1
|
Tian Q, Liu J, Long Y, Liang H, Wu K, Chen X, Bai Q, Niu X. Catalytic preference-enabled exclusive bimodal detection of methyl-paraoxon in complex food matrices using double site-synergized organophosphorus hydrolase-mimetic fluorescent nanozymes. Food Chem 2025; 481:144023. [PMID: 40158368 DOI: 10.1016/j.foodchem.2025.144023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
Pesticide sensing crucially safeguards food safety and public health against environmental and health hazards. While oxidoreductase-type nanozymes (peroxidase and oxidase) have been widely used in optical pesticide detection, their susceptibility to redox interference as well as poor target specificity limits practical applications. To overcome the deficiencies, here we developed Ca2+-chelated 2-aminoterephthalic acid on nanosized ceria (Ca-ATPA@CeO2) as an organophosphorus hydrolase mimic. This design integrates stable fluorescence and dual-site catalytic activity to specifically detect methyl-paraoxon (MP) in complex food matrices. The synergy between Ca2+ (hard Lewis acid) and CeO2 creates dual active sites to catalyze MP hydrolysis into yellow p-nitrophenol (pNP), and the latter quenches nanozyme fluorescence via inner filter effect. The system enables cross-validated quantification of MP in complex samples, eliminating redox interference through target-specific catalysis. The bimodal "on" colorimetric (pNP color signal) and "off" fluorescence (nanozyme fluorescence intensity) detection achieved linear ranges within 1-200 μM, providing detection limits of 1.43 μM and 0.087 μM, respectively. Our work proposes a reliable strategy for selective MP detection that can avoid redox interference, also providing a simple yet efficient design of high-activity fluorescent hydrolase mimics with broadened applications in food safety analysis and beyond.
Collapse
Affiliation(s)
- Qingzhen Tian
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Jinjin Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| | - Yuxuan Long
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Hao Liang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Kechen Wu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, PR China
| | - Xi Chen
- Hunan Junshi Technology Co., Ltd., Hengyang 421001, PR China
| | - Qinqin Bai
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Xiangheng Niu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China; Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, PR China; Hunan Junshi Technology Co., Ltd., Hengyang 421001, PR China.
| |
Collapse
|
2
|
Salama A, Hesemann P. Guanylated chitosan derivatives for the adsorption of anionic dyes: Performance and mechanism. Int J Biol Macromol 2025; 311:143852. [PMID: 40319971 DOI: 10.1016/j.ijbiomac.2025.143852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/24/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Chitosan is an emerging adsorbent in pollution management, but its solubility in acidic aqueous solutions and its weak affinity towards pollutants limit its adsorption performance. The development of novel cationic chitosan containing guanidinium groups, has facilitated the advancement of various applications. This work presents a comprehensive methodology for chitosan guanylation through the reaction of neat chitosan with carbodiimide reagents in ionic liquid media. The resulting two guanidinium chitosan derivatives, guanidinium chitosan containing dicyclohexyl and guanidinium chitosan containing dimethylaminopropyl hydrochloride were thoroughly characterized by FT-IR, XRD, thermogravimetry, solid-state NMR and scan electron microscopy, and then investigated as adsorbents for anionic dyes, i.e. methyl orange. The impact of pH, contact time, dye concentration and temperature on the adsorption of methyl orange dye were explored. Both materials showed high adsorption efficiency of 274 and 320 mg/g, respectively. Due to the lower acidity of the guanidinium groups, the gunaylated materials display efficient anion exchange properties even at basic pH. Furthermore, the guanylation leads to decreased solubility via the construction of intermolecular hydrogen bonds. The adsorption properties of cationic chitosan derivatives are outstanding, displaying a high degree of recyclability. The utilization of guanylated chitosan derivatives presents new opportunities in the field of water purification.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, P.O. 12622, Egypt; ICGM Univ Montpellier-CNRS-ENSCM, Montpellier, France.
| | - Peter Hesemann
- ICGM Univ Montpellier-CNRS-ENSCM, Montpellier, France; ChimEco UMR CNRS 5021 CNRS UM, Grabels, France.
| |
Collapse
|
3
|
Gu JF, Wang J, Wang C, Li J, Chen C, Zhang N, Xu XY, Chaemchuen S. Two-dimensional ZIF-L derived dual Fe/FeN x sites for synergistic efficient oxygen reduction in alkaline and acid media. J Colloid Interface Sci 2025; 684:159-169. [PMID: 39826503 DOI: 10.1016/j.jcis.2025.01.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Fe-N-C catalysts have emerged as the most promising alternatives to commercial Pt/C catalysts for oxygen reduction reaction (ORR) due to their cost-effectiveness and favorable activity. Herein, a dual-site Fe/FeNx-NC catalyst was synthesized via a green, in situ doping strategy using two-dimensional Fe-doped ZIF-L as a nitrogen-rich precursor. The catalyst integrated Fe nanoparticles (NPs) and FeNx sites anchored on carbon nanotubes, intertwined with nitrogen-doped porous carbon nanosheets, achieving a high active site density and graphitisation. Electrochemical tests revealed that the optimized Fe/FeNx-NC-1 exhibited significant ORR activity, with a half-wave potential of 0.92 V and 0.80 V for alkaline and acidic medium, respectively. Zn-air batteries employing Fe/FeNx-NC-1 delivered a peak power density of 168 mW·cm-2 and a specific capacity of 790 mAh·g-1, outperforming those of Pt-based catalysts. Density functional theory calculations demonstrated a reduced free energy barrier for the rate-determining step (0.48 eV) compared to single-site Fe-N4 models (0.79 eV). The synergy between Fe NPs and FeNx optimized ORR intermediate adsorption and facilitated charge/mass transfer. This study offers valuable insights for the development of advanced energy conversion systems.
Collapse
Affiliation(s)
- Jun-Fei Gu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 China
| | - Jichao Wang
- School of Marine Science and Technology, Northwestern Polytechnical University, 127 Youyi Road, Xian 710000 China; Ningbo Institute of NPU, 218 Qingyi Road, Ningbo 315100 China
| | - Caixia Wang
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 China.
| | - Jin Li
- Department of Gastroenterology, The Eighth Affliated Hospital, Sun Yat-sen University, Shenzhen 518033 China
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 China; Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000 China.
| | - Ni Zhang
- Hubei University of Technology Engineering and Technology College, Wuhan 430068 China
| | - Xiang-Ya Xu
- Department of Catalytic Sciences, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd, No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013 China
| | - Somboon Chaemchuen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 China; Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170 Thailand.
| |
Collapse
|
4
|
Vinay BK, Ganesan S, Suranjan TR, Vivek BM. Review of Modern Spectrometric Techniques for Monitoring Cadmium in Water and Enhancing Public Health. Crit Rev Anal Chem 2025:1-22. [PMID: 39922796 DOI: 10.1080/10408347.2025.2457391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Cadmium (Cd) contamination in aquatic ecosystems poses significant threats to environmental and public health due to its high toxicity and persistence. Even at trace levels, Cd can cause severe health issues, including kidney damage, bone disorders, and an increased risk of cancer, making its detection and monitoring critical. This review focuses on spectrometry techniques for detecting and quantifying Cd in water, evaluating its sensitivity, specificity, and adaptability to diverse environmental conditions. It highlights advancements in modern technologies that enhance the precision, speed, and reliability of these methods while addressing limitations such as high costs and operational complexity. The review also emphasizes the importance of integrating innovative approaches to improve portability and accessibility for real-time monitoring in resource-limited settings. By providing insights into current challenges and potential solutions, this study aims to guide the development of more efficient detection systems that support effective environmental management and safeguard public health from the harmful effects of cadmium contamination.
Collapse
Affiliation(s)
- B K Vinay
- Electronics and Communication, Vidyavardhaka College of Engineering, Mysuru, India
| | | | - T R Suranjan
- Electronics and Communication, Vidyavardhaka College of Engineering, Mysuru, India
| | - B M Vivek
- Electronics and Communication, Vidyavardhaka College of Engineering, Mysuru, India
| |
Collapse
|
5
|
Doan QKT, Chiang KY. Facile synthesis of polyethyleneimine-modified cellulose nanocrystal/silica hybrid aerogel for CO 2 adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3438-3455. [PMID: 37422561 DOI: 10.1007/s11356-023-28359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
Cellulose nanocrystal (CNC)/silica hybrid aerogel (CSA) was synthesized from CNC and sodium silicate hybridization using the one-step sol-gel method under atmospheric drying. At a weight ratio of CNC to silica of 1:1, the obtained CSA-1 had a highly porous network, a high specific area of 479 m2 g-1, and a CO2 adsorption capacity of 0.25 mmol g-1. Then, polyethyleneimine (PEI) was impregnated on CSA-1 to improve CO2 adsorption performance. The parameters governing CO2 adsorption performance on CSA-PEI, such as temperatures (70-120 °C) and PEI concentrations (40-60 wt%), were investigated systematically. The optimum adsorbent (CSA-PEI50) exhibited an excellent CO2 adsorption capacity of 2.35 mmol g-1 at 70 °C and a PEI concentration of 50 wt%. The adsorption mechanism of CSA-PEI50 was elucidated by analyzing many adsorption kinetic models. The CO2 adsorption behaviors of CSA-PEI at various temperatures and PEI concentrations had the goodness of fit with the Avrami kinetic model, which can correspond to the multiple adsorption mechanism. The Avrami model also showed fractional reaction orders in a range of 0.352-0.613, and the root mean square error is negligible. Moreover, the rate-limiting kinetic analysis showed that film diffusion and intraparticle diffusion resistance controlled the adsorption speed and dominated the subsequent adsorption stages, respectively. The CSA-PEI50 also exhibited excellent stability after ten adsorption-desorption cycles. This study illustrated that CSA-PEI was a potential adsorbent for CO2 capture from flue gas.
