1
|
Jin P, Zhu F, Zhou W, Liu C, Li N, Liu H. Developing magnetic functionalized dendritic fibrous mesoporous silica as advanced adsorbent for quaternary ammonium alkaloids. Mikrochim Acta 2023; 190:481. [PMID: 37999777 DOI: 10.1007/s00604-023-06053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
A novel π-conjugated polymer-modified magnetic dendritic fibrous mesoporous silica adsorbent (MB@KCC-1@π-CP) is reported for the accurate determination of quaternary ammonium alkaloids (QAAs) in complex body fluid matrices. It is demonstrated that the magnetic dendritic fibrous mesoporous silica (MB@KCC-1) is an excellent carrier combining magnetism, high specific surface area, unique hierarchical pore structure, and fast mass transfer rate. The π-conjugated polymer (π-CP) can efficiently retain QAAs (berberine, coptisine, palmatine, jatrorrhizine) by multiple interactions. In addition, the adsorption kinetics and adsorption mechanism were also studied and discussed. Under optimized extraction conditions, MB@KCC-1@π-CP-based magnetic solid-phase extraction (MSPE) and high-performance liquid chromatography (HPLC) method affords a wide linear range (0.5-20000 ng mL-1), low limits of detection (0.2-2 ng mL-1), and satisfactory relative standard deviations (RSD) of inter-day (< 2.4%) and intra-day (< 3.1%) for QAAs. Trace QAAs in complex human blood plasma samples were successfully detected by the established method.
Collapse
Affiliation(s)
- Pian Jin
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fucheng Zhu
- The Third Affiliated Hospital of Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, 250117, China
| | - Wen Zhou
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Chen Liu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Na Li
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Jinan, Shandong, 250014, China
| | - Houmei Liu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
2
|
Ingrassia EB, Fiorentini EF, Escudero LB. Hybrid biomaterials to preconcentrate and determine toxic metals and metalloids: a review. Anal Bioanal Chem 2023:10.1007/s00216-023-04683-x. [PMID: 37085739 DOI: 10.1007/s00216-023-04683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 04/23/2023]
Abstract
Toxic elements represent a serious threat to the environment and cause harmful effects on different environmental components, even at trace levels. These toxic elements are often difficult to detect through the typical instrumentation of an analytical laboratory because they are found at very low concentrations in matrices such as food and water. Therefore, preconcentration plays a fundamental role since it allows the effects of the matrix to be minimized, thus reaching lower detection limits and greater sensitivity of detection techniques. In recent years, solid-phase extraction has been successfully used for the preconcentration of metals as an environmentally friendly technique due to the fact that it eliminates or minimizes the use of reagents and solvents and offers reduced analysis times and low generation of waste in the laboratory. Hybrid biomaterials are low-cost, eco-friendly, and useful as efficient solid phases for the preconcentration of elements. In this review, recent investigations based on the use of hybrid biomaterials for the preconcentration and determination of toxic metals are presented and discussed, given special attention to bionanomaterials. A brief description of hybrid biomaterials often used for analytical purposes, as well as analytical techniques mostly used to characterize the hybrid biomaterials, is explained. Finally, the future prospects that encourage the search for new hybrid biomaterials are commented upon.
Collapse
Affiliation(s)
- Estefanía B Ingrassia
- Laboratory of Environmental Biotechnology (BioTA), Faculty of Exact and Natural Sciences, National University of Cuyo/Interdisciplinary Institute of Basic Sciences (ICB), CONICET UNCUYO, Padre J. Contreras 1300, 5500, Mendoza, Argentina
| | - Emiliano F Fiorentini
- Laboratory of Environmental Biotechnology (BioTA), Faculty of Exact and Natural Sciences, National University of Cuyo/Interdisciplinary Institute of Basic Sciences (ICB), CONICET UNCUYO, Padre J. Contreras 1300, 5500, Mendoza, Argentina
| | - Leticia B Escudero
- Laboratory of Environmental Biotechnology (BioTA), Faculty of Exact and Natural Sciences, National University of Cuyo/Interdisciplinary Institute of Basic Sciences (ICB), CONICET UNCUYO, Padre J. Contreras 1300, 5500, Mendoza, Argentina.
