1
|
Friberg M, Woeller K, Iberi V, Mancheno PP, Riedeman J, Bohman L, Davis CC. Development of in vitro methods to model the impact of vaginal lactobacilli on Staphylococcus aureus biofilm formation on menstrual cups as well as validation of recommended cleaning directions. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1162746. [PMID: 37671283 PMCID: PMC10475951 DOI: 10.3389/frph.2023.1162746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/25/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction Menstrual cups (MC) are a reusable feminine hygiene product. A recent publication suggested that Staphylococcus aureus (S. aureus) biofilms can form on MCs which may lead to increased risk of menstrual Toxic Shock Syndrome (mTSS). Additionally, there is concern that buildup of residual menses may contribute to microbial growth and biofilm formation further increasing mTSS risk. Quantitative and qualitative analysis of in vitro tests were utilized to determine if S. aureus biofilm could form on MC in the presence of the keystone species Lactobacillus after 12 h of incubation. The methodology was based on a modification of an anaerobic in vitro method that harnesses the keystone species hypothesis by including a representative of vaginal lactic acid bacteria. Methods MCs were incubated anaerobically for 12 h in Vaginal Defined Media (VDM) with the two morphologically distinct bacteria, Lactobacillus gasseri (L. gasseri) and S. aureus. Colony Forming Units (CFU) for each organism from the VDM broth and sonicated MC were estimated. In addition, a separate experiment was conducted where S. aureus was grown for 12 h in the absence of L. gasseri. Qualitative analysis for biofilm formation utilized micro-CT (µ-CT) and cryogenic scanning electron microscopy (Cryo-SEM). Results Samples collected from the media control had expected growth of both organisms after 12 h of incubation. Samples collected from VDM broth were similar to media control at the end of the 12-h study. Total S. aureus cell density on MC following sonication/rinsing was minimal. Results when using a monoculture of S. aureus demonstrated that there was a significant growth of the organism in the media control and broth as well as the sonicated cups indicating that the presence of L. gasseri was important for controlling growth and adherence of S. aureus. Few rod-shaped bacteria (L. gasseri) and cocci (S. aureus) could be identified on the MCs when grown in a dual species culture inoculum and no biofilm was noted via µ-CT and cryo-SEM. Additionally, efforts to model and understand the validity of the current labeled recommendations for MC cleaning in-between uses are supported. Discussion The data support continued safe use of the Tampax® cup when used and maintained as recommended.
Collapse
Affiliation(s)
- Maria Friberg
- Baby, Feminine and Family Care Microbiology, The Procter & Gamble Company, Mason, OH, United States
| | - Kara Woeller
- Baby, Feminine and Family Care, Global Product Stewardship, The Procter & Gamble Company, Cincinnati, OH, United States
| | - Vighter Iberi
- Corporate Functions Analytical, The Procter & Gamble Company, Mason, OH, United States
| | | | - James Riedeman
- Baby, Family and Feminine Care Analytical Chemistry, The Procter & Gamble Company, Cincinnati, OH, United States
| | - Lisa Bohman
- Data Modeling and Sciences, The Procter & Gamble Company, Mason, OH, United States
| | - Catherine C. Davis
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
2
|
Hochwalt AE, Abbinante-Nissen JM, Bohman LC, Hattersley AM, Hu P, Streicher-Scott JL, Teufel AG, Woeller KE. The safety assessment of tampons: illustration of a comprehensive approach for four different products. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1167868. [PMID: 37408999 PMCID: PMC10319135 DOI: 10.3389/frph.2023.1167868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction We illustrate a comprehensive tampon safety assessment approach that assures products can be used safely. Material biocompatibility, vaginal mucosa assessment, vaginal microbiome evaluation, and in vitro assessment of potential risk of staphylococcal toxic shock syndrome expressed through growth of Staphylococcus aureus (S. aureus) and production of TSST-1 are the four essential portions of the approach. Post-marketing surveillance informs of possible health effects that warrant follow up. The approach meets or exceeds US and international regulatory guidance and is described through the example of four