Collapse
Affiliation(s)
- Quyen Kim Thi Doan
- Graduate Institute of Environmental Engineering, National Central University, Zhongda Rd., Zhongli District, Taoyuan City, Taiwan
| | - Kung Yuh Chiang
- Graduate Institute of Environmental Engineering, National Central University, Zhongda Rd., Zhongli District, Taoyuan City, Taiwan.
| |
Collapse
|
6
|
Patel PK, Pandey LM, Uppaluri RV. Cyclic Adsorption and Desorption Characteristics of Citric Acid-chitosan Variant Resins for Pb, Fe, and Zn Removal from Simulated Mining and Agricultural Wastewater System. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2024; 32:5750-5770. [DOI: 10.1007/s10924-024-03343-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 05/15/2025]
|
7
|
Lin Y, Zhang X, Fu Y, Xu C, Yang X, Tan Z, Lin H, Chen G. Enhancing irrigation water quality efficiently with potassium feldspar-derived adsorbent: Heavy metal detoxification and nutrient augmentation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116648. [PMID: 38964065 DOI: 10.1016/j.ecoenv.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
The pollution of Pb2+ and Cd2+ in both irrigation water and soil, coupled with the scarcity of vital mineral nutrition, poses a significant hazard to the security and quality of agricultural products. An economical potassium feldspar-derived adsorbent (PFDA) was synthesized using potassium feldspar as the main raw material through ball milling-thermal activation technology to solve this problem. The synthesis process is cost-effective and the resulting adsorbent demonstrates high efficiency in removing Pb2+ and Cd2+ from water. The removal process is endothermic, spontaneous, and stochastic, and follows the quasi-second-order kinetics, intraparticle diffusion, and Langmuir model. The adsorption and elimination of Pb2+ and Cd2+ is largely dependent on monolayer chemical sorption. The maximum removal capacity of PFDA for Pb2+ and Cd2+ at room temperature is 417 and 56.3 mg·g-1, respectively, which is superior to most mineral-based adsorbents. The desorption of Pb2+/Cd2+ on PFDA is highly challenging at pH≥3, whereas PFDA and Pb2+/Cd2+ are recyclable at pH≤0.5. When Pb2+ and Cd2+ coexisted, Pb2+ was preferentially removed by PFDA. In the case of single adsorption, Pb2+ was mainly adsorbed onto PFDA as Pb2SiO4, PbSiO3·xH2O, Pb3SiO5, PbAl2O4, PbAl2SiO6, PbAl2Si2O8, Pb2SO5, and PbSO4, whereas Cd2+ was primarily adsorbed as CdSiO3, Cd2SiO4, and Cd3Al2Si3O12. After the complex adsorption, the main products were PbSiO3·xH2O, PbAl2Si2O8, Pb2SiO4, Pb4Al2Si2O11, Pb5SiO7, PbSO4, CdSiO3, and Cd3Al2Si3O12. The forms of mineral nutrients in single and complex adsorption were different. The main mechanisms by which PFDA removed Pb2+ and Cd2+ were chemical precipitation, complexation, electrostatic attraction, and ion exchange. In irrigation water, the elimination efficiencies of Pb2+ and Cd2+ by PFDA within 10 min were 96.0 % and 70.3 %, respectively, and the concentrations of K+, Si4+, Ca2+, and Mg2+ increased by 14.0 %, 12.4 %, 55.7 %, and 878 %, respectively, within 60 min. PFDA holds great potential to replace costly methods for treating heavy metal pollution and nutrient deficiency in irrigation water, offering a sustainable, cost-effective solution and paving a new way for the comprehensive utilization of potassium feldspar.
Collapse
Affiliation(s)
- Yi Lin
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
| | - Xuehong Zhang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
| | - Yuexin Fu
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
| | - Chuikun Xu
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
| | - Xuemeng Yang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
| | - Zhiyu Tan
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
| | - Hua Lin
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China.
| | - Gongning Chen
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China.
| |
Collapse
|
8
|
Linson N, Jacob J, Kuriakose S. Iron Oxide-Doped Carbon Nanoparticles Stabilised with Functionally Modified Hyperbranched Polyglycerol for Cd 2+ Sensing and Photodynamic Antibacterial Therapeutic Applications. J Fluoresc 2024:10.1007/s10895-024-03769-8. [PMID: 38902497 DOI: 10.1007/s10895-024-03769-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024]
Abstract
Nanoscale materials are being developed from individual particles to multi-component assemblies, with carbon nanomaterials being particularly useful in bioimaging, sensing, and optoelectronics due to their unique optical properties, enhanced by surface passivation and chemical doping. Noble metals are commonly used in conjunction with carbon-based nanomaterials for the synthesis of nanohybrids. Carbon-based materials can function as photosensitizers and effective carriers in photodynamic therapy, enabling the use of combined treatment approaches. The hydrophobicity and agglomeration tendency of carbon nanoparticles pose a drawback. This study is an attempt to overcome these limitations, which involved the synthesis of iron oxide-doped carbon nanoparticles through the carbonisation of citric acid and hexamethylene tetramine, followed by doping them with iron oxide. The as synthesized iron oxide-doped carbon nanoparticles were stabilised with fluorescently modified hyperbranched polyglycerol. The efficacy of these nanoparticles in photodynamic antibacterial therapy and Cd (II) ion sensing was investigated. The selectivity of stabilised nanoparticles against Cd2+ ion is presented in the current study. The current study also compares the antibacterial efficacy of undoped, iron oxide-doped and stabilised nanoparticle systems. The possible toxic effects of the synthesised nanosystems were investigated in order to assess their suitability for biomedical applications and establish their safety profile.
Collapse
Affiliation(s)
- Nihita Linson
- Research and Postgraduate Department of Chemistry, St. Thomas College Palai, Mahatma Gandhi University, Kottayam, 686574, Kerala, India
| | - Jissy Jacob
- Research and Postgraduate Department of Chemistry, St. Thomas College Palai, Mahatma Gandhi University, Kottayam, 686574, Kerala, India
| | - Sunny Kuriakose
- Research and Postgraduate Department of Chemistry, St. Thomas College Palai, Mahatma Gandhi University, Kottayam, 686574, Kerala, India.
| |
Collapse
|
9
|
Jagadeesan S, Prathipa V, Ragupathi C, Ramalingam G, Narayanan S, Tamizhdurai P, Rajendran A, Yadav KK, Albakri GS, Abbas M, Alreshidi MA. Liquid phase selective oxidation of veratryl alcohol to veratraldehyde using pure and Mg-doped copper chromite catalysts. RSC Adv 2024; 14:18093-18102. [PMID: 38841392 PMCID: PMC11152144 DOI: 10.1039/d4ra00846d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Mg-doped copper chromite (CuCr2O4) nanocomposites were synthesised through conventional technique. The pure and doped CuCr2-xMgx O4 (x = 0.00-0.1, 0.2 and 0.3%) nanocomposites were characterized in terms of their morphology, crystal structure, surface area and catalytic performance. The chemical composition of CuCr2-xMgx O4 was confirmed via FT-IR. The formation of pure and doped catalysts was validated by XRD results. TEM/SEM confirmed the formation of CuCr2-xMgxO4 nanoparticles. Mg-doped samples possess a high specific surface area compared to pure CuCr2O4. Thus, the effects of temperature, solvent, time, oxidant and the amount of catalyst on the oxidation of veratryl alcohol were reported. Furthermore, detailed mechanisms of the catalytic oxidation of veratryl alcohol as well as the reusability and stability of the nanomaterial were investigated. The resulting composites were shown to be effective heterogeneous catalysts for the oxidation of veratryl alcohol.
