1
|
Liu Z, Shangguan L, Xu L, Zhang H, Wang W, Yang Q, Zhang X, Yao L, Yang S, Chen X, Dai J. Enhanced multistress tolerance of Saccharomyces cerevisiae with the sugar transporter-like protein Stl1 F427L mutation in the presence of glycerol. Microbiol Spectr 2025; 13:e0008924. [PMID: 39679667 PMCID: PMC11792538 DOI: 10.1128/spectrum.00089-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/05/2024] [Indexed: 12/17/2024] Open
Abstract
During microbial industrial production, microorganisms often face diverse stressors, including organic solvents, high salinity, and high sugar levels. Enhancing microorganism tolerance to such stresses is crucial for producing high-value-added products. Previous studies on the mechanisms of 2-phenylethanol (2-PE) tolerance in Saccharomyces cerevisiae revealed a potential connection between the sugar transporter-like protein (Stl1) mutation (F427L) and increased tolerance to high sugar and salt stress, suggesting a broader role in multistress tolerance. Herein, we showed that the Stl1F427L mutant strain (STL) exhibits significantly improved multistress tolerance in the presence of glycerol. Molecular dynamics simulations indicated that Stl1F427L may enhance glycerol molecular binding, resulting in a significant increase in the intracellular glycerol content of the mutant strain STL. Additionally, under multistress conditions, pyruvate and ergosterol levels and catalase (CAT) and superoxide dismutase (SOD) activities were significantly increased in the mutant strain STL compared with the control strain 5D. This resulted in a notable increase in cell membrane toughness and a decrease in intracellular reactive oxygen species levels. These findings highlight the mechanism by which Stl1F427L enhances S. cerevisiae tolerance to multistress. Importantly, they provide novel insights into and methodologies for improving the resilience of industrial microorganisms. IMPORTANCE Stl1F427L exhibits improved strain tolerance to multistress when adding glycerol, may enhance glycerol molecular binding, and can make a significant increase in intracellular glycerol content. It can reduce reactive oxygen species levels and increase ergosterol content. This paper provides novel insights and methods to get robust industrial microorganisms.
Collapse
Affiliation(s)
- Zixiong Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Lingling Shangguan
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Linglong Xu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Huiyan Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Wenxin Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Qiao Yang
- ABI Group, Donghai Laboratory, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xiaoling Zhang
- ABI Group, Donghai Laboratory, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Lan Yao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Jun Dai
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
- ABI Group, Donghai Laboratory, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Zhang L, Yang X, Nie C, Chen C, Zhang W. Combined transcriptomics and cellular analyses reveal the molecular mechanism by which Candida tropicalis ZD-3 adapts to and degrades gossypol. Int J Biol Macromol 2024; 279:135294. [PMID: 39233179 DOI: 10.1016/j.ijbiomac.2024.135294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Microbial degradation techniques are often considered an environmentally friendly and cost-effective strategy for reducing gossypol toxicity. However, the mechanism by which Candida tropicalis degrades gossypol remains unclear. In the current study, we aimed to establish the mechanisms of biodegradation and adaptation mechanisms by C. tropicalis ZD-3. The toxicological evaluation results revealed that ZD-3 adapts to gossypol primarily by activating the antioxidant defense system to alleviate the oxidative stress response induced by gossypol. Transcriptomic analyses further suggested that ZD-3 protects against gossypol toxicity via cell wall remodeling. The intracellular enzyme CTRG_04744 gene was significantly up-regulated under gossypol stress, and then expressed in Pichia pastoris. The purified AKR_Z1 degraded 92 % of gossypol within 48 h. In addition, the aldehyde group of gossypol was effectively eliminated to achieve the desired detoxification. Collectively, these results provide theoretical guidance for the continued development of bio-efficient strategies capable of degrading gossypol.
Collapse
Affiliation(s)
- Li Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Xiaolong Yang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China
| | - CunXi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Cheng Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
3
|
Yao L, Jia Y, Zhang Q, Zheng X, Yang H, Dai J, Chen X. Adaptive laboratory evolution to obtain furfural tolerant Saccharomyces cerevisiae for bioethanol production and the underlying mechanism. Front Microbiol 2024; 14:1333777. [PMID: 38239732 PMCID: PMC10794740 DOI: 10.3389/fmicb.2023.1333777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Furfural, a main inhibitor produced during pretreatment of lignocellulose, has shown inhibitory effects on S. cerevisiae. Method In the present study, new strains named 12-1 with enhanced resistance to furfural were obtained through adaptive laboratory evolution, which exhibited a shortened lag phase by 36 h, and an increased ethanol conversion rate by 6.67% under 4 g/L furfural. Results and Discussion To further explore the mechanism of enhanced furfural tolerance, ADR1_1802 mutant was constructed by CRISPR/Cas9 technology, based on whole genome re-sequencing data. The results indicated that the time when ADR1_1802 begin to grow was shortened by 20 h compared with reference strain (S. cerevisiae CEN.PK113-5D) when furfural was 4 g/L. Additionally, the transcription levels of GRE2 and ADH6 in ADR1_ 1802 mutant were increased by 53.69 and 44.95%, respectively, according to real-time fluorescence quantitative PCR analysis. These findings suggest that the enhanced furfural tolerance of mutant is due to accelerated furfural degradation. Importance: Renewable carbon worldwide is vital to achieve "zero carbon" target. Bioethanol obtained from biomass is one of them. To make bioethanol price competitive to fossil fuel, higher ethanol yield is necessary, therefore, monosaccharide produced during biomass pretreatment should be effectively converted to ethanol by Saccharomyces cerevisiae. However, inhibitors formed by glucose or xylose oxidation could make ethanol yield lower. Thus, inhibitor tolerant Saccharomyces cerevisiae is important to this process. As one of the main component of pretreatment hydrolysate, furfural shows obvious impact on growth and ethanol production of Saccharomyces cerevisiae. To get furfural tolerant Saccharomyces cerevisiae and find the underlying mechanism, adaptive laboratory evolution and CRISPR/Cas9 technology were applied in the present study.
Collapse
Affiliation(s)
- Lan Yao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Youpiao Jia
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Qingyan Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Xueyun Zheng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Haitao Yang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
| | - Jun Dai
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), College of Bioengineering, Hubei University of Technology, Wuhan, China
| |
Collapse
|
4
|
Liu ZL, Huang X. A glimpse of potential transposable element impact on adaptation of the industrial yeast Saccharomyces cerevisiae. FEMS Yeast Res 2020; 20:5891233. [PMID: 32780789 DOI: 10.1093/femsyr/foaa043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/23/2020] [Indexed: 01/16/2023] Open
Abstract
The adapted industrial yeast strain Saccharomyces cerevisiae NRRL Y-50049 is able to in situ detoxify major toxic aldehyde compounds derived from sugar conversion of lignocellulosic biomass while producing ethanol. Pathway-based studies on its mechanisms of tolerance have been reported previously, however, little is known about transposable element (TE) involvement in its adaptation to inhibitory compounds. This work presents a comparative dynamic transcription expression analysis in response to a toxic treatment between Y-50049 and its progenitor, an industrial type strain NRRL Y-12632, using a time-course study. At least 77 TEs from Y-50049 showed significantly increased expression compared with its progenitor, especially during the late lag phase. Sequence analysis revealed significant differences in TE sequences between the two strains. Y-50049 was also found to have a transposons of yeast 2 (Ty2) long terminal repeat-linked YAT1 gene showing significantly higher copy number changes than its progenitor. These results raise awareness of potential TE involvement in the adaptation of industrial yeast to the tolerance of toxic chemicals.