| |
Collapse
|
3
|
Karlıdağ NE, Demirel R, Serbest H, Turak F, Bakırdere S. Determination of cobalt in chamomile tea samples at trace levels by flame atomic absorption spectrophotometry after poly(vinyl alcohol)-magnetic hydrogel based dispersive solid phase extraction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 15:56-62. [PMID: 36477290 DOI: 10.1039/d2ay01493a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, an analytical strategy was proposed for the determination of cobalt at trace levels by using a flame atomic absorption spectrophotometry (FAAS) system after magnetic hydrogel based dispersive solid phase extraction (MH-DSPE). Poly(vinyl alcohol) based magnetic hydrogels (PVA-MH) were synthesized easily, quickly, and cost effectively in the laboratory and used as an adsorbent material in the microextraction process. Under the optimum experimental conditions, the limit of detection (LOD) and limit of quantitation (LOQ) values were recorded as 4.2 and 14.1 μg L-1, respectively. To investigate the matrix effects on the analyte signal, spike experiments were performed using chamomile tea extracts and good recovery results were obtained between 85.7 and 113.8%. A 57.8-fold improvement was achieved in the detection power compared to that of a conventional FAAS system. The results obtained throughout all experimental studies demonstrated the applicability in addition to the accuracy of the method for the quantification of trace levels of cobalt with high accuracy in a chamomile tea matrix.
Collapse
Affiliation(s)
| | - Rabia Demirel
- Yıldız Technical University, Department of Chemistry, İstanbul, 34210, Turkey.
| | - Hakan Serbest
- Istanbul Health & Technology University, Faculty of Engineering and Natural Sciences, Department of Chemical Engineering, İstanbul 34173, Turkey
| | - Fatma Turak
- Yıldız Technical University, Department of Chemistry, İstanbul, 34210, Turkey.
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, İstanbul, 34210, Turkey.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street No: 112 Çankaya, Ankara, 06670, Turkey
| |
Collapse
|
4
|
Ultra-preconcentration technique for the determination of thallium (I) in water samples by a combination of thallium (I)-imprinted polymer and vortex-assisted liquid-liquid microextraction. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Zhou Q, Zhao K, Wu Y, Li S, Guo J, Zhou B, Zhao J, Guo L, Chen C. Rapid magnetic enrichment and sensitive detection of Sudan pollutants with nanoscale zero valent iron-based nanomaterials in combination with liquid chromatography-ultraviolet detector. CHEMOSPHERE 2021; 281:130900. [PMID: 34044305 DOI: 10.1016/j.chemosphere.2021.130900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
In present work, we reported a new nanomaterial nano Fe0 decorated with SiO2 and dopamine by self-assembly method (Fe@SiO2@PDA). A sensitive method for determination of Sudan pollutants in aqueous samples was developed using Fe@SiO2@PDA as magnetic solid phase extraction adsorbents prior to high-performance liquid chromatography with variable wavelength detector. The possible parameters which would affect the enrichment have been optimized. The best parameters were as follows: elutent, 4.5 mL methanol; adsorbent dosage, 30 mg; adsorption time, 20 min; elution time, 18 min; sample pH 7; sample volume, 40 mL. The experimental results demonstrated that Fe@SiO2@PDA exhibited good adsorption properties to Sudan Red dyes. The established method provided excellent linear ranges over 0.01-50 μg L-1 and detection limits ranged from 2.0 to 5.1 ng L-1 for Sudan red I-IV. The developed method was also evaluated with real water samples and the results demonstrated that it was of applicative value owing to its merits including robustness, easy operation, fastness, cheapness and high enrichment efficiency, and had great prospect in environmental fields.
Collapse
Affiliation(s)
- Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Kuifu Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yalin Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China; Beijing Municipal Research Institute of Environmental Protection, Beijing, 10037, China
| | - Shuangying Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jinghan Guo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Boyao Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jingyi Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Libing Guo
- Institute of Chemistry, Henan Academy of Sciences, 56 Hongzhuan Road, Jinshui District, Zhengzhou, Henan, 450002, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
6
|
Afshar Mogaddam MR, Jouyban A, Nemati M, Farajzadeh MA, Marzi Khosrowshahi E. Application of curcumin as a green and new sorbent in deep eutectic solvent-based dispersive micro-solid phase extraction of several polycyclic aromatic hydrocarbons from honey samples prior to gas chromatography-mass spectrometry determination. J Sep Sci 2021; 44:4037-4047. [PMID: 34459084 DOI: 10.1002/jssc.202100354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022]
Abstract
A green, simple, and efficient dispersive micro-solid phase extraction method was developed for the extraction of polycyclic aromatic hydrocarbons from honey samples. In this method, for the first time, curcumin was used as an efficient and green sorbent to extract the analytes from the sample. After that the adsorbed analytes were eluted using a deep eutectic solvent prepared by mixing tetrabutylammonium chloride: ethylene glycol and analyzed by gas chromatography-mass spectrometry. Important experimental factors affecting adsorption and desorption steps of the method were optimized and under optimal experimental conditions, low limits of detection (0.14-0.37 ng/g) and quantification (0.49-1.3 ng/g), wide linear range (1.3-500 ng/g) with a coefficient of determination ≥0.994 were obtained. Relative standard deviation values for intra- and interday precisions were ≤7.5% for all of the analytes at a concentration of 2 ng/g for each analyte (n = 6). Extraction recovery of the method was in the range of 72-81%. Finally, 20 honey samples were analyzed and the analytes were successfully detected. The method is environment friendly because of the use of curcumin as a sorbent. Also, biodegradability of the used deep eutectic solvent components is another advantage of the method.