Collapse
Affiliation(s)
- S Jagadeesan
- Department of Physics, Srimad Andavan Arts and Science College (Autonomous) (Affiliated to Bharathidasan University, Tiruchirappalli) Tiruchirappalli-620005 Tamilnadu India
| | - V Prathipa
- Department of Chemistry, PSNA College of Engineering Technology Dindigul Tamilnadu India
| | - C Ragupathi
- Department of Chemistry, Sriram College of Arts and Science Perumalpattu Tiruvallur 602024 Tamilnadu India
| | - G Ramalingam
- Department of Nanoscience and Technology, Alagappa University Karaikudi 630003 India
| | - S Narayanan
- Department of Chemistry, Sriram College of Arts and Science Perumalpattu Tiruvallur 602024 Tamilnadu India
| | - P Tamizhdurai
- Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous) (Affiliated to the University of Madras) India +91-9677146579
| | - A Rajendran
- Department of Chemistry, Sir Theagaraya College, (Affiliated to University of Madras) Chennai 600 021 Tamilnadu India
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University Ratibad Bhopal 462044 India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University Thi-Qar Nasiriyah 64001 Iraq
| | - Ghadah Shukri Albakri
- Department of Teaching and Learning, College of Education and Human Development, Princess Nourah Bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University Abha 61421 Saudi Arabia
| | | |
Collapse
|
10
|
Srinivasan P, P Sivaraman S, Madhu DK, Sengupta P, Kattela B, Nagarajan S, Mohan AM, Deivasigamani P. Sustainable and reusable probe-encapsulated porous poly(AMST-co-TRIM) monolithic sensor for the selective and ultra-sensitive detection of toxic cadmium(II) from industrial/environmental wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133960. [PMID: 38492387 DOI: 10.1016/j.jhazmat.2024.133960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
This study focuses on a new type of fast responsive solid-state visual colorimetric sensor, custom engineered with dual-entwined porous polymer imbued with chromoionophoric 4-(sec-butyl)- 2-((5-mercapto-1,3,4-thiadiazol-2-yl)diazenyl)phenol (SMDP) probe for selective and ultra-sensitive colorimetric sensing of Cd(II). The polymer monolith, i.e., poly(aminostyrene-co-trimethylolpropanetrimethacrylate) denoted as poly(AMST-co-TRIM), is designed through a stoichiometric blending of monomer, crosslinker, and porogens leading to superior surface area, pore and adsorption properties for the voluminous incorporation of SMDP probe for target specific ion sensing. The porosity, surface and structural characteristics of the poly(AMST-co-TRIM)monolith and poly(AMST-co-TRIM)SMDP sensor are investigated using p-XRD, XPS, TG-DTA, FT-IR, BET/BJH, FE-SEM, HR-TEM, EDAX, and SAED techniques. The poly(AMST-co-TRIM)SMDP sensor reveals a frozen geometrical orientation of SMDP molecules to bind selectively with Cd(II), forming stable charge-transfer complexes by exhibiting transitional visible color shifts from light yellow to dark green (λmax 608 nm). The sensor imposes a linear response from 0-200 ppb, with quantification and detection limits of 0.95 and 0.28 ppb. The fabricated sensor material is cost-effective and versatile in its solid-state naked-eye sensing, with excellent reusability. The sensor performance has been verified using various environmentally contaminated water and commercial cigarette samples, with a recovery of ≥ 99.12% and an RSD of ≤ 1.95%, thus reflecting exceptional data reproducibility/reliability.
Collapse
Affiliation(s)
- Prabhakaran Srinivasan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sushmitha P Sivaraman
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Deepan Kumar Madhu
- Department of Chemistry, K. Ramakrishnan College of Technology, Samayapuram, Tiruchirapalli, Tamil Nadu 621112, India
| | - Pratiksha Sengupta
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Bhargavi Kattela
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sivaraman Nagarajan
- Homi Bhabha National Institute (HBNI), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu 603102, India
| | - Akhila Maheswari Mohan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Prabhakaran Deivasigamani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
11
|
Hassan J, Rajib MMR, Khan MNEA, Khandaker S, Zubayer M, Ashab KR, Kuba T, Marwani HM, Asiri AM, Hasan MM, Islam A, Rahman MM, Awual MR. Assessment of heavy metals accumulation by vegetables irrigated with different stages of textile wastewater for evaluation of food and health risk. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120206. [PMID: 38325287 DOI: 10.1016/j.jenvman.2024.120206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/01/2023] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
Wastewater irrigation for vegetable cultivation is greatly concerned about the presence of toxic metals in irrigated soil and vegetables which causes possible threats to human health. This study aimed to ascertain the accumulation of heavy metals (HMs) in edible parts of vegetables irrigated with different stages of textile dyeing wastewater (TDW). Bio-concentration factor (BCF), Estimated daily intake (EDI), and target hazard quotient (THQ) were computed to estimate human health risks and speculate the hazard index (HI) of adults and children with the consumption of HMs contaminated vegetables at recommended doses. Five vegetables (red amaranth, Indian spinach, cauliflower, tomato, and radish) in a pot experiment were irrigated with groundwater (T1) and seven stages of TDW (T2∼T8) following a randomized complete block design (RCBD) with three replications. Among the TDW stages, T8, T7, T4, and T5 exhibited elevated BCF, EDI, THQ, and HI due to a rising trend in the accumulation of Pb, Cd, Cr, and Ni heavy metals in the edible portion of the red amaranth, followed by radish, Indian spinach, cauliflower, and tomato. The general patterns of heavy metal (HM) accumulation, regarded as vital nutrients for plants, were detected in the following sequence: Zn > Mn/Cu > Fe. Conversely, toxic metals were found to be Cd/Cr > Ni > Pb, regardless of the type of vegetables. Principal Component Analysis (PCA) identified T8, T7, and T4 of TDW as the primary contributors to the accumulation of heavy metals in the vegetables examined. Furthermore, the analysis of the heavy metals revealed that the BCF, THQ, and HI values for all studied metals were below 1, except for Pb. This suggests that the present consumption rates of different leafy and non-leafy vegetables, whether consumed individually or together, provide a low risk in terms of heavy metal exposure. Nevertheless, the consumption of T8, T7, and T4 irrigated vegetables, specifically Indian spinach alone or in combination with red amaranth and radish, by both adults and children, at the recommended rate, was found to pose potential health risks. On the other hand, T2, T3, and T6 irrigated vegetables were deemed safe for consumption. These findings indicated that the practice of irrigating the vegetables with T8, T7, and T4 stages of TDW has resulted in a significant buildup of heavy metals in the soils and edible parts of vegetables which are posing health risks to adults and children. Hence, it is imperative to discharge the T8, T7, and T4 stages of TDW after ETP to prevent the contamination of vegetables and mitigate potential health risks.
Collapse
Affiliation(s)
- Jahidul Hassan
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Md Mijanur Rahman Rajib
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Md Noor-E-Azam Khan
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Shahjalal Khandaker
- Department of Urban and Environmental Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan; Department of Textile Engineering, Dhaka University of Engineering & Technology, Gazipur-1706, Bangladesh.
| | - Md Zubayer
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Kazi Raghib Ashab
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Takahiro Kuba
- Department of Urban and Environmental Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hadi M Marwani
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md Munjur Hasan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Chemistry, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Aminul Islam
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md Rabiul Awual
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia; Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, GPO Box U 1987, Perth, WA, 6845, Australia.
| |
Collapse
|
12
|
Wang J, Wang G, Deng X, Luo M, Xu S, Jiang B, Yuan G, An S, Liu J. One-pot synthesis of novel mesoporous FeOOH modified NaZrH(PO 4) 2·H 2O for the enhanced removal of Co(II) from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5912-5927. [PMID: 38133758 DOI: 10.1007/s11356-023-31541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
One-pot synthesis of a novel mesoporous hydroxyl oxidize iron functional Na-zirconium phosphate (FeOOH-NaZrH(PO4)2·H2O) composites was firstly characterized and investigated its Co(II) adsorption from aqueous solution. Compared to NaZrH(PO4)2·H2O (65.7 mg⋅g-1), the maximum Co(II) adsorption capacity of FeOOH-NaZrH(PO4)2·H2O was improved to be 95.1 mg⋅g-1. BET verified the mesoporous structures of FeOOH-NaZrH(PO4)2·H2O with a larger pore volume than NaZrH(PO4)2·H2O. High pH values, initial Co(II) concentration, and temperature benefited the Co(II) adsorption. Kinetics, isotherms, and thermodynamics indicated an endothermic, spontaneous chemisorption process. FeOOH-NaZrH(PO4)2·H2O has a better Co(II) adsorption selectivity than that of NaZrH(PO4)2·H2O. In particular, FeOOH-NaZrH(PO4)2·H2O exhibited an outstanding reusability after ten cycles of tests. The main possible mechanism for adsorbents uptake Co(II) involved in ion exchange, electrostatic interaction, and -OH, Zr-O bond coordination based on FTIR and XPS analysis. This work presents a feasible strategy to prepare novel modified zirconium phosphate composites for extracting Co(II) from solutions and providing a new insight into the understanding of Co(II) adsorption in the real nuclear Co(II)-containing wastewater.
Collapse
Affiliation(s)
- Jing Wang
- Chengdu University of Technology, College of Nuclear Technology and Automation Engineering, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China
| | - Guangxi Wang
- Chengdu University of Technology, College of Nuclear Technology and Automation Engineering, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China
| | - Xiaoqin Deng
- Sichuan Management and Monitoring Center Station of Radioactive Environment, Chengdu, 610039, People's Republic of China
| | - Maodan Luo
- Sichuan Management and Monitoring Center Station of Radioactive Environment, Chengdu, 610039, People's Republic of China
| | - Su Xu
- Sichuan Management and Monitoring Center Station of Radioactive Environment, Chengdu, 610039, People's Republic of China
| | - Bing Jiang
- Sichuan Management and Monitoring Center Station of Radioactive Environment, Chengdu, 610039, People's Republic of China
| | - Guoyuan Yuan
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Shuwen An
- Chengdu University of Technology, College of Nuclear Technology and Automation Engineering, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China
| | - Jun Liu
- Chengdu University of Technology, College of Nuclear Technology and Automation Engineering, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China.
- Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China.
| |
Collapse
|
13
|
Zhao M, Song C, Zhang F, Jia X, Ma D. New-style electrokinetic-adsorption remediation of cadmium-contaminated soil using double-group electrodes coupled with chitosan-activated carbon composite membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166919. [PMID: 37689188 DOI: 10.1016/j.scitotenv.2023.166919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Global soil cadmium (Cd(II)) contamination threatens the soil environment, food safety, and human health. Conventional electrokinetic remediation (EKR) and enhancement methods usually operate in strong electric fields, leading to strong side reactions and uneven removal. In this work, to remove Cd(II) from soil effectively in a low-voltage electric field, a new-style electrokinetic-adsorption remediation using double-group electrodes coupled with chitosan-activated carbon composite membranes (DE-EKR-CAC) was developed. Chitosan-activated carbon (CAC) composite membranes were synthesized for easy recovery and reuse of adsorbents. The effects of pH, contact time, initial concentration, and foreign ions on the removal of Cd(II) by the CAC composite membranes were determined. The CAC composite membranes performed well except in a strongly acidic environment (pH = 2.0). The soil pH varied between 3.4 and 5.0 in DE-EKR-CAC, where the CAC composite membranes were applicable. High concentrations of Ca2+ interfered with the adsorption of Cd(II), which means that the selectivity of CAC composite membranes for Cd(II) is not high enough. The Langmuir (R2 = 0.999) and pseudo-second-order kinetic (R2 = 1.0) models revealed the monolayer coverage and chemisorption mechanism, and the maximum adsorption capacity was 40.81 mg/g. Furthermore, SEM, FTIR, and XPS analyses suggest that physical adsorption, complexation of oxygen-containing functional groups, chelation of amino groups, and ion exchange are potential mechanisms for the adsorption of Cd(II) on CAC. DE-EKR-CAC performed better than the group remediated with one set of electrodes, with higher removal efficiencies and more uniform removal. The lowest energy consumption was 3.33 kWh/m3, which is lower than other enhancement methods. Separation of CAC composite membranes from soil is easy, and reuse performance is good. DE-EKR-CAC provides a potential option for Cd(II) removal from soil because of its better performance using low-voltage direct current, low energy consumption, and ease of recycling the adsorbent.
Collapse
Affiliation(s)
- Miaomiao Zhao
- Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Chunfeng Song
- Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Fan Zhang
- Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Xiaoyu Jia
- Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Degang Ma
- Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
14
|
Weng H, Wang Y, Li F, Muroya Y, Yamashita S, Cheng S. Recovery of platinum group metal resources from high-level radioactive liquid wastes by non-contact photoreduction. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131852. [PMID: 37331059 DOI: 10.1016/j.jhazmat.2023.131852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/29/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Recovery of platinum group metals (PGMs) including palladium (Pd), rhodium (Rh), and ruthenium (Ru) from high-level radioactive liquid waste (HLLW) possesses enormous environmental and economic benefits. A non-contact photoreduction method was herein developed to selectively recover each PGM from HLLW. Soluble Pd(II), Rh(III), and Ru(III) ions were reduced to insoluble zero-valent metals and separated from simulated HLLW containing neodymium (Nd) as a representative for lanthanides, another main component in HLLW. Detailed investigation on the photoreduction of different PGMs revealed that Pd(II) could be reduced under 254- or 300-nm UV exposure using either ethanol or isopropanol as reductants. Only 300-nm UV light enabled the reduction of Rh(III) in the presence of ethanol or isopropanol. Ru(III) was the most difficult to reduce, which was only realized by 300-nm UV illumination in isopropanol solution. The effects of pH was also studied, suggesting that lower pH favored the separation of Rh(III) but hindered the reduction of Pd(II) and Ru(III). A delicate three-step process was accordingly designed to achieve the selective recovery of each PGM from simulated HLLW. Pd(II) was reduced by 254-nm UV light with the help of ethanol in the first step. Then Rh(III) was reduced by 300-UV light in the second step after the pH was adjusted to 0.5 to suppress the Ru(III) reduction. In the third step, Ru(III) was reduced by 300-nm UV light after isopropanol was added and the pH was adjusted to 3.2. The separation ratios of Pd, Rh, and Ru exceeded 99.8%, 99.9%, and 90.0%, respectively. Meanwhile, all Nd(III) still remained in the simulated HLLW. The separation coefficients between Pd/Rh and Rh/Ru exceeded 56,000 and 75,000, respectively. This work may provide an alternative method to recover PGMs from HLLW, which minimize the secondary radioactive wastes compared with other approaches.
Collapse
Affiliation(s)
- Hanqin Weng
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China; Department of Beam Material Science, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan; Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188, Japan.
| | - Yi Wang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China; Reactor Operation and Application Research Sub-Institute, Nuclear Power Institute of China, Chengdu, Sichuan 610041, China
| | - Fuhai Li
- Suzhou Nuclear Power Research Institute Co. Ltd., Suzhou, Jiangsu 215004, China
| | - Yusa Muroya
- Department of Beam Material Science, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Shinichi Yamashita
- Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188, Japan; Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 4-7-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sheng Cheng
- Instrumental Analysis Center, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
15
|
Alotaibi MT, Mogharbel RT, Alorabi AQ, Alamrani NA, Shahat A, El-Metwaly NM. Superior adsorption and removal of toxic industrial dyes using cubic Pm3n aluminosilica form an aqueous solution, Isotherm, Kinetic, thermodynamic and mechanism of interaction. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
16
|
Althumayri K, Guesmi A, Abd El-Fattah W, Khezami L, Soltani T, Hamadi NB, Shahat A. Effective Adsorption and Removal of Doxorubicin from Aqueous Solutions Using Mesostructured Silica Nanospheres: Box-Behnken Design Optimization and Adsorption Performance Evaluation. ACS OMEGA 2023; 8:14144-14159. [PMID: 37091426 PMCID: PMC10116628 DOI: 10.1021/acsomega.3c00829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
The aim of this study is to evaluate the efficacy of mesoporous silica nanospheres as an adsorbent to remove doxorubicin (DOX) from aqueous solution. The surface and structural properties of mesoporous silica nanospheres were investigated using BET, SEM, XRD, TEM, ζ potential, and point of zero charge analysis. To optimize DOX removal from aqueous solution, a Box-Behnken surface statistical design (BBD) with four times factors, four levels, and response surface modeling (RSM) was used. A high amount of adsorptivity from DOX (804.84 mg/g) was successfully done under the following conditions: mesoporous silica nanospheres dose = 0.02 g/25 mL; pH = 6; shaking speed = 200 rpm; and adsorption time = 100 min. The study of isotherms demonstrated how well the Langmuir equation and the experimental data matched. According to thermodynamic characteristics, the adsorption of DOX on mesoporous silica nanospheres was endothermic and spontaneous. The increase in solution temperature also aided in the removal of DOX. The kinetic study showed that the model suited the pseudo-second-order. The suggested adsorption method could recycle mesoporous silica nanospheres five times, with a modest reduction in its ability for adsorption. The most important feature of our adsorbent is that it can be recycled five times without losing its efficiency.
Collapse
Affiliation(s)
- Khalid Althumayri
- Department
of Chemistry, College of Science, Taibah
University, 30002 Al-Madinah Al-Munawarah, Saudi Arabia
| | - Ahlem Guesmi
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Wesam Abd El-Fattah
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Port Said
University, Port Said 43518, Egypt
| | - Lotfi Khezami
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Taoufik Soltani
- Physics
Laboratory of Soft Matter and Electromagnetic Modelling, Faculty of
Sciences of Tunis, University of Tunis El
Manar, Tunis 1068, Tunisia
| | - Naoufel Ben Hamadi
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
- Laboratory
of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39),
Faculty of Science of Monastir, UM (University
of Monastir), Avenue
of Environment, Monastir 5019, Tunisia
| | - Ahmed Shahat
- Department
of Chemistry, Faculty of Science, Suez University, Suez 8151650, Egypt
| |
Collapse
|
17
|
Lu M, Wu XJ, Wan CX, Gong QP, Li JX, Liao SS, Wang YA, Yuan SH. Evaluation of Fe 3O 4-MnO 2@RGO magnetic nanocomposite as an effective persulfate activator and metal adsorbent in aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51125-51142. [PMID: 36808038 DOI: 10.1007/s11356-023-25911-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/09/2023] [Indexed: 04/16/2023]
Abstract
A reduced graphene oxide (RGO) supported Fe3O4-MnO2 nanocomposite (Fe3O4-MnO2@RGO) was successfully prepared for catalytic degradation of oxytetracycline (20 mg/L) by potassium persulfate (PS) and adsorption removal of mixture of Pb2+, Cu2+, and Cd2+ ions (each 0.2 mM) in the synchronous scenario. The removal efficiencies of oxytetracycline, Pb2+, Cu2+, and Cd2+ ions were observed as high as 100%, 99.9%, 99.8%, and 99.8%, respectively, under the conditions of [PS]0 = 4 mM, pH0 = 7.0, Fe3O4-MnO2@RGO dosage = 0.8 g/L, reaction time = 90 min. The ternary composite exhibited higher oxytetracycline degradation/mineralization efficiency, greater metal adsorption capacity (Cd2+ 104.1 mg/g, Pb2+ 206.8 mg/g, Cu2+ 70.2 mg/g), and better PS utilization (62.6%) than its unary and binary counterparts including RGO, Fe3O4, Fe3O4@RGO, and Fe3O4-MnO2. More importantly, the ternary composite had good magnetic recoverability and excellent reusability. Notably, Fe, Mn, and RGO could play a synergistic role in the improvement of pollutant removal. Quenching results indicate that surface bounded SO4•- was the major contributor to oxytetracycline decomposition, and the -OH groups on the composite surface shouldered a significant role in PS activation. The results indicate that the magnetic Fe3O4-MnO2@RGO nanocomposite has a good potential for removing organic-metal co-contaminants in waterbody.
