1
|
Kang S, Kim J, Kim S, Chun H, Heo J, Reboul CF, Meana-Pañeda R, Van CTS, Choi H, Lee Y, Rhee J, Lee M, Kang D, Kim BH, Hyeon T, Han B, Ercius P, Lee WC, Elmlund H, Park J. Time-resolved Brownian tomography of single nanocrystals in liquid during oxidative etching. Nat Commun 2025; 16:1158. [PMID: 39880816 PMCID: PMC11779812 DOI: 10.1038/s41467-025-56476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/18/2025] [Indexed: 01/31/2025] Open
Abstract
Colloidal nanocrystals inherently undergo structural changes during chemical reactions. The robust structure-property relationships, originating from their nanoscale dimensions, underscore the significance of comprehending the dynamic structural behavior of nanocrystals in reactive chemical media. Moreover, the complexity and heterogeneity inherent in their atomic structures require tracking of structural transitions in individual nanocrystals at three-dimensional (3D) atomic resolution. In this study, we introduce the method of time-resolved Brownian tomography to investigate the temporal evolution of the 3D atomic structures of individual nanocrystals in solution. The methodology is applied to examine the atomic-level structural transformations of Pt nanocrystals during oxidative etching. The time-resolved 3D atomic maps reveal the structural evolution of dissolving Pt nanocrystals, transitioning from a crystalline to a disordered structure. Our study demonstrates the emergence of a phase at the nanometer length scale that has received less attention in bulk thermodynamics.
Collapse
Affiliation(s)
- Sungsu Kang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Joodeok Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Sungin Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Hoje Chun
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Junyoung Heo
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Cyril F Reboul
- National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, USA
| | - Rubén Meana-Pañeda
- National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, USA
| | - Cong T S Van
- National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, USA
| | - Hyesung Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Yunseo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Jinho Rhee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Minyoung Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Dohun Kang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Byung Hyo Kim
- Department of Material Science and Engineering, Soongsil University, Seoul, Republic of Korea
| | - Taeghwan Hyeon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Byungchan Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea.
| | - Peter Ercius
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Won Chul Lee
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Republic of Korea.
| | - Hans Elmlund
- National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, USA.
| | - Jungwon Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul, Republic of Korea.
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, Republic of Korea.
- Hyundai Motor Group-Seoul National University (HMG-SNU) Joint Battery Research Center (JBRC), Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Yashima Y, Yamazaki T, Kimura Y. Micrometer-Scale Graphene-Based Liquid Cells of Highly Concentrated Salt Solutions for In Situ Liquid-Cell Transmission Electron Microscopy. ACS OMEGA 2024; 9:39914-39924. [PMID: 39346859 PMCID: PMC11425617 DOI: 10.1021/acsomega.4c05477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
In situ liquid-cell transmission microscopy has attracted much attention as a method for the direct observations of the dynamics of soft matter. A graphene liquid cell (GLC) has previously been investigated as an alternative to a conventional SiN x liquid cell. Although GLCs are capable of scavenging radicals and providing high spatial resolutions, their production is fundamentally stochastic, and a significant compositional change in liquids encapsulated in GLCs has recently been pointed out. We found that graphene-based liquid cells were formed in nano- to micrometer sizes with high reproducibility when the concentration of the encapsulated aqueous salt solution was high. In contrast, when we revisited conventional fabrication methods, water-encapsulated GLC was formed with low yield, and any electron diffraction spots from ice were not confirmed by a cooling experiment. The reason for this was the presence of intrinsic defects in the graphene, the presence of which we confirmed by the etch-pit method. The shrinkage of a water-encapsulated cell and a decrease in the bubble area in an aqueous (NH4)2SO4 solution cell suggested that volatile water molecules and gas molecules can leak from the cells during the fabrication and observation processes. Further revision of the conditions for the formation of liquid cells and a reduction in the number of intrinsic graphene defects are expected to lead to the provision of graphene-based liquid cells capable of encapsulating dilute aqueous solutions or pure water.