tampon products. Methods/Results Each product is comprised mostly of large molecular weight components (cotton, rayon, polymers) that cannot pass the vaginal mucosa, are widely used across the industry, and replete with a vast body of safety data and a long history of safe use in the category. Quantitative risk assessment of all small molecular weight components assured a sufficient margin of safety supporting their use. Vaginal mucosa assessment confirmed that pressure points, rough edges and/or sharp contact points were absent. A randomized cross-over clinical trial (ClinicalTrials.gov Identifier: NCT03478371) revealed favorable comfort ratings, and few complaints of irritation, burning, stinging, or discomfort upon insertion, wear, and removal. Adverse events were few, mild in severity, self-limited and resolved without treatment. Vaginal microbiota assessment in vitro presented no adverse effect on microbial growth. Culture-independent microbiome analyses from vaginal swab samples obtained during the clinical trial showed no differences attributable to tampon usage, but instead due to statistically significant subject-to-subject variability. Growth of S. aureus and TSST-1 toxin production in the presence of any of the four products in vitro were statistically significantly reduced when compared to medium control alone. Discussion The data from the four elements of the comprehensive safety assessment approach illustrated herein confirm that tampons evaluated using this system can be used safely for menstrual protection. A post-marketing surveillance system that monitors and responds to in-market experiences indicated in-use tolerability of the product among consumers, thus confirming the conclusions of the pre-marketing safety assessment.
Collapse
Affiliation(s)
| | - Joan M. Abbinante-Nissen
- Baby, Feminine and Family Care, Global Product Stewardship, The Procter & Gamble Company, Cincinnati, OH, United States
| | - Lisa C. Bohman
- Data Modeling and Sciences, The Procter & Gamble Company, Mason, OH, United States
| | - Anne M. Hattersley
- Global Safety Surveillance and Analysis, The Procter & Gamble Company, Mason, OH, United States
| | - Ping Hu
- Corporate Biosciences, The Procter & Gamble Company, Mason, OH, United States
| | - Jan L. Streicher-Scott
- Baby, Feminine and Family Care Clinical Sciences, The Procter & Gamble Company, Cincinnati, OH, United States
| | - Amber G. Teufel
- Baby, Feminine and Family Care Microbiology, The Procter & Gamble Company, Cincinnati, OH, United States
| | - Kara E. Woeller
- Baby, Feminine and Family Care, Global Product Stewardship, The Procter & Gamble Company, Cincinnati, OH, United States
| |
Collapse
|
3
|
McCracken JM, Calderon GA, Robinson AJ, Sullivan CN, Cosgriff-Hernandez E, Hakim JCE. Animal Models and Alternatives in Vaginal Research: a Comparative Review. Reprod Sci 2021; 28:1759-1773. [PMID: 33825165 PMCID: PMC8204935 DOI: 10.1007/s43032-021-00529-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
While developments in gynecologic health research continue advancing, relatively few groups specifically focus on vaginal tissue research for areas like wound healing, device development, and/or drug toxicity. Currently, there is no standardized animal or tissue model that mimics the full complexity of the human vagina. Certain practical factors such as appropriate size and anatomy, costs, and tissue environment vary across species and moreover fail to emulate all aspects of the human vagina. Thus, investigators are tasked with compromising specific properties of the vaginal environment as it relates to human physiology to suit their particular scientific question. Our review aims to facilitate the appropriate selection of a model aptly addressing a particular study by discussing pertinent vaginal characteristics of conventional animal and tissue models. In this review, we first cover common laboratory animals studied in vaginal research-mouse, rat, rabbit, minipig, and sheep-as well as human, with respect to the estrus cycle and related hormones, basic reproductive anatomy, the composition of vaginal layers, developmental epithelial origin, and microflora. In light of these relevant comparative metrics, we discuss potential selection criteria for choosing an appropriate animal vaginal model. Finally, we allude to the exciting prospects of increasing biomimicry for in vitro applications to provide a framework for investigators to model, interpret, and predict human vaginal health.