Collapse
Affiliation(s)
- Mang Lu
- School of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330032, Jiangxi Province, China.
| | - Xue-Jiao Wu
- The Library, Nanchang Normal University, Nanchang, 330032, Jiangxi Province, China
| | - Chu-Xing Wan
- School of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330032, Jiangxi Province, China
| | - Qiu-Ping Gong
- School of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330032, Jiangxi Province, China
| | - Jia-Xin Li
- School of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330032, Jiangxi Province, China
| | - Shuang-Shuang Liao
- School of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330032, Jiangxi Province, China
| | - Yu-An Wang
- School of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330032, Jiangxi Province, China
| | - Shu-Hao Yuan
- School of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330032, Jiangxi Province, China
| |
Collapse
|
18
|
Kubra KT, Hasan MM, Hasan MN, Salman MS, Khaleque MA, Sheikh MC, Rehan AI, Rasee AI, Waliullah R, Awual ME, Hossain MS, Alsukaibi AK, Alshammari HM, Awual MR. The heavy lanthanide of Thulium(III) separation and recovery using specific ligand-based facial composite adsorbent. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
19
|
Dong C, Zhou N, Zhang J, Lai W, Xu J, Chen J, Yu R, Che Y. Optimized preparation of gangue waste-based geopolymer adsorbent based on improved response surface methodology for Cd(II) removal from wastewater. ENVIRONMENTAL RESEARCH 2023; 221:115246. [PMID: 36657595 DOI: 10.1016/j.envres.2023.115246] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Resource utilization of gangue solid waste has become an essential research direction for green development. This study prepared a novel gangue based geopolymer adsorbent (GPA) for the removal of Cd(II) from wastewater using pretreatment gangue (PG) as the main raw material. The ANOVA indicated that the obtained quadratic model of fitness function (R2 > 0.99, P-value <0.0001) was significant and adequate, and the contribution of the three preparation conditions to the removal of Cd(II) was: calcination temperature > Na2CO3:PG ratio > water-glass solid content. The hybrid response surface method and gray wolf optimization (RSM-GWO) algorithm were adopted to acquire the optimum conditions: Na2CO3:PG ratio = 1.05, calcination temperature of 701 °C, solid content of water glass of 22.42%, and the removal efficiency of Cd(II) by GPA obtained under the optimized conditions (GPAC) was 97.84%. Adsorption kinetics, adsorption isotherms and characterization by XRD, FTIR, Zeta potential, FSEM-EDS and BET were utilized to investigate the adsorption mechanism of GPAC on Cd(II). The results showed that the adsorption of Cd(II) from GPAC was consistent with the pseudo-second-order model (R2 = 0.9936) and the Langmuir model (R2 = 0.9988), the adsorption was a monolayer adsorption process and the computed maximum Cd(II) adsorption (50.76 mg g-1) was approximate to experimental results (51.47 mg g-1). Moreover, the surface morphology of GPAC was rough and porous with a specific surface area (SSA) of 18.54 m2 g-1, which provided abundant active sites, and the internal kaolinite was destroyed to produce a zeolite-like structure where surface complexation and ion exchange with Cd(II) through hydroxyl (-OH) and oxygen-containing groups (-SiOH and -AlOH) were the main adsorption mechanisms. Thus, GPAC is a lucrative adsorbent material for effective Cd(II) wastewater treatment, complying with the "high value-added" usage of solid wastes and "waste to cure poison" green sustainable development direction.
Collapse
Affiliation(s)
- Chaowei Dong
- School of Mines, China University of Mining and Technology, Xuzhou, 221116, China; Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Nan Zhou
- School of Mines, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Jixiong Zhang
- School of Mines, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Wanan Lai
- School of Mines, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Jianfei Xu
- School of Mines, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Junlin Chen
- Arizona College of Technology, Hebei University of Technology, Tianjin, 300401, China.
| | - Runhua Yu
- Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China.
| | - Yepeng Che
- China Coal Energy Xinjiang Tianshan Coal Power Co., Ltd, Xinjiang, 831200, China.
| |
Collapse
|
20
|
Hasan MN, Salman MS, Hasan MM, Kubra KT, Sheikh MC, Rehan AI, Rasee AI, Awual ME, Waliullah R, Hossain MS, Islam A, Khandaker S, Alsukaibi AK, Alshammari HM, Awual MR. Assessing sustainable Lutetium(III) ions adsorption and recovery using novel composite hybrid nanomaterials. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Subaihi A, Shahat A. Synthesis and characterization of super high surface area silica-based nanoparticles for adsorption and removal of toxic pharmaceuticals from aqueous solution. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
22
|
Improving copper(II) ion detection and adsorption from wastewater by the ligand-functionalized composite adsorbent. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
23
|
Elkalla E, Khizar S, Tarhini M, Lebaz N, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Core-shell micro/nanocapsules: from encapsulation to applications. J Microencapsul 2023; 40:125-156. [PMID: 36749629 DOI: 10.1080/02652048.2023.2178538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Encapsulation is the way to wrap or coat one substance as a core inside another tiny substance known as a shell at micro and nano scale for protecting the active ingredients from the exterior environment. A lot of active substances, such as flavours, enzymes, drugs, pesticides, vitamins, in addition to catalysts being effectively encapsulated within capsules consisting of different natural as well as synthetic polymers comprising poly(methacrylate), poly(ethylene glycol), cellulose, poly(lactide), poly(styrene), gelatine, poly(lactide-co-glycolide)s, and acacia. The developed capsules release the enclosed substance conveniently and in time through numerous mechanisms, reliant on the ultimate use of final products. Such technology is important for several fields counting food, pharmaceutical, cosmetics, agriculture, and textile industries. The present review focuses on the most important and high-efficiency methods for manufacturing micro/nanocapsules and their several applications in our life.
Collapse
Affiliation(s)
- Eslam Elkalla
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Sumera Khizar
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Mohamad Tarhini
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Noureddine Lebaz
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, LAGEPP UMR-5007, Villeurbanne, France
| | - Nadia Zine
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | |
Collapse
|
24
|
Althumayri K, Guesmi A, El-Fattah WA, Houas A, Hamadi NB, Shahat A. Enhanced Adsorption and Evaluation of Tetracycline Removal in an Aquatic System by Modified Silica Nanotubes. ACS OMEGA 2023; 8:6762-6777. [PMID: 36844599 PMCID: PMC9948198 DOI: 10.1021/acsomega.2c07377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
In the present study, a nanocomposite adsorbent based on mesoporous silica nanotubes (MSNTs) loaded with 3-aminopropyltriethoxysilane (3-APTES@MSNTs) was synthesized. The nanocomposite was employed as an effective adsorbent for the adsorption of tetracycline (TC) antibiotics from aqueous media. It has an 848.80 mg/g maximal TC adsorption capability. The structure and properties of 3-APTES@MSNT nanoadsorbent were detected by TEM, XRD, SEM, FTIR, and N2 adsorption-desorption isotherms. The later analysis suggested that the 3-APTES@MSNT nanoadsorbent has abundant surface functional groups, effective pore size distribution, a larger pore volume, and a relatively higher surface area. Furthermore, the influence of key adsorption parameters, including ambient temperature, ionic strength, initial TC concentration, contact time, initial pH, coexisting ions, and adsorbent dosage, had also been investigated. The 3-APTES@MSNT nanoadsorbent's ability to adsorb the TC molecules was found to be more compatible with Langmuir isothermal and pseudo-second-order kinetic models. Moreover, research on temperature profiles pointed to the process' endothermic character. In combination with the characterization findings, it was logically concluded that the 3-APTES@MSNT nanoadsorbent's primary adsorption processes involved interaction, electrostatic interaction, hydrogen bonding interaction, and the pore-fling effect. The synthesized 3-APTES@MSNT nanoadsorbent has an interestingly high recyclability of >84.6 percent up to the fifth cycle. The 3-APTES@MSNT nanoadsorbent, therefore, showed promise for TC removal and environmental cleanup.
Collapse
Affiliation(s)
- Khalid Althumayri
- Department
of Chemistry, College of Science, Taibah
University, Al-Madinah
Al-Munawarah 30002, Saudi
Arabia
| | - Ahlem Guesmi
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Wesam Abd El-Fattah
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Port Said
University, Port Said 42511, Egypt
| | - Ammar Houas
- Research
Laboratory of Catalysis and Materials for Environment and Processes, University of Gabes, City Riadh Zerig, Gabes 6029, Tunisia
| | - Naoufel Ben Hamadi
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
- Faculty
of Science of Monastir, Laboratory of Heterocyclic Chemistry, Natural
Products and Reactivity (LR11ES39), University
of Monastir, Avenue of
Environment, Monastir 5019, Tunisia
| | - Ahmed Shahat
- Department
of Chemistry, Faculty of Science, Suez University, Suez 41522, Egypt
| |
Collapse
|
25
|
Qian F, Huang X, Bao Y. Heavy metals reshaping the structure and function of phylloplane bacterial community of native plant Tamarix ramosissima from Pb/Cd/Cu/Zn smelting regions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114495. [PMID: 36640572 DOI: 10.1016/j.ecoenv.2022.114495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Heavy metal (HM) is noxious element that cannot be biodegraded, thus accumulating in the environment and posing a serious threat to the ecology. Plant phylloplane harbors diverse microbial communities that profoundly influence ecosystem functioning and host health. With more HM accumulating around smelters, native plants and microbes in various habitats tend to suffer from HM. However, the response of phylloplane bacteria of native plants to HM remains unclear. Thus, this study aimed to explain the response of Tamarix ramosissima, a phylloplane bacterial community to HM as well as the effect of the process on host growth in situ by investigating the potential source of HM and bacterial community shift. Results showed that, in most cases, the contaminated site with high HM level caused more accumulation of HM in phylloplane and leaves. Moreover, HM in the phylloplane was not from the internal transport of the plant but it could be due to the wind action or rains. Bacteria in phylloplane may have come from the soil due to their strong positive correlation with corresponding soil at the genus level. High HM level inhibited the relative abundance of dominant bacteria, increased the diversity and species richness of bacterial community in phylloplane, and induced more special bacteria to maintain higher productivity of the host plant, for which, Cu and Pb were the major contributors. Meanwhile, bacteria in phylloplane showed a universal positive correlation in the co-occurrence network, which showed less stability than that in corresponding soil in the smelting region, and it is helpful to regulate the growth of plants more rapidly. Nearly 25% of KEGG pathways were modulated by high HM level and bacterial function tended to stabilize HM to avoid the potential process of leaf absorption. The study illustrated that HM in phylloplane played an important role in shaping the bacterial community of phylloplane as compared to HM in leaves or phyllosphere, and the resulting increase of diversity and richness of bacterial community and special bacteria further maintained the growth of the host plant suffering from HM stress.