Collapse
Affiliation(s)
- Z Lewis Liu
- BioEnrgy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL USA 61604
| | - Xiaoqiu Huang
- Department of Computer Science, Iowa State University, Ames, IA USA 50011
| |
Collapse
|
5
|
Wang H, Li Q, Peng Y, Zhang Z, Kuang X, Hu X, Ayepa E, Han X, Abrha GT, Xiang Q, Yu X, Zhao K, Zou L, Gu Y, Li X, Li X, Chen Q, Zhang X, Liu B, Ma M. Cellular Analysis and Comparative Transcriptomics Reveal the Tolerance Mechanisms of Candida tropicalis Toward Phenol. Front Microbiol 2020; 11:544. [PMID: 32373081 PMCID: PMC7179700 DOI: 10.3389/fmicb.2020.00544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/12/2020] [Indexed: 12/03/2022] Open
Abstract
Phenol is a ubiquitous pollutant and can contaminate natural water resources. Hence, the removal of phenol from wastewater is of significant importance. A series of biological methods were used to remove phenol based on the natural ability of microorganisms to degrade phenol, but the tolerance mechanism of phenol-degraded strains to phenol are not very clear. Morphological observation on Candida tropicalis showed that phenol caused the reactive oxygen species (ROS) accumulation, damaging the mitochondrial and the endoplasmic reticulum. On the basis of transcriptome data and cell wall susceptibility analysis, it was found that C. tropicalis prevented phenol-caused cell damage through improvement of cell wall resistance, maintenance of high-fidelity DNA replication, intracellular protein homeostasis, organelle integrity, and kept the intracellular phenol concentration at a low level through cell-wall remodeling and removal of excess phenol via MDR/MXR transporters. The knowledge obtained will promote the genetic modification of yeast strains in general to tolerate the high concentrations of phenol and improve their efficiency of phenol degradation.
Collapse
Affiliation(s)
- Hanyu Wang
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qian Li
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yuanyuan Peng
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Zhengyue Zhang
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiaolin Kuang
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiangdong Hu
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ellen Ayepa
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xuebing Han
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Getachew Tafere Abrha
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiumei Yu
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Likou Zou
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoying Li
- School of Forestry and Life Science, Chongqing University of Arts and Sciences, Chongqing, China
| | - Qiang Chen
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Zhang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteburg, Sweden.,State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Menggen Ma
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Chengdu, China.,Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Liu ZL, Ma M. Pathway-based signature transcriptional profiles as tolerance phenotypes for the adapted industrial yeast Saccharomyces cerevisiae resistant to furfural and HMF. Appl Microbiol Biotechnol 2020; 104:3473-3492. [PMID: 32103314 DOI: 10.1007/s00253-020-10434-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/25/2019] [Accepted: 02/04/2020] [Indexed: 10/24/2022]
Abstract
The industrial yeast Saccharomyces cerevisiae has a plastic genome with a great flexibility in adaptation to varied conditions of nutrition, temperature, chemistry, osmolarity, and pH in diversified applications. A tolerant strain against 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF) was successfully obtained previously by adaptation through environmental engineering toward development of the next-generation biocatalyst. Using a time-course comparative transcriptome analysis in response to a synergistic challenge of furfural-HMF, here we report tolerance phenotypes of pathway-based transcriptional profiles as components of the adapted defensive system for the tolerant strain NRRL Y-50049. The newly identified tolerance phenotypes were involved in biosynthesis superpathway of sulfur amino acids, defensive reduction-oxidation reaction process, cell wall response, and endogenous and exogenous cellular detoxification. Key transcription factors closely related to these pathway-based components, such as Yap1, Met4, Met31/32, Msn2/4, and Pdr1/3, were also presented. Many important genes in Y-50049 acquired an enhanced transcription background and showed continued increased expressions during the entire lag phase against furfural-HMF. Such signature expressions distinguished tolerance phenotypes of Y-50049 from the innate stress response of its progenitor NRRL Y-12632, an industrial type strain. The acquired yeast tolerance is believed to be evolved in various mechanisms at the genomic level. Identification of legitimate tolerance phenotypes provides a basis for continued investigations on pathway interactions and dissection of mechanisms of yeast tolerance and adaptation at the genomic level.
Collapse
Affiliation(s)
- Z Lewis Liu
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service,U.S. Department of Agriculture, 1815 N University Street, Peoria, IL, 61604, USA.
| | - Menggen Ma
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service,U.S. Department of Agriculture, 1815 N University Street, Peoria, IL, 61604, USA
| |
Collapse
|
7
|
Liu ZL, Wang X, Weber SA. Tolerant industrial yeast Saccharomyces cerevisiae posses a more robust cell wall integrity signaling pathway against 2-furaldehyde and 5-(hydroxymethyl)-2-furaldehyde. J Biotechnol 2018; 276-277:15-24. [DOI: 10.1016/j.jbiotec.2018.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/07/2018] [Indexed: 10/17/2022]
|
8
|
Guo S, Zhang J, Wang B, Zhang B, Wang X, Huang L, Liu H, Jia B. A 5-serum miRNA panel for the early detection of colorectal cancer. Onco Targets Ther 2018; 11:2603-2614. [PMID: 29780253 PMCID: PMC5951214 DOI: 10.2147/ott.s153535] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The study aimed to screen microRNAs (miRNAs) that can be used for the early detection of colorectal cancer (CRC) based on differential expression of miRNA in serum. MATERIALS AND METHODS A three-stage study was designed with a total of 217 CRCs, 168 colorectal adenomas (CRAs), and 190 healthy controls (HCs). A quantitative reverse transcription polymerase chain reaction was performed in three stages. We screened 528 miRNA expression profiles in the sera of 40 patients (CRC n=20, CRA n=10, and HC n=10) for candidate miRNAs, then 210 serum samples (CRC n=90, CRA n=60, and HC n=60) were used for screening of candidate miRNAs. Three hundred and twenty-five independent individual samples (CRC n=107, CRA n=98, and HC n=120) were used to validate the most differentially-expressed miRNAs in the screening stage, and binary logistic regression was used in the validation stage. A receiver operating characteristic curve was drawn to evaluate the diagnostic accuracy. RESULTS A 5-serum miRNA panel (miRNA-1246, miRNA-202-3p, miRNA-21-3p, miRNA-1229-3p, and miRNA-532-3p) effectively distinguished CRCs from HCs with 91.6% sensitivity and 91.7% specificity. The area under the curve (AUC) was 0.960 (95% confidence interval [CI]: 0.937-0.983). In addition, the panel also accurately distinguished CRCs from CRAs with 94.4% sensitivity and 84.7% specificity. The AUC was 0.951 (95% CI: 0.922-0.980). CONCLUSION Our 5-serum miRNA panel accurately distinguished CRCs from CRAs and HCs with high sensitivity and specificity. The 5-serum miRNA panel may be a promising prospect for application as a nonintrusive and inexpensive method for the early detection of CRC.