Collapse
Affiliation(s)
- Jennifer M McCracken
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gisele A Calderon
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew J Robinson
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Courtney N Sullivan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Julie C E Hakim
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatric Surgery, Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Stingley RL, Liu H, Mullis LB, Elkins CA, Hart ME. Staphylococcus aureus toxic shock syndrome toxin-1 (TSST-1) production and Lactobacillus species growth in a defined medium simulating vaginal secretions. J Microbiol Methods 2014; 106:57-66. [PMID: 25135489 DOI: 10.1016/j.mimet.2014.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 11/18/2022]
Abstract
Lactobacillus species are commensal with the healthy vaginal environment and inhibit the growth of many pathogenic bacteria in the vaginal tract by a variety of mechanisms, such as the production of hydrogen peroxide, organic acids, and antimicrobial substances. Simulation of the vaginal environment is crucial for proper investigation of the effects of Lactobacillus species on pathogenic bacteria. In this study, we modified a medium used to simulate vaginal secretions to improve the growth of toxic shock syndrome toxin-1 (TSST-1)-producing Staphylococcus aureus clinical strains and Lactobacillus species so that interactions between these bacteria may be examined. A medium consisting of basal salts, vitamins, albumin, glycogen, mucin, urea, sodium bicarbonate, polyoxyethylene sorbitan monolaurate, and amino acids supported the growth of S. aureus and the production of TSST-1 as determined by Western analysis. Improved growth of the Lactobacillus species was seen when this same medium was supplemented with manganese chloride, sodium acetate, and an increase in glucose concentration. However, growth of S. aureus in the supplemented medium resulted in reduced levels of TSST-1. Production of TSST-1 was not detected in a medium routinely used for the growth of Lactobacillus species although S. aureus growth was not inhibited. The development of an improved genital tract secretion medium provides a more authentic environment in which to study the interactions of Lactobacillus species and vaginal pathogens, such as S. aureus.
Collapse
Affiliation(s)
- Robin L Stingley
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Huanli Liu
- Office of Regulatory Affairs, Arkansas Regional Laboratories, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Lisa B Mullis
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Christopher A Elkins
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Mark E Hart
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA; Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
5
|
Rajagopalan G, Smart MK, Murali N, Patel R, David CS. Acute systemic immune activation following vaginal exposure to staphylococcal enterotoxin B—Implications for menstrual shock. J Reprod Immunol 2007; 73:51-9. [PMID: 17070600 DOI: 10.1016/j.jri.2006.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 06/20/2006] [Accepted: 06/26/2006] [Indexed: 11/17/2022]
Abstract
Menstrual toxic shock syndrome (mTSS) is an acute systemic inflammatory disease associated with the superantigenic exotoxin, toxic shock syndrome toxin (TSST)-1, produced by Staphylococcus aureus and the use of high absorbency tampons. Even though S. aureus is capable of elaborating several other superantigenic exotoxins, only TSST-1 has been implicated in the pathogenesis of mTSS possibly because most other superantigenic exotoxins are known enterotoxins. Nonetheless, we have shown recently that one of the enterotoxigenic staphylococcal superantigens, staphylococcal enterotoxin B (SEB), can cause robust systemic immune activation following exposure through non-enteric mucosa, including nasal or conjunctival routes. In a similar manner, we show here that vaginal administration of SEB in HLA class II transgenic mice can cause robust systemic immune activation characterized by profound elevation of proinflammatory cytokines in the serum, activation and expansion of SEB-reactive CD4(+) and CD8(+) T cells in peripheral lymphoid organs and SEB-induced deletion of immature thymocytes. Vaginal administration of SEB also caused leukocytic infiltration in major organs, such as liver and lung, reminiscent of human toxic shock syndrome. Systemic immune activation following vaginal superantigen delivery was independent of the stage of the estrus cycle in the mouse. Using HLA class II transgenic mice, we have shown that exposure to SEB through the vaginal canal can cause robust systemic immune activation. SEB could thus play a role in the pathogenesis of mTSS.
Collapse
Affiliation(s)
- Govindarajan Rajagopalan
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|