Collapse
Affiliation(s)
- Yuga Yashima
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Tomoya Yamazaki
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Yuki Kimura
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| |
Collapse
|
3
|
Arenas Esteban D, Wang D, Kadu A, Olluyn N, Sánchez-Iglesias A, Gomez-Perez A, González-Casablanca J, Nicolopoulos S, Liz-Marzán LM, Bals S. Quantitative 3D structural analysis of small colloidal assemblies under native conditions by liquid-cell fast electron tomography. Nat Commun 2024; 15:6399. [PMID: 39080248 PMCID: PMC11289127 DOI: 10.1038/s41467-024-50652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
Electron tomography has become a commonly used tool to investigate the three-dimensional (3D) structure of nanomaterials, including colloidal nanoparticle assemblies. However, electron microscopy is typically done under high-vacuum conditions, requiring sample preparation for assemblies obtained by wet colloid chemistry methods. This involves solvent evaporation and deposition on a solid support, which consistently alters the nanoparticle organization. Here, we suggest using electron tomography to study nanoparticle assemblies in their original colloidal liquid environment. To address the challenges related to electron tomography in liquid, we devise a method that combines fast data acquisition in a commercial liquid-cell with a dedicated alignment and reconstruction workflow. We present the advantages of this methodology in accurately characterizing two different systems. 3D reconstructions of assemblies comprising polystyrene-capped Au nanoparticles encapsulated in polymeric shells reveal less compact and more distorted configurations for experiments performed in a liquid medium compared to their dried counterparts. A similar expansion can be observed in quantitative analysis of the surface-to-surface distances of self-assembled Au nanorods in water rather than in a vacuum, in agreement with bulk measurements. This study, therefore, emphasizes the importance of developing high-resolution characterization tools that preserve the native environment of colloidal nanostructures.
Collapse
Affiliation(s)
- Daniel Arenas Esteban
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Da Wang
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Ajinkya Kadu
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
| | - Noa Olluyn
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Ana Sánchez-Iglesias
- CIC biomaGUNE, Paseo de Miramon 182, 20009, Donostia-San Sebastián, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Paseo de Miramon 182, 20009, Donostia-San Sebastián, Spain
- Materials Physics Center, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018, Donostia-San Sebastián, Spain
| | | | | | | | - Luis M Liz-Marzán
- CIC biomaGUNE, Paseo de Miramon 182, 20009, Donostia-San Sebastián, Spain.
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Paseo de Miramon 182, 20009, Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain.
- Cinbio, Universidade de Vigo, 36310, Vigo, Spain.
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
4
|
Li JY, Wang ZB, Xu ZP, Xiao DD, Gu L, Wang H. Modes of Nanodroplet Formation and Growth on an Ultrathin Water Film. J Phys Chem B 2024; 128:3732-3741. [PMID: 38568211 DOI: 10.1021/acs.jpcb.3c07150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Using nanobubbles as geometrical confinements, we create a thin water film (∼10 nm) in a graphene liquid cell and investigate the evolution of its instability at the nanoscale under transmission electron microscopy. The breakdown of the water films, resulting in the subsequent formation and growth of nanodroplets, is visualized and generalized into different modes. We identified distinct droplet formation and growth modes by analyzing the dynamic processes involving 61 droplets and 110 liquid bridges within 31 Graphene Liquid Cells (GLCs). Droplet formation is influenced by their positions in GLCs, taking on a semicircular shape at the edge and a circular shape in the middle. Growth modes include liquid mass transfer driven by Plateau-Rayleigh instability and merging processes in and out-of-plane of the graphene interface. Droplet growth can lead to the formation of liquid bridges for which we obtain multiview projections. Data analysis reveals the general dynamics of liquid bridges, including drawing liquids from neighboring residual water films, merging with surrounding droplets, and merging with other liquid bridges. Our experimental observations provide insights into fluid transport at the nanoscale.
Collapse
Affiliation(s)
- Jia-Ye Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics, Peking University, Beijing 100871, P. R. China
| | - Zi-Bing Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics, Peking University, Beijing 100871, P. R. China
- Institute of Physics, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Zhi-Peng Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics, Peking University, Beijing 100871, P. R. China
| | - Dong-Dong Xiao
- Institute of Physics, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Science, Beijing 100190, P. R. China
- School of Material Science and Engineering, Tsinghua University, Beijing 100190, P. R. China
| | - Huan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
5
|
Ma H, Kang S, Lee S, Park G, Bae Y, Park G, Kim J, Li S, Baek H, Kim H, Yu JS, Lee H, Park J, Yang J. Moisture-Induced Degradation of Quantum-Sized Semiconductor Nanocrystals through Amorphous Intermediates. ACS NANO 2023. [PMID: 37399231 DOI: 10.1021/acsnano.3c03103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Elucidating the water-induced degradation mechanism of quantum-sized semiconductor nanocrystals is an important prerequisite for their practical application because they are vulnerable to moisture compared to their bulk counterparts. In-situ liquid-phase transmission electron microscopy is a desired method for studying nanocrystal degradation, and it has recently gained technical advancement. Herein, the moisture-induced degradation of semiconductor nanocrystals is investigated using graphene double-liquid-layer cells that can control the initiation of reactions. Crystalline and noncrystalline domains of quantum-sized CdS nanorods are clearly distinguished during their decomposition with atomic-scale imaging capability of the developed liquid cells. The results reveal that the decomposition process is mediated by the involvement of the amorphous-phase formation, which is different from conventional nanocrystal etching. The reaction can proceed without the electron beam, suggesting that the amorphous-phase-mediated decomposition is induced by water. Our study discloses unexplored aspects of moisture-induced deformation pathways of semiconductor nanocrystals, involving amorphous intermediates.