Collapse
Affiliation(s)
- Shaohua Guo
- Chinese PLA Medical School, Beijing, China
- General Surgery Department II, Chinese PLA General Hospital, Beijing, China
| | - Jiajin Zhang
- General Surgery Department II, Chinese PLA General Hospital, Beijing, China
| | - Baishi Wang
- General Surgery Department II, Chinese PLA General Hospital, Beijing, China
| | | | | | | | - Hongyi Liu
- General Surgery Department II, Chinese PLA General Hospital, Beijing, China
| | - Baoqing Jia
- Chinese PLA Medical School, Beijing, China
- General Surgery Department II, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Liu ZL. Understanding the tolerance of the industrial yeast Saccharomyces cerevisiae against a major class of toxic aldehyde compounds. Appl Microbiol Biotechnol 2018; 102:5369-5390. [PMID: 29725719 DOI: 10.1007/s00253-018-8993-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/27/2022]
Abstract
Development of the next-generation biocatalyst is vital for fermentation-based industrial applications and a sustainable bio-based economy. Overcoming the major class of toxic compounds associated with lignocellulose-to-biofuels conversion is one of the significant challenges for new strain development. A significant number of investigations have been made to understand mechanisms of the tolerance for industrial yeast. It is humbling to learn how complicated the cell's response to the toxic chemicals is and how little we have known about yeast tolerance in the universe of the living cell. This study updates our current knowledge on the tolerance of industrial yeast against aldehyde inhibitory compounds at cellular, molecular and the genomic levels. It is comprehensive yet specific based on reproducible evidence and cross confirmed findings from different investigations using varied experimental approaches. This research approaches a rational foundation toward a more comprehensive understanding on the yeast tolerance. Discussions and perspectives are also proposed for continued exploring the puzzle of the yeast tolerance to aid the next-generation biocatalyst development.
Collapse
Affiliation(s)
- ZongLin Lewis Liu
- The US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Bioenergy Research Unit, 1815 N University Street, Peoria, IL, 61604, USA.
| |
Collapse
|
10
|
Feng Q, Liu ZL, Weber SA, Li S. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae. PLoS One 2018; 13:e0195633. [PMID: 29621349 PMCID: PMC5886582 DOI: 10.1371/journal.pone.0195633] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/25/2018] [Indexed: 01/18/2023] Open
Abstract
Haploid laboratory strains of Saccharomyces cerevisiae are commonly used for genetic engineering to enable their xylose utilization but little is known about the industrial yeast which is often recognized as diploid and as well as haploid and tetraploid. Here we report three unique signature pathway expression patterns and gene interactions in the centre metabolic pathways that signify xylose utilization of genetically engineered industrial yeast S. cerevisiae NRRL Y-50463, a diploid yeast. Quantitative expression analysis revealed outstanding high levels of constitutive expression of YXI, a synthesized yeast codon-optimized xylose isomerase gene integrated into chromosome XV of strain Y-50463. Comparative expression analysis indicated that the YXI was necessary to initiate the xylose metabolic pathway along with a set of heterologous xylose transporter and utilization facilitating genes including XUT4, XUT6, XKS1 and XYL2. The highly activated transketolase and transaldolase genes TKL1, TKL2, TAL1 and NQM1 as well as their complex interactions in the non-oxidative pentose phosphate pathway branch were critical for the serial of sugar transformation to drive the metabolic flow into glycolysis for increased ethanol production. The significantly increased expression of the entire PRS gene family facilitates functions of the life cycle and biosynthesis superpathway for the yeast. The outstanding higher levels of constitutive expression of YXI and the first insight into the signature pathway expression and the gene interactions in the closely related centre metabolic pathways from the industrial yeast aid continued efforts for development of the next-generation biocatalyst. Our results further suggest the industrial yeast is a desirable delivery vehicle for new strain development for efficient lignocellulose-to-advanced biofuels production.
Collapse
Affiliation(s)
- Quanzhou Feng
- Bioenergy Research Unit, US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, United States of America
- Institute of New Energy Technology, Tsinghua University, Haidian Qu, Beijing, China
| | - Z. Lewis Liu
- Bioenergy Research Unit, US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, United States of America
- USDA-MOST Joint Research Center for Biofuels, Peoria, IL, United States of America
- * E-mail: (ZLL); (SL)
| | - Scott A. Weber
- Bioenergy Research Unit, US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, United States of America
| | - Shizhong Li
- Institute of New Energy Technology, Tsinghua University, Haidian Qu, Beijing, China
- USDA-MOST Joint Research Center for Biofuels, Peoria, IL, United States of America
- * E-mail: (ZLL); (SL)
| |
Collapse
|
11
|
YKL071W from Saccharomyces cerevisiae encodes a novel aldehyde reductase for detoxification of glycolaldehyde and furfural derived from lignocellulose. Appl Microbiol Biotechnol 2017; 101:8405-8418. [DOI: 10.1007/s00253-017-8567-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/12/2017] [Accepted: 09/26/2017] [Indexed: 01/24/2023]
|
12
|
A new source of resistance to 2-furaldehyde from Scheffersomyces (Pichia) stipitis for sustainable lignocellulose-to-biofuel conversion. Appl Microbiol Biotechnol 2017; 101:4981-4993. [PMID: 28357544 DOI: 10.1007/s00253-017-8208-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/15/2017] [Accepted: 02/18/2017] [Indexed: 10/19/2022]
Abstract
Aldehyde inhibitory compounds derived from lignocellulosic biomass pretreatment have been identified as a major class of toxic chemicals that interfere with microbial growth and subsequent fermentation for advanced biofuel production. Development of robust next-generation biocatalyst is a key for a low-cost biofuel production industry. Scheffersomyces (Pichia) stipitis is a naturally occurring C-5 sugar utilization yeast; however, little is known about the genetic background underlying its potential tolerance to biomass conversion inhibitors. We investigated and identified five uncharacterized putative aryl-alcohol dehydrogenase genes (SsAADs) from this yeast as a new source of resistance against biomass fermentation inhibitor 2-furaldehyde (furfural) by gene expression, gene cloning, and direct enzyme assay analysis using partially purified proteins. All five proteins from S. stipitis showed furfural reduction using cofactor NADH. An optimum active temperature was observed at 40 °C for SsAad1p; 30 °C for SsAad3p, SsAad4p, and SsAad5p; and 20 °C for SsAad2p. SsAad2p, SsAad3p, and SsAad4p showed tolerance to a wide range of pH from 4.5 to 8, but SsAad1p and SsAad5p were sensitive to pH changes beyond 7. Genes SsAAD2, SsAAD3, and SsAAD4 displayed significantly enhanced higher levels of expression in response to the challenge of furfural. Their encoding proteins also showed higher levels of specific activity toward furfural and were suggested as core functional enzymes contributing aldehyde resistance in S. stipitis.