Collapse
Affiliation(s)
- Fanghan Qian
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinjian Huang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanyu Bao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
26
|
Divalent metal ion removal from simulated water using sustainable starch aerogels: Effect of crosslinking agent concentration and sorption conditions. Int J Biol Macromol 2023; 226:628-645. [PMID: 36464191 DOI: 10.1016/j.ijbiomac.2022.11.308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
This paper evaluates corn starch aerogels, studying different crosslinking agent (trisodium citrate) concentrations (1:1, 1:1.5, and 1:2) and sorption conditions (contact time, adsorbent weight, and initial concentration) regarding the potentially toxic elements (PTEs) [Cd(II) or Zn(II)] adsorption of the aqueous systems. Besides, other properties of aerogels, such as structural properties, specific surface area, and mechanical performance, were evaluated. For adsorption results, better values were observed in adsorption capacity and efficiency for the initial concentration of 100 ppm. In addition, an adsorption time of 12 h and an adsorbent weight of 3.0 g obtained better results due to the possible balance in this time and the high specific surface area available for Cd(II) adsorption. As for the type of adsorbent, the Aero 1:1.5 sample (intermediate crosslinking agent concentration) obtained better results, possibly due to the high porosity, smaller pore sizes, high pore density, and high specific surface area (198 m2·g-1). In addition, hydroxyl groups in the starch aerogel removed Cd(II) ions with 30 % adsorption efficiency. Lastly, Aero 1:1.5 obtained a high mechanical strength at compression and a satisfactory compressive modulus. In contrast, starch aerogels did not absorb the Zn(II) ion.
Collapse
|
27
|
Al-Hazmi GH, Refat MS, Alshammari KF, Kubra KT, Shahat A. Efficient toxic doxorubicin hydrochloride removal from aqueous solutions using facial alumina nanorods. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Zhang W, Fourcade F, Amrane A, Geneste F. Removal of Iodine-Containing X-ray Contrast Media from Environment: The Challenge of a Total Mineralization. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010341. [PMID: 36615536 PMCID: PMC9822505 DOI: 10.3390/molecules28010341] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023]
Abstract
Iodinated X-ray contrast media (ICM) as emerging micropollutants have attracted considerable attention in recent years due to their high detected concentration in water systems. It results in environmental issues partly due to the formation of toxic by-products during the disinfection process in water treatment. Consequently, various approaches have been investigated by researchers in order to achieve ICM total mineralization. This review discusses the different methods that have been used to degrade them, with special attention to the mineralization yield and to the nature of formed by-products. The problem of pollution by ICM is discussed in the first part dedicated to the presence of ICM in the environment and its consequences. In the second part, the processes for ICM treatment including biological treatment, advanced oxidation/reductive processes, and coupled processes are reviewed in detail. The main results and mechanisms involved in each approach are described, and by-products identified during the different treatments are listed. Moreover, based on their efficiency and their cost-effectiveness, the prospects and process developments of ICM treatment are discussed.
Collapse
Affiliation(s)
- Wei Zhang
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, 35000 Rennes, France
- CNRS, ISCR-UMR 6226, Univ Rennes, 35000 Rennes, France
| | - Florence Fourcade
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, 35000 Rennes, France
- Correspondence: (F.F.); (F.G.)
| | - Abdeltif Amrane
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, 35000 Rennes, France
| | - Florence Geneste
- CNRS, ISCR-UMR 6226, Univ Rennes, 35000 Rennes, France
- Correspondence: (F.F.); (F.G.)
| |
Collapse
|
29
|
Srinivasan P, Madhu DK, Pedugu Sivaraman S, Kuppusamy S, Nagarajan S, Rao CB, Kancharlapalli Chinaraga P, Mohan AM, Deivasigamani P. Chromoionophore decorated renewable solid-state polymer monolithic naked eye sensor for the selective sensing and recovery of ultra-trace toxic cadmium ions in aqueous environment. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Ge H, Ding K, Guo F, Wu X, Zhai N, Wang W. Green and Superior Adsorbents Derived from Natural Plant Gums for Removal of Contaminants: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 16:179. [PMID: 36614516 PMCID: PMC9821582 DOI: 10.3390/ma16010179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The ubiquitous presence of contaminants in water poses a major threat to the safety of ecosystems and human health, and so more materials or technologies are urgently needed to eliminate pollutants. Polymer materials have shown significant advantages over most other adsorption materials in the decontamination of wastewater by virtue of their relatively high adsorption capacity and fast adsorption rate. In recent years, "green development" has become the focus of global attention, and the environmental friendliness of materials themselves has been concerned. Therefore, natural polymers-derived materials are favored in the purification of wastewater due to their unique advantages of being renewable, low cost and environmentally friendly. Among them, natural plant gums show great potential in the synthesis of environmentally friendly polymer adsorption materials due to their rich sources, diverse structures and properties, as well as their renewable, non-toxic and biocompatible advantages. Natural plant gums can be easily modified by facile derivatization or a graft polymerization reaction to enhance the inherent properties or introduce new functions, thus obtaining new adsorption materials for the efficient purification of wastewater. This paper summarized the research progress on the fabrication of various gums-based adsorbents and their application in the decontamination of different types of pollutants. The general synthesis mechanism of gums-based adsorbents, and the adsorption mechanism of the adsorbent for different types of pollutants were also discussed. This paper was aimed at providing a reference for the design and development of more cost-effective and environmentally friendly water purification materials.
Collapse
Affiliation(s)
- Hanwen Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Ke Ding
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Fang Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Xianli Wu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Naihua Zhai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
31
|
Capsoni D, Lucini P, Conti DM, Bianchi M, Maraschi F, De Felice B, Bruni G, Abdolrahimi M, Peddis D, Parolini M, Pisani S, Sturini M. Fe 3O 4-Halloysite Nanotube Composites as Sustainable Adsorbents: Efficiency in Ofloxacin Removal from Polluted Waters and Ecotoxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234330. [PMID: 36500953 PMCID: PMC9739226 DOI: 10.3390/nano12234330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 05/14/2023]
Abstract
The present work aimed at decorating halloysite nanotubes (HNT) with magnetic Fe3O4 nanoparticles through different synthetic routes (co-precipitation, hydrothermal, and sol-gel) to test the efficiency of three magnetic composites (HNT/Fe3O4) to remove the antibiotic ofloxacin (OFL) from waters. The chemical-physical features of the obtained materials were characterized through the application of diverse techniques (XRPD, FT-IR spectroscopy, SEM, EDS, and TEM microscopy, thermogravimetric analysis, and magnetization measurements), while ecotoxicity was assessed through a standard test on the freshwater organism Daphnia magna. Independently of the synthesis procedure, the magnetic composites were successfully obtained. The Fe3O4 is nanometric (about 10 nm) and the weight percentage is sample-dependent. It decorates the HNT's surface and also forms aggregates linking the nanotubes in Fe3O4-rich samples. Thermodynamic and kinetic experiments showed different adsorption capacities of OFL, ranging from 23 to 45 mg g-1. The kinetic process occurred within a few minutes, independently of the composite. The capability of the three HNT/Fe3O4 in removing the OFL was confirmed under realistic conditions, when OFL was added to tap, river, and effluent waters at µg L-1 concentration. No acute toxicity of the composites was observed on freshwater organisms. Despite the good results obtained for all the composites, the sample by co-precipitation is the most performant as it: (i) is easily magnetically separated from the media after the use; (ii) does not undergo any degradation after three adsorption cycles; (iii) is synthetized through a low-cost procedure. These features make this material an excellent candidate for removal of OFL from water.