Collapse
Affiliation(s)
- Hyeonjong Ma
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Sungsu Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seunghan Lee
- Department of Physics, Konkuk University, Seoul 05029, Korea
| | - Gisang Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Yuna Bae
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Gyuri Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jihoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Shi Li
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hayeon Baek
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeongseung Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jong-Sung Yu
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hoonkyung Lee
- Department of Physics, Konkuk University, Seoul 05029, Korea
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
6
|
Hirokawa S, Teshima H, Solís-Fernández P, Ago H, Li QY, Takahashi K. Random but limited pressure of graphene liquid cells. Ultramicroscopy 2023; 250:113747. [PMID: 37104983 DOI: 10.1016/j.ultramic.2023.113747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/08/2023] [Accepted: 04/22/2023] [Indexed: 04/29/2023]
Abstract
Even though many researchers have used graphene liquid cells for atomic-resolution observation of liquid samples in the last decade, no one has yet simultaneously measured their three-dimensional shape and pressure. In this study, we have done so with an atomic force microscope, for cells with base radii of 20-134 nm and height of 3.9-21.2 nm. Their inner pressure ranged from 1.0 to 63 MPa but the maximum value decreased as the base radius increased. We discuss the mechanism that results in this inverse relationship by introducing an adhesive force between the graphene membranes. Also, the sample preparation procedure used in this experiment is highly reproducible and transferable to a wide variety of substrates.
Collapse
Affiliation(s)
- Sota Hirokawa
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hideaki Teshima
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Pablo Solís-Fernández
- Global Innovation Center, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Hiroki Ago
- Global Innovation Center, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Qin-Yi Li
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Koji Takahashi
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
7
|
Crook MF, Moreno-Hernandez IA, Ondry JC, Ciston J, Bustillo KC, Vargas A, Alivisatos AP. EELS Studies of Cerium Electrolyte Reveal Substantial Solute Concentration Effects in Graphene Liquid Cells. J Am Chem Soc 2023; 145:6648-6657. [PMID: 36939571 DOI: 10.1021/jacs.2c07778] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Graphene liquid cell transmission electron microscopy is a powerful technique to visualize nanoscale dynamics and transformations at atomic resolution. However, the solution in liquid cells is known to be affected by radiolysis, and the stochastic formation of graphene liquid cells raises questions about the solution chemistry in individual pockets. In this study, electron energy loss spectroscopy (EELS) was used to evaluate a model encapsulated solution, aqueous CeCl3. First, the ratio between the O K-edge and Ce M-edge was used to approximate the concentration of cerium salt in the graphene liquid cell. It was determined that the ratio between oxygen and cerium was orders of magnitude lower than what is expected for a dilute solution, indicating that the encapsulated solution is highly concentrated. To probe how this affects the chemistry within graphene liquid cells, the oxidation of Ce3+ was measured using time-resolved parallel EELS. It was determined that Ce3+ oxidizes faster under high electron fluxes, but reaches the same steady-state Ce4+ concentration regardless of flux. The time-resolved concentration profiles enabled direct comparison to radiolysis models, which indicate rate constants and g-values of certain molecular species are substantially different in the highly concentrated environment. Finally, electron flux-dependent gold nanocrystal etching trajectories showed that gold nanocrystals etch faster at higher electron fluxes, correlating well with the Ce3+ oxidation kinetics. Understanding the effects of the highly concentrated solution in graphene liquid cells will provide new insight on previous studies and may open up opportunities to systematically study systems in highly concentrated solutions at high resolution.