Collapse
Affiliation(s)
- Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboob Nemati
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Engineering Faculty, Near East University, Mersin, Turkey
| | | |
Collapse
|
7
|
Jouyban A, Farajzadeh MA, Khodadadeian F, Khoubnasabjafari M, Afshar Mogaddam MR. Development of a deep eutectic solvent-based ultrasound-assisted homogenous liquid-liquid microextraction method for simultaneous extraction of daclatasvir and sofosbuvir from urine samples. J Pharm Biomed Anal 2021; 204:114254. [PMID: 34256327 DOI: 10.1016/j.jpba.2021.114254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/28/2023]
Abstract
An ultrasound-assisted homogenous liquid-liquid microextraction method using a new deep eutectic solvent was proposed for the extraction of daclatasvir and sofosbuvir from urine. The analytes were determined by high performance liquid chromatography-diode array detector. The deep eutectic solvent was prepared by mixing p-aminophenol with tetrabutyl ammonium chloride. It was used in the extraction procedure as an extraction solvent. The amine group in structure of the prepared deep eutectic solvent led to its various solubility in different pHs. In this method, urine sample was placed in a glass test tube and then mixed with sodium chloride and its temperature adjusted at 50 °C. Then, the deep eutectic solvent was dissolved in the solution by manually shaking. In the following, an ammonia solution was added to the solution and the mixture was sonicated for 4 min. After centrifugation, an aliquat of the sedimented phase was injected into the determination system. Low limits of detection (daclatasvir 1.0 and sofosbuvir 1.3 μg/L) and quantification (daclatasvir 3.3 and sofosbuvir 4.0 μg/L), high enrichment factor (daclatasvir 96 and sofosbuvir 90) and extraction recovery (daclatasvir 96 and sofosbuvir 90 %), and good percision (relative standard deviation ≤9.3 %) were obtained. The introduced method was successfully applied in the determination of daclatasvir and sofosbuvir concentrations in urine samples.
Collapse
Affiliation(s)
- Abolghasem Jouyban
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, 99138, Nicosia, North Cyprus, Mersin 10, Turkey
| | - Fariba Khodadadeian
- Department of Inorganic Chemistry, Faculty of Chemistry, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Preconcentration of tellurium using magnetic hydrogel-assisted dispersive solid-phase extraction and its determination by slotted quartz tube-flame atomic absorption spectrophotometry. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01645-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Zhao T, Zhang M, Ma L, Ma L, Shi H, Kang W, Xu X. Cyanuric chloride-imidazole dendrimer functionalized nanoparticles as an adsorbent for magnetic solid phase extraction of quaternary ammonium compounds from fruit and vegetable puree based infant foods. J Chromatogr A 2020; 1636:461735. [PMID: 33316560 DOI: 10.1016/j.chroma.2020.461735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022]
Abstract
A novel magnetic solid-phase extraction (MSPE) material (Fe3O4@SiO2-NH2-G2) had been prepared and employed for adsorption and analysis of seven quaternary ammonium compounds (QACs) in infant fruit and vegetable products coupled with high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). In this paper, Fe3O4@SiO2-NH2-G2 was synthesized based on Fe3O4@SiO2-NH2 and dendrimer (G2) consisting of cyanuric chloride and imidazole. The morphology, configuration and magnetic behavior of the magnetic material were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). Critical parameters affecting extraction efficiency, such as the adsorbent amount, sample pH, extraction time, the type of eluent, and desorption time, were optimized. The proposed method provided good linearity with the correlation coefficients (R2) of 0.9992-0.9999, low limits of detection (LODs) (0.05-0.50 μg kg-1) and limits of quantitation (LOQs) (0.20-2.00 μg kg-1). The satisfactory method recoveries in three spiked infant fruit and vegetable products samples were between 80.12% and 101.35% with the relative standard deviations (RSDs) less than 12.04%. In summary, the established method was an effective sample preparation method and showed good prospect for the analysis of QACs in complex matrices.
Collapse
Affiliation(s)
- Tangjuan Zhao
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| | - Mengyan Zhang
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Ling Ma
- Shijiazhuang Center for Diseases Control and Prevention, Shijiazhuang 050011, PR China
| | - Li Ma
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Hongmei Shi
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Weijun Kang
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| | - Xiangdong Xu
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| |
Collapse
|