites as an efficient solid phase extraction sorbent for HPLC-PDA monitoring of parabens in personal care products. CHEMOSPHERE 2021; 264:128429. [PMID: 33011479 DOI: 10.1016/j.chemosphere.2020.128429] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/05/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
There is a dire need for development of efficient and sensitive methods to efficiently screen parabens. In this research, we focused on quantification of four parabens (i.e., methylparaben (MP), ethylparaben (EP), propylparaben (PP), and butyl paraben (BP)) using chitosan intercalated nickel/iron layered double hydroxide (CS-Ni/Fe-LDH) composites as solid phase extraction sorbent prior to HPLC-PDA analysis. CS-Ni/Fe LDH composites with a heterogeneous, porous texture, and coral reef-like structure exhibit appealing extraction efficiency for the target parabens due to the enhanced possibility for the formation of hydrogen bonding and hydrophobic interactions. The performance of the composites was assessed and optimized for solid phase extraction of parabens from standard samples and real samples (rose water, cream, toothpaste, hair serum, and sunscreen). The LDH-SPE-HPLC method exhibited a wide linear range (e.g., 100-50,000 ng L-1), good linearity (R2 ≥ 0.999), and good precision (relative standard deviation (RSD) < 3%). This method successfully enriched selected parabens with remarkable recovery above 85.95% and a good RSD (0.01-2.90%). The quantitation of MP, EP, PP, and BP was made at detection range (and limits of detection (LOD)) of 5-15 (9.8), 11-21 (16.2), 6-18 (12.4), and 10-20 (15.6) ng L-1, respectively. The prepared composites also displayed excellent performance with enhanced reusability/durability (n = 30 cycles) and reproducibility (n = 5).
Collapse
Affiliation(s)
- Aman Grover
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Irshad Mohiuddin
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India; Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | | | - Deepak Kukkar
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, Punjab, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
16
|
Di X, Zhao X, Guo X. Dispersive micro-solid phase extraction combined with switchable hydrophilicity solvent-based homogeneous liquid-liquid microextraction for enrichment of non‐steroidal anti‐inflammatory drugs in environmental water samples. J Chromatogr A 2020; 1634:461677. [DOI: 10.1016/j.chroma.2020.461677] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/16/2022]
|
17
|
Magnetic dispersive micro-solid phase extraction merged with micro-sampling flame atomic absorption spectrometry using (Zn-Al LDH)-(PTh/DBSNa)-Fe3O4 nanosorbent for effective trace determination of nickel(II) and cadmium(II) in food samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Santaladchaiyakit Y, Srijaranai S. Dissolvable Mg/Al layered double hydroxides and surfactant as an extractant for trace analysis of benzoylurea insecticides by high performance liquid chromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5380-5391. [PMID: 33111727 DOI: 10.1039/d0ay01346c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A rapid and simple preconcentration method using dissolvable Mg/Al layered-double hydroxides (LDHs) and high performance liquid chromatography-photodiode array detection (HPLC-PDA) was developed for the analysis of benzoylurea insecticides (BUs) in water and honey samples. The proposed dissolvable LDHs for the extraction can be prepared in one step by the sequential addition of sodium hydroxide, magnesium chloride, aluminium chloride, and sodium dodecyl sulfate into the sample solution containing the target BUs. The co-precipitate phase was simply obtained after centrifugation, and the phase was then dissolved with formic acid before analysis by HPLC. The developed method provided an enrichment factor of 12.5-23.7. LODs were obtained in the range of 0.1-0.3 μg L-1 for deionized water, 0.2-2.0 μg L-1 for environmental waters, and 0.5-2.0 μg L-1 for the analyzed honey samples. Good recoveries ranging from 78.4 to 117.8% and 72.7 to 117.9% for water and honey samples, respectively, were obtained.
Collapse
Affiliation(s)
- Yanawath Santaladchaiyakit
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand.
| | | |
Collapse
|