Collapse
|
13
|
Wang HY, Xiao DF, Zhou C, Wang LL, Wu L, Lu YT, Xiang QJ, Zhao K, Li X, Ma MG. YLL056C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity. Appl Microbiol Biotechnol 2017; 101:4507-4520. [PMID: 28265724 DOI: 10.1007/s00253-017-8209-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 11/29/2022]
Abstract
The short-chain dehydrogenase/reductase (SDR) family, the largest family in dehydrogenase/reductase superfamily, is divided into "classical," "extended," "intermediate," "divergent," "complex," and "atypical" groups. Recently, several open reading frames (ORFs) were characterized as intermediate SDR aldehyde reductase genes in Saccharomyces cerevisiae. However, no functional protein in the atypical group has been characterized in S. cerevisiae till now. Herein, we report that an uncharacterized ORF YLL056C from S. cerevisiae was significantly upregulated under high furfural (2-furaldehyde) or 5-(hydroxymethyl)-2-furaldehyde concentrations, and transcription factors Yap1p, Hsf1p, Pdr1/3p, Yrr1p, and Stb5p likely controlled its upregulated transcription. This ORF indeed encoded a protein (Yll056cp), which was grouped into the atypical subgroup 7 in the SDR family and localized to the cytoplasm. Enzyme activity assays showed that Yll056cp is not a quinone or ketone reductase but an NADH-dependent aldehyde reductase, which can reduce at least seven aldehyde compounds. This enzyme showed the best Vmax, Kcat, and Kcat/Km to glycolaldehyde, but the highest affinity (Km) to formaldehyde. The optimum pH and temperature of this enzyme was pH 6.5 for reduction of glycolaldehyde, furfural, formaldehyde, butyraldehyde, and propylaldehyde, and 30 °C for reduction of formaldehyde or 35 °C for reduction of glycolaldehyde, furfural, butyraldehyde, and propylaldehyde. Temperature and pH affected stability of this enzyme and this influence varied with aldehyde substrate. Metal ions, salts, and chemical protective additives, especially at high concentrations, had different influence on enzyme activities for reduction of different aldehydes. This research provided guidelines for study of more uncharacterized atypical SDR enzymes from S. cerevisiae and other organisms.
Collapse
Affiliation(s)
- Han-Yu Wang
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Di-Fan Xiao
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Chang Zhou
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Lin-Lu Wang
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Lan Wu
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Ya-Ting Lu
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Quan-Ju Xiang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Ke Zhao
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Meng -Gen Ma
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Sichuan, 611130, People's Republic of China. .,Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, People's Republic of China.
| |
Collapse
|
14
|
Two New Native β-Glucosidases from Clavispora NRRL Y-50464 Confer Its Dual Function as Cellobiose Fermenting Ethanologenic Yeast. PLoS One 2016; 11:e0151293. [PMID: 27011316 PMCID: PMC4806929 DOI: 10.1371/journal.pone.0151293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/25/2016] [Indexed: 11/19/2022] Open
Abstract
Yeast strain Clavispora NRRL Y-50464 is able to produce cellulosic ethanol from lignocellulosic materials without addition of external β-glucosidase by simultaneous saccharification and fermentation. A β-glucosidase BGL1 protein from this strain was recently reported supporting its cellobiose utilization capability. Here, we report two additional new β-glucosidase genes encoding enzymes designated as BGL2 and BGL3 from strain NRRL Y-50464. Quantitative gene expression was analyzed and the gene function of BGL2 and BGL3 was confirmed by heterologous expression using cellobiose as a sole carbon source. Each gene was cloned and partially purified protein obtained separately for direct enzyme assay using varied substrates. Both proteins showed the highest specific activity at pH 5 and relatively strong affinity with a Km of 0.08 and 0.18 mM for BGL2 and BGL3, respectively. The optimum temperature was found to be 50°C for BGL2 and 55°C for BGL3. Both proteins were able to hydrolyze 1,4 oligosaccharides evaluated in this study. They also showed a strong resistance to glucose product inhibition with a Ki of 61.97 and 38.33 mM for BGL2 and BGL3, respectively. While BGL3 was sensitive showing a significantly reduced activity to 4% ethanol, BGL2 demonstrated tolerance to ethanol. Its activity was enhanced in the presence of ethanol but reduced at concentrations greater than 16%. The presence of the fermentation inhibitors furfural and HMF did not affect the enzyme activity. Our results suggest that a β-glucosidase gene family exists in Clavispora NRRL Y-50464 with at least three members in this group that validate its cellobiose hydrolysis functions for lower-cost cellulosic ethanol production. Results of this study confirmed the cellobiose hydrolysis function of strain NRRL Y-50464, and further supported this dual functional yeast as a candidate for lower-cost cellulosic ethanol production and next-generation biocatalyst development in potential industrial applications.
Collapse
|
15
|
Wang X, Ma M, Liu ZL, Xiang Q, Li X, Liu N, Zhang X. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass. Appl Microbiol Biotechnol 2016; 100:6671-6682. [DOI: 10.1007/s00253-016-7445-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/23/2016] [Accepted: 03/04/2016] [Indexed: 11/30/2022]
|
16
|
Liu Q, Jones CS, Parsons AJ, Xue H, Rasmussen S. Does gibberellin biosynthesis play a critical role in the growth of Lolium perenne? Evidence from a transcriptional analysis of gibberellin and carbohydrate metabolic genes after defoliation. FRONTIERS IN PLANT SCIENCE 2015; 6:944. [PMID: 26579182 PMCID: PMC4630572 DOI: 10.3389/fpls.2015.00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/17/2015] [Indexed: 05/08/2023]
Abstract
Global meat and milk production depends to a large extent on grazed pastures, with Lolium perenne being the major forage grass in temperate regions. Defoliation and subsequent regrowth of leaf blades is a major and essential event with respect to L. perenne growth and productivity. Following defoliation, carbohydrates (mainly fructans and sucrose) have to be mobilized from heterotrophic tissues to provide energy and carbon for regrowth of photosynthetic tissues. This mobilization of reserve carbohydrates requires a substantial change in the expression of genes coding for enzymes involved in carbohydrate metabolism. Here we tested the hypothesis that gibberellins (GA) are at the core of the processes regulating the expression of these genes. Thus, we examined the transcript profiles of genes involved in carbohydrate and GA metabolic pathways across a time course regrowth experiment. Our results show that following defoliation, the immediate reduction of carbohydrate concentrations in growing tissues is associated with a concomitant increase in the expression of genes encoding carbohydrate mobilizing invertases, and was also associated with a strong decrease in the expression of fructan synthesizing fructosyltransferase genes. We also show that the decrease in fructan levels is preceded by increased expression of the GA activating gene GA 3-oxidase and decreased expression of the GA inactivating gene GA 2 -oxidase in sheaths. GA 3-oxidase expression was negatively, while GA 2 -oxidase positively linked to sucrose concentrations. This study provides indicative evidence that gibberellins might play a role in L. perenne regrowth following defoliation and we hypothesize that there is a link between gibberellin regulation and sugar metabolism in L. perenne.