Collapse
Affiliation(s)
- Doretta Capsoni
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
- C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase) & Department of Chemistry, Physical Chemistry Section, University of Pavia, 27100 Pavia, Italy
| | - Paola Lucini
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
- C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase) & Department of Chemistry, Physical Chemistry Section, University of Pavia, 27100 Pavia, Italy
| | - Debora Maria Conti
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
- C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase) & Department of Chemistry, Physical Chemistry Section, University of Pavia, 27100 Pavia, Italy
| | - Michela Bianchi
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | | | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
| | - Giovanna Bruni
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
- C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase) & Department of Chemistry, Physical Chemistry Section, University of Pavia, 27100 Pavia, Italy
| | - Maryam Abdolrahimi
- Institute of Structure of Matter, National Research Council (CNR), Monterotondo Scalo, 00015 Rome, Italy
- Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy
| | - Davide Peddis
- Institute of Structure of Matter, National Research Council (CNR), Monterotondo Scalo, 00015 Rome, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, 16146 Genova, Italy
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
| | - Silvia Pisani
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Michela Sturini
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
- C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase) & Department of Chemistry, Physical Chemistry Section, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-987347
| |
Collapse
|
32
|
Hasan M, Tul Kubra K, Hasan N, Awual E, Salman S, Sheikh C, Islam Rehan A, Islam Rasee A, Waliullah R, Islam S, Khandaker S, Islam A, Sohrab Hossain M, Alsukaibi AK, Alshammari HM, Awual R. Sustainable ligand-modified based composite material for the selective and effective cadmium(II) capturing from wastewater. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Prospective analytical role of sensors for environmental screening and monitoring. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Alharbi A, Al-Ahmed ZA, El-Metwaly NM, Shahat A, El-Bindary M. A novel strategy for preparing metal-organic framework as a smart material for selective detection and efficient extraction of Pd(II) and Au(III) ions from E-wastes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
El-Nagar I, Youssef AM, Abd El-Hakim AA, Kenawy ER, Mandour HSA, Khattab TA. Novel Hydrazone Chromophore Sensor for Metallochromic Determination of Cadmium Ions. CHEMOSENSORS 2022; 10:451. [DOI: 10.3390/chemosensors10110451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
For the detection of Cd(II) in aquatic media, a novel dicyanomethylene dihydrofuran hydrazone(DCDHFH)-based colorimetric chemosensor was developed. DCDHFH was prepared by an azo-coupling process involving the diazonium chloride of 2, 4-dichloroaniline and a dicyanomethylene dihydrofuran heterocyclic moiety bearing an active methyl group. The DCDHFH chromophore showed strong solvatochromism depending on solvent polarity due to electronic delocalization. The pH sensory effects of the DCDHFH chromophore were also explored. DCDHFH could be used to identify Cd(II) in the presence of other competitive metals, as indicated by variations in color and absorbance spectra. In the presence of cadmium ions, the synthesized DCDHFH probe with hydrazone recognition moiety exhibited a significant sensitivity and selectivity to cadmium ions at the ppm concentration level (10–250 ppm). A DCDHFH-immobilized paper test strip was also prepared and effectively used for the detection of cadmium in aqueous media at various concentrations. According to CIE Lab’s criteria, colorimetric strength (K/S), and the UV–Vis absorbance spectra, the cadmium detection abilities of the DCDHFH-immobilized paper strips were evaluated. The optimal pH range for the determination of Cd(II) was monitored in the area of 5.5–6.3, with a fast chromogenic change from yellow to red relying on the Cd(II) concentration. The deposition of dicyanomethylene dihydrofuran hydrazone onto the paper strip’s surface was studied by scanning electron microscopy (SEM).
Collapse
|
36
|
Simultaneous toxic Cd(II) and Pb(II) encapsulation from contaminated water using Mg/Al-LDH composite materials. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Shan H, Liu Y, Zeng C, Peng S, Zhan H. On As(III) Adsorption Characteristics of Innovative Magnetite Graphene Oxide Chitosan Microsphere. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15207156. [PMID: 36295223 PMCID: PMC9605594 DOI: 10.3390/ma15207156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 05/04/2023]
Abstract
A magnetite graphene oxide chitosan (MGOCS) composite microsphere was specifically prepared to efficiently adsorb As(III) from aqueous solutions. The characterization analysis of BET, XRD, VSM, TG, FTIR, XPS, and SEM-EDS was used to identify the characteristics and adsorption mechanism. Batch experiments were carried out to determine the effects of the operational parameters and to evaluate the adsorption kinetic and equilibrium isotherm. The results show that the MGOCS composite microsphere with a particle size of about 1.5 mm can be prepared by a straightforward method of dropping FeCl2, graphene oxide (GO), and chitosan (CS) mixtures into NaOH solutions and then drying the mixed solutions at 45 °C. The produced MGOCS had a strong thermal stability with a mass loss of <30% below 620 °C. The specific surface area and saturation magnetization of the produced MGOCS was 66.85 m2/g and 24.35 emu/g, respectively. The As(III) adsorption capacity (Qe) and removal efficiency (Re) was only 0.25 mg/g and 5.81% for GOCS, respectively. After 0.08 mol of Fe3O4 modification, more than 53% of As(III) was efficiently removed by the formed MGOCS from aqueous solutions over a wide pH range of 5−10, and this was almost unaffected by temperature. The coexisting ion of PO43− decreased Qe from 3.81 mg/g to 1.32 mg/g, but Mn2+ increased Qe from 3.50 mg/g to 4.19 mg/g. The As(III) adsorption fitted the best to the pseudo-second-order kinetic model, and the maximum Qe was 20.72 mg/g as fitted by the Sips model. After four times regeneration, the Re value of As(III) slightly decreased from 76.2% to 73.8%, and no secondary pollution of Fe happened. Chemisorption is the major mechanism for As(III) adsorption, and As(III) was adsorbed on the surface and interior of the MGOCS, while the adsorbed As(III) was partially oxidized to As(V) accompanied by the reduction of Fe(III) to Fe(II). The produced As(V) was further adsorbed through ligand exchange (by forming Fe−O−As complexes) and electrostatic attraction, enhancing the As(III) removal. As an easily prepared and environmental-friendly composite, MGOCS not only greatly adsorbs As(III) but also effectively removes Cr(VI) and As(V) (Re > 60%) and other metals, showing a great advantage in the treatment of heavy metal-contaminated water.
Collapse
Affiliation(s)
- Huimei Shan
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yunquan Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Chunya Zeng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Sanxi Peng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
- Correspondence: (S.P.); (H.Z.); Tel.: +1-(979)-862-7961 (H.Z.); Fax: +1-(979)-845-6162 (H.Z.)
| | - Hongbin Zhan
- Department of Geology & Geophysics, Texas A&M University, College Station, TX 77843, USA
- Correspondence: (S.P.); (H.Z.); Tel.: +1-(979)-862-7961 (H.Z.); Fax: +1-(979)-845-6162 (H.Z.)
| |
Collapse
|
38
|
Wang J, Meng Q, Yang Y, Zhong S, Zhang R, Fang Y, Gao Y, Cui X. Schiff Base Aggregation-Induced Emission Luminogens for Sensing Applications: A Review. ACS Sens 2022; 7:2521-2536. [PMID: 36048423 DOI: 10.1021/acssensors.2c01550] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fluorescence sensing can not only identify a target substrate qualitatively but also achieve the purpose of quantitative detection through the change of the fluorescence signal. It has the advantages of immense sensitivity, rapid response, and excellent selectivity. The proposed aggregation-induced emission (AIE) concept solves the problem of the fluorescence of traditional fluorescent molecules becoming weak or quenched in high concentration or aggregated state conditions. Schiff base fluorescent probes have the advantages of simple synthesis, low toxicity, and easy design. They are often used for the detection of various substances. In this review we cover late developments in Schiff base compounds with AIE characteristics working as fluorescence sensors.
Collapse
Affiliation(s)
- Jingfei Wang
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Qingye Meng
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yongyan Yang
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China
| | - Ruiting Zhang
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yuhang Fang
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.,Weihai Institute for Bionics-Jilin University, Weihai 264400, People's Republic of China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.,Weihai Institute for Bionics-Jilin University, Weihai 264400, People's Republic of China
| |
Collapse
|
39
|
Li A, Ge W, Liu L, Qiu G. Preparation, adsorption performance and mechanism of MgO-loaded biochar in wastewater treatment: A review. ENVIRONMENTAL RESEARCH 2022; 212:113341. [PMID: 35460638 DOI: 10.1016/j.envres.2022.113341] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/04/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Biochar is a low cost, porous and solid material with an extremely high carbon content, various types of functional groups, a large specific surface area and many other desirable characteristics. Thus, it is often used as an adsorbent or a loading matrix. Nano-magnesium oxide is a crystalline material with small particles and strong ion exchangeability. However, due to the high surface chemical energy, it easily forms agglomerates of particles. Therefore, to combine the advantages of biochar and magnesium, metal magnesium nanoparticles can be loaded onto the surface of biochar with different modification techniques, resulting in biochars with low cost and high adsorption performance to be used as an adsorption matrix (collectively referred to as Mg@BC). This review presents the effects of different Mg@BC preparation methods and synthesis conditions and summarizes the removal capabilities and adsorption mechanisms of Mg@BC for different types of pollutants in water. In addition, the review proposes the prospects for the development of Mg@BC to solve various problems in the future.