Collapse
Affiliation(s)
- Michelle F Crook
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ivan A Moreno-Hernandez
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Justin C Ondry
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Jim Ciston
- National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Karen C Bustillo
- National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alfred Vargas
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - A Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Jabbari V, Sawczyk M, Amiri A, Král P, Shahbazian-Yassar R. Unveiling growth and dynamics of liposomes by graphene liquid cell-transmission electron microscopy. NANOSCALE 2023; 15:5011-5022. [PMID: 36790028 DOI: 10.1039/d2nr06147c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liposome is a model system for biotechnological and biomedical purposes spanning from targeted drug delivery to modern vaccine research. Yet, the growth mechanism of liposomes is largely unknown. In this work, the formation and evolution of phosphatidylcholine-based liposomes are studied in real-time by graphene liquid cell-transmission electron microscopy (GLC-TEM). We reveal important steps in the growth, fusion and denaturation of phosphatidylcholine (PC) liposomes. We show that initially complex lipid aggregates resembling micelles start to form. These aggregates randomly merge while capturing water and forming small proto-liposomes. The nanoscopic containers continue sucking water until their membrane becomes convex and free of redundant phospholipids, giving stabilized PC liposomes of different sizes. In the initial stage, proto-liposomes grow at a rate of 10-15 nm s-1, which is followed by their growth rate of 2-5 nm s-1, limited by the lipid availability in the solution. Molecular dynamics (MD) simulations are used to understand the structure of micellar clusters, their evolution, and merging. The liposomes are also found to fuse through lipid bilayers docking followed by the formation of a hemifusion diaphragm and fusion pore opening. The liposomes denaturation can be described by initial structural destabilization and deformation of the membrane followed by the leakage of the encapsulated liquid. This study offers new insights on the formation and growth of lipid-based molecular assemblies which is applicable to a wide range of amphiphilic molecules.
Collapse
Affiliation(s)
- Vahid Jabbari
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL 60607, USA. rsyassar@uic
| | - Michal Sawczyk
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Azadeh Amiri
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL 60607, USA. rsyassar@uic
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Physics, Pharmaceutical Sciences, and Chemical Engineering, University of Illinois at Chicago, Chicago, USA
| | - Reza Shahbazian-Yassar
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL 60607, USA. rsyassar@uic
| |
Collapse
|
9
|
Fritsch B, Zech TS, Bruns MP, Körner A, Khadivianazar S, Wu M, Zargar Talebi N, Virtanen S, Unruh T, Jank MPM, Spiecker E, Hutzler A. Radiolysis-Driven Evolution of Gold Nanostructures - Model Verification by Scale Bridging In Situ Liquid-Phase Transmission Electron Microscopy and X-Ray Diffraction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202803. [PMID: 35780494 PMCID: PMC9443456 DOI: 10.1002/advs.202202803] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/03/2022] [Indexed: 05/20/2023]
Abstract
Utilizing ionizing radiation for in situ studies in liquid media enables unique insights into nanostructure formation dynamics. As radiolysis interferes with observations, kinetic simulations are employed to understand and exploit beam-liquid interactions. By introducing an intuitive tool to simulate arbitrary kinetic models for radiation chemistry, it is demonstrated that these models provide a holistic understanding of reaction mechanisms. This is shown for irradiated HAuCl4 solutions allowing for quantitative prediction and tailoring of redox processes in liquid-phase transmission electron microscopy (LP-TEM). Moreover, it is demonstrated that kinetic modeling of radiation chemistry is applicable to investigations utilizing X-rays such as X-ray diffraction (XRD). This emphasizes that beam-sample interactions must be considered during XRD in liquid media and shows that reaction kinetics do not provide a threshold dose rate for gold nucleation relevant to LP-TEM and XRD. Furthermore, it is unveiled that oxidative etching of gold nanoparticles depends on both, precursor concentration, and dose rate. This dependency is exploited to probe the electron beam-induced shift in Gibbs free energy landscape by analyzing critical radii of gold nanoparticles.
Collapse
Affiliation(s)
- Birk Fritsch
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 391058ErlangenGermany
| | - Tobias S. Zech
- Institute for Crystallography and Structural Physics (ICSP)and Center for Nanoanalysis and Electron Microscopy (CENEM)Institute of Condensed Matter PhysicsDepartment of PhysicsFriedrich‐Alexander‐Universität Erlangen‐NürnbergStaudtstraße 391058ErlangenGermany
| | - Mark P. Bruns
- Surface Science and Corrosion (LKO)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergMartensstraße 791058ErlangenGermany
| | - Andreas Körner
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)Cauerstraße 191058ErlangenGermany
| | - Saba Khadivianazar
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
| | - Mingjian Wu
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 391058ErlangenGermany
| | - Neda Zargar Talebi
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
| | - Sannakaisa Virtanen
- Surface Science and Corrosion (LKO)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergMartensstraße 791058ErlangenGermany
| | - Tobias Unruh
- Institute for Crystallography and Structural Physics (ICSP)and Center for Nanoanalysis and Electron Microscopy (CENEM)Institute of Condensed Matter PhysicsDepartment of PhysicsFriedrich‐Alexander‐Universität Erlangen‐NürnbergStaudtstraße 391058ErlangenGermany
| | - Michael P. M. Jank
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
- Fraunhofer Institute for Integrated Systems and Device Technology IISBSchottkystraße 1091058ErlangenGermany
| | - Erdmann Spiecker
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 391058ErlangenGermany
| | - Andreas Hutzler
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)Cauerstraße 191058ErlangenGermany
| |
Collapse
|