Collapse
Affiliation(s)
- Qianhe Liu
- Forage Improvement, Grasslands Institute, AgResearch Ltd.Palmerston North, New Zealand
| | - Chris S. Jones
- Forage Improvement, Grasslands Institute, AgResearch Ltd.Palmerston North, New Zealand
| | - Anthony J. Parsons
- Institute of Agriculture and Environment, Massey UniversityPalmerston North, New Zealand
| | - Hong Xue
- Forage Improvement, Grasslands Institute, AgResearch Ltd.Palmerston North, New Zealand
| | - Susanne Rasmussen
- Forage Improvement, Grasslands Institute, AgResearch Ltd.Palmerston North, New Zealand
- Institute of Agriculture and Environment, Massey UniversityPalmerston North, New Zealand
| |
Collapse
|
17
|
Zhao X, Tang J, Wang X, Yang R, Zhang X, Gu Y, Li X, Ma M. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass. Yeast 2015; 32:409-22. [PMID: 25656244 DOI: 10.1002/yea.3068] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/28/2014] [Accepted: 01/28/2015] [Indexed: 02/03/2023] Open
Abstract
Furfural and 5-hydroxymethylfurfural (HMF) are the two main aldehyde compounds derived from pentoses and hexoses, respectively, during lignocellulosic biomass pretreatment. These two compounds inhibit microbial growth and interfere with subsequent alcohol fermentation. Saccharomyces cerevisiae has the in situ ability to detoxify furfural and HMF to the less toxic 2-furanmethanol (FM) and furan-2,5-dimethanol (FDM), respectively. Herein, we report that an uncharacterized gene, YNL134C, was highly up-regulated under furfural or HMF stress and Yap1p and Msn2/4p transcription factors likely controlled its up-regulated expression. Enzyme activity assays showed that YNL134C is an NADH-dependent aldehyde reductase, which plays a role in detoxification of furfural to FM. However, no NADH- or NADPH-dependent enzyme activity was observed for detoxification of HMF to FDM. This enzyme did not catalyse the reverse reaction of FM to furfural or FDM to HMF. Further studies showed that YNL134C is a broad-substrate aldehyde reductase, which can reduce multiple aldehydes to their corresponding alcohols. Although YNL134C is grouped into the quinone oxidoreductase family, no quinone reductase activity was observed using 1,2-naphthoquinone or 9,10-phenanthrenequinone as a substrate, and phylogenetic analysis indicates that it is genetically distant to quinone reductases. Proteins similar to YNL134C in sequence from S. cerevisiae and other microorganisms were phylogenetically analysed.
Collapse
Affiliation(s)
- Xianxian Zhao
- Institute of Ecological and Environmental Sciences, College of Resources and Environmental Sciences, Sichuan Agricultural University, Wenjiang, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Llanos A, François JM, Parrou JL. Tracking the best reference genes for RT-qPCR data normalization in filamentous fungi. BMC Genomics 2015; 16:71. [PMID: 25757610 PMCID: PMC4342825 DOI: 10.1186/s12864-015-1224-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 01/07/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A critical step in the RT-qPCR workflow for studying gene expression is data normalization, one of the strategies being the use of reference genes. This study aimed to identify and validate a selection of reference genes for relative quantification in Talaromyces versatilis, a relevant industrial filamentous fungus. Beyond T. versatilis, this study also aimed to propose reference genes that are applicable more widely for RT-qPCR data normalization in filamentous fungi. RESULTS A selection of stable, potential reference genes was carried out in silico from RNA-seq based transcriptomic data obtained from T. versatilis. A dozen functionally unrelated candidate genes were analysed by RT-qPCR assays over more than 30 relevant culture conditions. By using geNorm, we showed that most of these candidate genes had stable transcript levels in most of the conditions, from growth environments to conidial germination. The overall robustness of these genes was explored further by showing that any combination of 3 of them led to minimal normalization bias. To extend the relevance of the study beyond T. versatilis, we challenged their stability together with sixteen other classically used genes such as β-tubulin or actin, in a representative sample of about 100 RNA-seq datasets. These datasets were obtained from 18 phylogenetically distant filamentous fungi exposed to prevalent experimental conditions. Although this wide analysis demonstrated that each of the chosen genes exhibited sporadic up- or down-regulation, their hierarchical clustering allowed the identification of a promising group of 6 genes, which presented weak expression changes and no tendency to up- or down-regulation over the whole set of conditions. This group included ubcB, sac7, fis1 and sarA genes, as well as TFC1 and UBC6 that were previously validated for their use in S. cerevisiae. CONCLUSIONS We propose a set of 6 genes that can be used as reference genes in RT-qPCR data normalization in any field of fungal biology. However, we recommend that the uniform transcription of these genes is tested by systematic experimental validation and to use the geometric averaging of at least 3 of the best ones. This will minimize the bias in normalization and will support trustworthy biological conclusions.
Collapse
Affiliation(s)
- Agustina Llanos
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077, Toulouse, France. .,INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400, Toulouse, France. .,CNRS, UMR5504, F-31400, Toulouse, France. .,Cinabio-Adisseo France S.A.S., 135 Avenue de Rangueil, 31077, Toulouse, France.
| | - Jean Marie François
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077, Toulouse, France. .,INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400, Toulouse, France. .,CNRS, UMR5504, F-31400, Toulouse, France.
| | - Jean-Luc Parrou
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077, Toulouse, France. .,INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400, Toulouse, France. .,CNRS, UMR5504, F-31400, Toulouse, France.
| |
Collapse
|
19
|
Genomic and transcriptome analyses reveal that MAPK- and phosphatidylinositol-signaling pathways mediate tolerance to 5-hydroxymethyl-2-furaldehyde for industrial yeast Saccharomyces cerevisiae. Sci Rep 2014; 4:6556. [PMID: 25296911 PMCID: PMC4190571 DOI: 10.1038/srep06556] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/10/2014] [Indexed: 12/15/2022] Open
Abstract
The industrial yeast Saccharomyces cerevisiae is a traditional ethanologenic agent and a promising biocatalyst for advanced biofuels production using lignocellulose materials. Here we present the genomic background of type strain NRRL Y-12632 and its transcriptomic response to 5-hydroxymethyl-2-furaldehyde (HMF), a commonly encountered toxic compound liberated from lignocellulosic-biomass pretreatment, in dissecting the genomic mechanisms of yeast tolerance. Compared with the genome of laboratory model strain S288C, we identified more than 32,000 SNPs in Y-12632 with 23,000 missense and nonsense SNPs. Enriched sequence mutations occurred for genes involved in MAPK- and phosphatidylinositol (PI)- signaling pathways in strain Y-12632, with 41 and 13 genes containing non-synonymous SNPs, respectively. Many of these mutated genes displayed consistent up-regulated signature expressions in response to challenges of 30 mM HMF. Analogous single-gene deletion mutations of these genes showed significantly sensitive growth response on a synthetic medium containing 20 mM HMF. Our results suggest at least three MAPK-signaling pathways, especially for the cell-wall integrity pathway, and PI-signaling pathways to be involved in mediation of yeast tolerance against HMF in industrial yeast Saccharomyces cerevisiae. Higher levels of sequence variations were also observed for genes involved in purine and pyrimidine metabolism pathways.