Collapse
Affiliation(s)
- Anyu Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenzhan Ge
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
40
|
|
41
|
Liang Y, Zhang Y, Li M, Meng Z, Gong S, Du W, Yang Y, Wang Z, Wang S. A camphor-based fluorescent probe with high selectivity and sensitivity for formaldehyde detection in real food samples and living zebrafish. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Attaallah R, Amine A. An Ultrasensitive and Selective Determination of Cadmium Ions at ppt Level Using an Enzymic Membrane with Colorimetric and Electrochemical Detection. BIOSENSORS 2022; 12:bios12050310. [PMID: 35624611 PMCID: PMC9138971 DOI: 10.3390/bios12050310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 01/17/2023]
Abstract
Cadmium ions (Cd2+) are extremely toxic heavy metal pollutants found in the environment, and which endanger human health. Therefore, it is critical to develop a sensitive and simple method for rapidly detecting Cd2+ in water samples. Herein, an enzymic membrane was developed based on an easy and rapid immobilization method of horseradish peroxidase (HRP), for determination of Cd2+ in drinking water. Hence, for the first time, an enzymic membrane was applied for the detection of Cd2+ without being pretreated. In the first format, the inhibition of horseradish peroxidase was performed using a colorimetric microplate reader. Under optimal conditions, the achieved limit of detection was 20 ppt. In addition, an electrochemical biosensor was developed, by combining the enzymic membrane with screen printed electrodes, which showed a linear calibration range between 0.02–100 ppb (R2 = 0.990) and a detection limit of 50 ppt. The use of this enzymic membrane proved to be advantageous when reversible inhibitors such as the copper ion (Cu2+) were present in water samples, as Cu2+ can interfere with Cd2+ and cause erroneous results. In order to alleviate this problem, a medium exchange procedure was used to eliminate Cu2+, by washing and leaving only cadmium ions as an irreversible inhibitor for identification. The use of this membrane proved to be a simple and rapid method of immobilizing HRP with a covalent bond.
Collapse
|
43
|
Kabir MM, Akter MM, Khandaker S, Gilroyed BH, Didar-ul-Alam M, Hakim M, Awual MR. Highly effective agro-waste based functional green adsorbents for toxic chromium(VI) ion removal from wastewater. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118327] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Hassani S, Mousavi M, Gandomi AH. Structural Health Monitoring in Composite Structures: A Comprehensive Review. SENSORS 2021; 22:s22010153. [PMID: 35009695 PMCID: PMC8747674 DOI: 10.3390/s22010153] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022]
Abstract
This study presents a comprehensive review of the history of research and development of different damage-detection methods in the realm of composite structures. Different fields of engineering, such as mechanical, architectural, civil, and aerospace engineering, benefit excellent mechanical properties of composite materials. Due to their heterogeneous nature, composite materials can suffer from several complex nonlinear damage modes, including impact damage, delamination, matrix crack, fiber breakage, and voids. Therefore, early damage detection of composite structures can help avoid catastrophic events and tragic consequences, such as airplane crashes, further demanding the development of robust structural health monitoring (SHM) algorithms. This study first reviews different non-destructive damage testing techniques, then investigates vibration-based damage-detection methods along with their respective pros and cons, and concludes with a thorough discussion of a nonlinear hybrid method termed the Vibro-Acoustic Modulation technique. Advanced signal processing, machine learning, and deep learning have been widely employed for solving damage-detection problems of composite structures. Therefore, all of these methods have been fully studied. Considering the wide use of a new generation of smart composites in different applications, a section is dedicated to these materials. At the end of this paper, some final remarks and suggestions for future work are presented.
Collapse
Affiliation(s)
- Sahar Hassani
- Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
| | - Mohsen Mousavi
- Faculty of Engineering and IT, University of Technology Sydney, Ultimo 2007, Australia
- Correspondence: (M.M.); (A.H.G.)
| | - Amir H. Gandomi
- Faculty of Engineering and IT, University of Technology Sydney, Ultimo 2007, Australia
- Correspondence: (M.M.); (A.H.G.)
| |
Collapse
|
45
|
Khandaker S, Hossain MT, Saha PK, Rayhan U, Islam A, Choudhury TR, Awual MR. Functionalized layered double hydroxides composite bio-adsorbent for efficient copper(II) ion encapsulation from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113782. [PMID: 34560463 DOI: 10.1016/j.jenvman.2021.113782] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/15/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
In this study, naturally abundant and inexpensive bamboo was used to make cheaper activated charcoal for efficient encapsulation of toxic copper (Cu(II)) ion from wastewater. The functionalized bamboo charcoal-Layered double hydroxides (BC-LDHs) composite bio-adsorbent was prepared using co-precipitation method. The composite bio-adsorbent was exploited to eliminate Cu(II) ion with high sensitivity and selectivity from contaminated water. The adsorption parameters including the effect of pH, contact time, adsorbent dose, and effect of initial concentration were optimized in systematic way and the adsorption kinetics and isotherms were investigated for potential use in real sample treatment. The physicochemical properties and morphological structure of the adsorbent were examined using X-ray Diffraction, Scanning Electronic Microscopy, Fourier Transform Infrared Spectroscopy and Thermogravimetric Analysis to understand the Cu(II) ion adsorption mechanism. The adsorption results revealed that the BC-LDH could remove almost 100% of Cu(II) ion from aqueous solution at pH range between 3.0 and 6.0 within 30 min. The maximum monolayer adsorption capacity was determined to be 85.47 mg/g based on the Langmuir isotherm. The adsorption equilibrium data were well-fitted by the Langmuir isotherm model (R2 = 0.998) and the experimental kinetic data were supported by the pseudo-second order model (R2 = 0.999). The BC-LDH could be reused without losing its adsorption performance in several cycles after successful regeneration with 0.10 M HCl. The Cu(II) ion removal mechanism was postulated with intercalated ion exchange, surface precipitation and interaction between BC-LDH and surface functionalities. Therefore, the highly functional BC-LDH composite could be a promising adsorbent for efficient Cu(II) ion removal from wastewater.
Collapse
Affiliation(s)
- Shahjalal Khandaker
- Department of Textile Engineering, Dhaka University of Engineering & Technology, Gazipur, 1707, Bangladesh.
| | - Md Tofazzal Hossain
- Department of Textile Engineering, Dhaka University of Engineering & Technology, Gazipur, 1707, Bangladesh
| | - Palash Kumar Saha
- Department of Textile Engineering, Dhaka University of Engineering & Technology, Gazipur, 1707, Bangladesh
| | - Ummey Rayhan
- Department of Chemistry, Dhaka University of Engineering &Technology, Gazipur, 1707, Bangladesh
| | - Aminul Islam
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Tasrina Rabia Choudhury
- Analytical Chemistry Laboratory, Chemistry Division Atomic Energy Centre Dhaka, Bangladesh Atomic Energy Commission, Dhaka, 1000, Bangladesh
| | - Md Rabiul Awual
- Department of Chemical Engineering, Curtin University, GPO BoxU 1987, Perth, WA, 6845, Australia; Materials Science and Research Center, Japan Atomic Energy Agency (JAEA), Hyogo, 679-5148, Japan.
| |
Collapse
|
46
|
Tolan DA, Elshehy EA, El-Said WA, Taketsugu T, Yoshizawa K, El-Nahas AM, Kamali AR, Abdelkader AM. Cubically cage-shaped mesoporous ordered silica for simultaneous visual detection and removal of uranium ions from contaminated seawater. Mikrochim Acta 2021; 189:3. [PMID: 34855016 DOI: 10.1007/s00604-021-05083-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
A dual-function organic-inorganic mesoporous structure is reported for naked-eye detection and removal of uranyl ions from an aqueous environment. The mesoporous sensor/adsorbent is fabricated via direct template synthesis of highly ordered silica monolith (HOM) starting from a quaternary microemulsion liquid crystalline phase. The produced HOM is subjected to further modifications through growing an organic probe, omega chrome black blue G (OCBBG), in the cavities and on the outer surface of the silica structure. The spectral response for [HOM-OCBBG → U(VI)] complex shows a maximum reflectance at λmax = 548 nm within 1 min response time (tR); the LOD is close to 9.1 μg/L while the LOQ approaches 30.4 μg/L, and this corresponds to the range of concentration where the signal is linear against U(VI) concentration (i.e., 5-1000 μg/L) at pH 3.4 with standard deviation (SD) of 0.079 (RSD% = 11.7 at n = 10). Experiments and DFT calculations indicate the existence of strong binding energy between the organic probe and uranyl ions forming a complex with blue color that can be detected by naked eyes even at low uranium concentrations. With regard to the radioactive remediation, the new mesoporous sensor/captor is able to reach a maximum capacity of 95 mg/g within a few minutes of the sorption process. The synthesized material can be regenerated using simple leaching and re-used several times without a significant decrease in capacity.
Collapse
Affiliation(s)
- Dina A Tolan
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj, 11942, Saudi Arabia.,Chemistry Department, Faculty of Science, Menoufia University, Menoufia, Egypt
| | | | - Waleed A El-Said
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt.,Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah, 21589, Saudi Arabia
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 060-0810, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ahmed M El-Nahas
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Amr M Abdelkader
- Department of Engineering, Bournemouth University, Talbot Campus, Fern Barrow, Poole, BH12 5BB, UK.
| |
Collapse
|
47
|
Recent progress on hollow porous molecular imprinted polymers as sorbents of environmental samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Sustainable approach for wastewater treatment using microbial fuel cells and green energy generation – A comprehensive review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117795] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Kubra KT, Salman MS, Hasan MN, Islam A, Teo SH, Hasan MM, Sheikh MC, Awual MR. Sustainable detection and capturing of cerium(III) using ligand embedded solid-state conjugate adsorbent. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116667] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
50
|
Improving valuable metal ions capturing from spent Li-ion batteries with novel materials and approaches. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116703] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|