Collapse
|
20
|
Alcohol dehydrogenases from Scheffersomyces stipitis involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Appl Microbiol Biotechnol 2013; 97:8411-25. [PMID: 23912116 DOI: 10.1007/s00253-013-5110-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/03/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022]
Abstract
Aldehyde inhibitors such as furfural and 5-hydroxymethylfurfural (HMF) are generated from biomass pretreatment. Scheffersomyces stipitis is able to reduce furfural and HMF to less toxic furanmethanol and furan-2,5-dimethanol; however, the enzymes involved in the reductive reaction still remain unknown. In this study, transcription responses of two known and five putative alcohol dehydrogenase genes from S. stipitis were analyzed under furfural and HMF stress conditions. All the seven alcohol dehydrogenase genes were also cloned and overexpressed for their activity analyses. Our results indicate that transcriptions of SsADH4 and SsADH6 were highly induced under furfural and HMF stress conditions, and the proteins encoded by them exhibited NADH- and/or NADPH-dependent activities for furfural and HMF reduction, respectively. For furfural reduction, NADH-dependent activity was also observed in SsAdh1p and NAD(P)H-dependent activities were also observed in SsAdh5p and SsAdh7p. For HMF reduction, NADPH-dependent activities were also observed in SsAdh5p and SsAdh7p. SsAdh4p displayed the highest NADPH-dependent specific activity and catalytic efficiency for reduction of both furfural and HMF among the seven alcohol dehydrogenases. Enzyme activities of all SsADH proteins were more stable under acidic condition. For most SsADH proteins, the optimum temperature for enzyme activities was 30 °C and more than 50 % enzyme activities remained at 60 °C. Reduction activities of formaldehyde, acetaldehyde, isovaleraldehyde, benzaldehyde, and phenylacetaldehyde were also observed in some SsADH proteins. Our results indicate that multiple alcohol dehydrogenases in S. stipitis are involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.
Collapse
|
21
|
Moon J, Lewis Liu Z, Ma M, Slininger PJ. New genotypes of industrial yeast Saccharomyces cerevisiae engineered with YXI and heterologous xylose transporters improve xylose utilization and ethanol production. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2013. [DOI: 10.1016/j.bcab.2013.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Lanes C, Fernandes J, Kiron V, Babiak I. Profiling of key apoptotic, stress, and immune-related transcripts during embryonic and postembryonic development of Atlantic cod (Gadus morhua L.). Theriogenology 2012; 78:1583-1596.e2. [DOI: 10.1016/j.theriogenology.2012.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/05/2012] [Accepted: 07/05/2012] [Indexed: 12/13/2022]
|
23
|
Cankorur-Cetinkaya A, Dereli E, Eraslan S, Karabekmez E, Dikicioglu D, Kirdar B. A novel strategy for selection and validation of reference genes in dynamic multidimensional experimental design in yeast. PLoS One 2012; 7:e38351. [PMID: 22675547 PMCID: PMC3366934 DOI: 10.1371/journal.pone.0038351] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/03/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Understanding the dynamic mechanism behind the transcriptional organization of genes in response to varying environmental conditions requires time-dependent data. The dynamic transcriptional response obtained by real-time RT-qPCR experiments could only be correctly interpreted if suitable reference genes are used in the analysis. The lack of available studies on the identification of candidate reference genes in dynamic gene expression studies necessitates the identification and the verification of a suitable gene set for the analysis of transient gene expression response. PRINCIPAL FINDINGS In this study, a candidate reference gene set for RT-qPCR analysis of dynamic transcriptional changes in Saccharomyces cerevisiae was determined using 31 different publicly available time series transcriptome datasets. Ten of the twelve candidates (TPI1, FBA1, CCW12, CDC19, ADH1, PGK1, GCN4, PDC1, RPS26A and ARF1) we identified were not previously reported as potential reference genes. Our method also identified the commonly used reference genes ACT1 and TDH3. The most stable reference genes from this pool were determined as TPI1, FBA1, CDC19 and ACT1 in response to a perturbation in the amount of available glucose and as FBA1, TDH3, CCW12 and ACT1 in response to a perturbation in the amount of available ammonium. The use of these newly proposed gene sets outperformed the use of common reference genes in the determination of dynamic transcriptional response of the target genes, HAP4 and MEP2, in response to relaxation from glucose and ammonium limitations, respectively. CONCLUSIONS A candidate reference gene set to be used in dynamic real-time RT-qPCR expression profiling in yeast was proposed for the first time in the present study. Suitable pools of stable reference genes to be used under different experimental conditions could be selected from this candidate set in order to successfully determine the expression profiles for the genes of interest.
Collapse
Affiliation(s)
| | - Elif Dereli
- Department of Chemical Engineering, Bogazici University, Bebek, Istanbul, Turkey
| | - Serpil Eraslan
- Department of Chemical Engineering, Bogazici University, Bebek, Istanbul, Turkey
| | - Erkan Karabekmez
- Department of Chemical Engineering, Bogazici University, Bebek, Istanbul, Turkey
| | - Duygu Dikicioglu
- Department of Chemical Engineering, Bogazici University, Bebek, Istanbul, Turkey
| | - Betul Kirdar
- Department of Chemical Engineering, Bogazici University, Bebek, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
24
|
Daval S, Lebreton L, Gazengel K, Boutin M, Guillerm-Erckelboudt AY, Sarniguet A. The biocontrol bacterium Pseudomonas fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all fungus Gaeumannomyces graminis var. tritici on wheat roots. MOLECULAR PLANT PATHOLOGY 2011; 12:839-54. [PMID: 21726382 PMCID: PMC3258481 DOI: 10.1111/j.1364-3703.2011.00715.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The main effects of antagonistic rhizobacteria on plant pathogenic fungi are antibiosis, fungistasis or an indirect constraint through the induction of a plant defence response. To explore different biocontrol mechanisms, an in vitro confrontation assay was conducted with the rhizobacterium Pseudomonas fluorescens Pf29Arp as a biocontrol agent of the fungus Gaeumannomyces graminis var. tritici (Ggt) on wheat roots. In parallel with the assessment of disease extension, together with the bacterial and fungal root colonization rates, the transcript levels of candidate fungal pathogenicity and plant-induced genes were monitored during the 10-day infection process. The bacterial inoculation of wheat roots with the Pf29Arp strain reduced the development of Ggt-induced disease expressed as attack frequency and necrosis length. The growth rates of Ggt and Pf29Arp, monitored through quantitative polymerase chain reaction of DNA amounts with a part of the Ggt 18S rDNA gene and a specific Pf29Arp strain detection probe, respectively, increased throughout the interactions. Bacterial antagonism and colonization had no significant effect on root colonization by Ggt. The expression of fungal and plant genes was quantified in planta by quantitative reverse transcription-polymerase chain reaction during the interactions thanks to the design of specific primers and an innovative universal reference system. During the early stages of the tripartite interaction, several of the fungal genes assayed were down-regulated by Pf29Arp, including two laccases, a β-1,3-exoglucanase and a mitogen-activated protein kinase. The plant host glutathione-S-transferase gene was induced by Ggt alone and up-regulated by Pf29Arp bacteria in interaction with the pathogen. We conclude that Pf29Arp antagonism acts through the alteration of fungal pathogenesis and probably through the activation of host defences.
Collapse
Affiliation(s)
- Stéphanie Daval
- INRA, Agrocampus Ouest, Université Rennes 1, UMR1099 BiO3P (Biology of Organisms and Populations Applied to Plant Protection), BP 35327, Le Rheu, France.
| | | | | | | | | | | |
Collapse
|
25
|
CmeR-dependent gene Cj0561c is induced more effectively by bile salts than the CmeABC efflux pump in both human and poultry Campylobacter jejuni strains. Res Microbiol 2011; 162:991-8. [DOI: 10.1016/j.resmic.2011.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 08/05/2011] [Indexed: 11/23/2022]
|
26
|
Johnson ET, Dowd PF, Liu ZL, Musser RO. Comparative transcription profiling analyses of maize reveals candidate defensive genes for seedling resistance against corn earworm. Mol Genet Genomics 2011; 285:517-25. [PMID: 21556895 DOI: 10.1007/s00438-011-0626-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 04/21/2011] [Indexed: 11/29/2022]
Abstract
As maize seedlings germinate into the soil, they encounter an environment teeming with insects seeking rich sources of nutrition. Maize presumably has developed a number of molecular mechanisms to ensure survival at the beginning of its life cycle. Comparative transcription analysis using microarrays was utilized to document the expression of a number of genes with potential defensive functions in seedling tissue. In addition to elevated levels of the genes involved in the biosynthesis of DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one), an anti-insect resistance molecule, other highly expressed genes in the seedling encode the following putative defensive proteins: defensin, hydroxyproline and proline-rich protein, thaumatin-like protein, lipase, cystatin, protease inhibitor, and a variety of proteases. The potential resistance genes identified occurred mainly on chromosomes 1 and 5 in the B73 genome. Analysis of promoters of seven DIMBOA biosynthetic genes identified three transcription factor binding sites that are possibly involved in regulation of the DIMBOA biosynthetic pathway. The results indicate that maize employs a wide variety of potential resistance mechanisms in seedling tissue to resist a possible insect attack.
Collapse
Affiliation(s)
- Eric T Johnson
- Crop Bioprotection Research Unit, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA.
| | | | | | | |
Collapse
|
27
|
Martinez AR, Abranches J, Kajfasz JK, Lemos JA. Characterization of the Streptococcus sobrinus acid-stress response by interspecies microarrays and proteomics. Mol Oral Microbiol 2011; 25:331-42. [PMID: 20883222 DOI: 10.1111/j.2041-1014.2010.00580.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Streptococcus mutans and Streptococcus sobrinus are considered the primary organisms responsible for human dental caries. The ability to generate acids and to adapt to low pH conditions is directly associated with the cariogenic potential of these bacteria. To survive acidic conditions, both species have been shown to mount an acid-tolerance response (ATR). However, previous characterization of the S. sobrinus ATR identified critical differences in the mechanisms of acid adaptation between S. mutans and S. sobrinus. Here, interspecies microarray and proteomic approaches were used to identify novel, previously unrecognized genes and pathways that participate in the S. sobrinus acid-stress response. The results revealed that, among other things, metabolic alterations that enhance energy generation and upregulation of the malolactic fermentation enzyme activity constitute important acid-resistance properties in S. sobrinus. Some of these acid adaptive traits are shared by S. mutans and might be considered optimal targets for therapeutic treatments designed to control dental caries.
Collapse
Affiliation(s)
- A R Martinez
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
28
|
Ma M, Liu ZL. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae. BMC Genomics 2010; 11:660. [PMID: 21106074 PMCID: PMC3091778 DOI: 10.1186/1471-2164-11-660] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 11/24/2010] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The yeast Saccharomyces cerevisiae is able to adapt and in situ detoxify lignocellulose derived inhibitors such as furfural and HMF. The length of lag phase for cell growth in response to the inhibitor challenge has been used to measure tolerance of strain performance. Mechanisms of yeast tolerance at the genome level remain unknown. Using systems biology approach, this study investigated comparative transcriptome profiling, metabolic profiling, cell growth response, and gene regulatory interactions of yeast strains and selective gene deletion mutations in response to HMF challenges during the lag phase of growth. RESULTS We identified 365 candidate genes and found at least 3 significant components involving some of these genes that enable yeast adaptation and tolerance to HMF in yeast. First, functional enzyme coding genes such as ARI1, ADH6, ADH7, and OYE3, as well as gene interactions involved in the biotransformation and inhibitor detoxification were the direct driving force to reduce HMF damages in cells. Expressions of these genes were regulated by YAP1 and its closely related regulons. Second, a large number of PDR genes, mainly regulated by PDR1 and PDR3, were induced during the lag phase and the PDR gene family-centered functions, including specific and multiple functions involving cellular transport such as TPO1, TPO4, RSB1, PDR5, PDR15, YOR1, and SNQ2, promoted cellular adaptation and survival in order to cope with the inhibitor stress. Third, expressed genes involving degradation of damaged proteins and protein modifications such as SHP1 and SSA4, regulated by RPN4, HSF1, and other co-regulators, were necessary for yeast cells to survive and adapt the HMF stress. A deletion mutation strain Δrpn4 was unable to recover the growth in the presence of HMF. CONCLUSIONS Complex gene interactions and regulatory networks as well as co-regulations exist in yeast adaptation and tolerance to the lignocellulose derived inhibitor HMF. Both induced and repressed genes involving diversified functional categories are accountable for adaptation and energy rebalancing in yeast to survive and adapt the HMF stress during the lag phase of growth. Transcription factor genes YAP1, PDR1, PDR3, RPN4, and HSF1 appeared to play key regulatory rules for global adaptation in the yeast S. cerevisiae.
Collapse
Affiliation(s)
- Menggen Ma
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL USA
| | - Z Lewis Liu
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL USA
| |
Collapse
|
29
|
Ma M, Liu LZ. Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae. BMC Microbiol 2010; 10:169. [PMID: 20537179 PMCID: PMC2903563 DOI: 10.1186/1471-2180-10-169] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 06/10/2010] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Derived from our lignocellulosic conversion inhibitor-tolerant yeast, we generated an ethanol-tolerant strain Saccharomyces cerevisiae NRRL Y-50316 by enforced evolutionary adaptation. Using a newly developed robust mRNA reference and a master equation unifying gene expression data analyses, we investigated comparative quantitative transcription dynamics of 175 genes selected from previous studies for an ethanol-tolerant yeast and its closely related parental strain. RESULTS A highly fitted master equation was established and applied for quantitative gene expression analyses using pathway-based qRT-PCR array assays. The ethanol-tolerant Y-50316 displayed significantly enriched background of mRNA abundance for at least 35 genes without ethanol challenge compared with its parental strain Y-50049. Under the ethanol challenge, the tolerant Y-50316 responded in consistent expressions over time for numerous genes belonging to groups of heat shock proteins, trehalose metabolism, glycolysis, pentose phosphate pathway, fatty acid metabolism, amino acid biosynthesis, pleiotropic drug resistance gene family and transcription factors. The parental strain showed repressed expressions for many genes and was unable to withstand the ethanol stress and establish a viable culture and fermentation. The distinct expression dynamics between the two strains and their close association with cell growth, viability and ethanol fermentation profiles distinguished the tolerance-response from the stress-response in yeast under the ethanol challenge. At least 82 genes were identified as candidate and key genes for ethanol-tolerance and subsequent fermentation under the stress. Among which, 36 genes were newly recognized by the present study. Most of the ethanol-tolerance candidate genes were found to share protein binding motifs of transcription factors Msn4p/Msn2p, Yap1p, Hsf1p and Pdr1p/Pdr3p. CONCLUSION Enriched background of transcription abundance and enhanced expressions of ethanol-tolerance genes associated with heat shock proteins, trehalose-glycolysis-pentose phosphate pathways and PDR gene family are accountable for the tolerant yeast to withstand the ethanol stress, maintain active metabolisms, and complete ethanol fermentation under the ethanol stress. Transcription factor Msn4p appeared to be a key regulator of gene interactions for ethanol-tolerance in the tolerant yeast Y-50316.
Collapse
Affiliation(s)
- Menggen Ma
- Bioenergy Research, National Center for Agricultural Utilization Research USDA-ARS, Peoria, IL USA
- Department of Computer Science, New Mexico State University, Las Cruces, NM USA
| | - Lewis Z Liu
- Bioenergy Research, National Center for Agricultural Utilization Research USDA-ARS, Peoria, IL USA
| |
Collapse
|
30
|
Abstract
The Real-Time quantitative PCR (qPCR) method has become central for the quantification of gene expression as well as other applications. The major advantages of qPCR are the utilization of small amount of template, high sensitivity and the ability to detect products during the reaction. After selecting qPCR among other options (northern blot, semi-quantitative PCR), one should consider several factors. The first and critical step in qPCR of fungi is the selection of an appropriate growth medium and RNA extraction method, which will avoid accumulation of inhibitors. In this chapter, we focus on detection of the accumulating product with the Syber Green dye, but other detection technologies, such as hybridization probes, might be considered as well. Accurate qPCR analysis with Syber Green depends mainly on optimal PCR reaction, and therefore it is important to design primers that will avoid formation of interfering structures. It is possible to use absolute quantification of the template in the sample, or to conduct a relative analysis, as described in this protocol. In the relative analysis method, expression of the gene of interest is compared with expression of a reference gene. According to our experience as well as according to the literature, it is recommended to use at least three reference genes in order to obtain reliable results.
Collapse
|
31
|
Teste MA, Duquenne M, François JM, Parrou JL. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol Biol 2009; 10:99. [PMID: 19874630 PMCID: PMC2776018 DOI: 10.1186/1471-2199-10-99] [Citation(s) in RCA: 364] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 10/30/2009] [Indexed: 12/02/2022] Open
Abstract
Background Real-time RT-PCR is the recommended method for quantitative gene expression analysis. A compulsory step is the selection of good reference genes for normalization. A few genes often referred to as HouseKeeping Genes (HSK), such as ACT1, RDN18 or PDA1 are among the most commonly used, as their expression is assumed to remain unchanged over a wide range of conditions. Since this assumption is very unlikely, a geometric averaging of multiple, carefully selected internal control genes is now strongly recommended for normalization to avoid this problem of expression variation of single reference genes. The aim of this work was to search for a set of reference genes for reliable gene expression analysis in Saccharomyces cerevisiae. Results From public microarray datasets, we selected potential reference genes whose expression remained apparently invariable during long-term growth on glucose. Using the algorithm geNorm, ALG9, TAF10, TFC1 and UBC6 turned out to be genes whose expression remained stable, independent of the growth conditions and the strain backgrounds tested in this study. We then showed that the geometric averaging of any subset of three genes among the six most stable genes resulted in very similar normalized data, which contrasted with inconsistent results among various biological samples when the normalization was performed with ACT1. Normalization with multiple selected genes was therefore applied to transcriptional analysis of genes involved in glycogen metabolism. We determined an induction ratio of 100-fold for GPH1 and 20-fold for GSY2 between the exponential phase and the diauxic shift on glucose. There was no induction of these two genes at this transition phase on galactose, although in both cases, the kinetics of glycogen accumulation was similar. In contrast, SGA1 expression was independent of the carbon source and increased by 3-fold in stationary phase. Conclusion In this work, we provided a set of genes that are suitable reference genes for quantitative gene expression analysis by real-time RT-PCR in yeast biological samples covering a large panel of physiological states. In contrast, we invalidated and discourage the use of ACT1 as well as other commonly used reference genes (PDA1, TDH3, RDN18, etc) as internal controls for quantitative gene expression analysis in yeast.
Collapse
|
32
|
Liu ZL, Ma M, Song M. Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genomics 2009; 282:233-44. [PMID: 19517136 PMCID: PMC3025311 DOI: 10.1007/s00438-009-0461-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 05/17/2009] [Indexed: 10/20/2022]
Abstract
Lignocellulosic biomass conversion inhibitors, furfural and HMF, inhibit microbial growth and interfere with subsequent fermentation of ethanol, posing significant challenges for a sustainable cellulosic ethanol conversion industry. Numerous yeast genes were found to be associated with the inhibitor tolerance. However, limited knowledge is available about mechanisms of the tolerance and the detoxification of the biomass conversion inhibitors. Using a robust standard for absolute mRNA quantification assay and a recently developed tolerant ethanologenic yeast Saccharomyces cerevisiae NRRL Y-50049, we investigate pathway-based transcription profiles relevant to the yeast tolerance and the inhibitor detoxification. Under the synergistic inhibitory challenges by furfural and HMF, Y-50049 was able to withstand the inhibitor stress, in situ detoxify furfural and HMF, and produce ethanol, while its parental control Y-12632 failed to function till 65 h after incubation. The tolerant strain Y-50049 displayed enriched genetic background with significantly higher abundant of transcripts for at least 16 genes than a non-tolerant parental strain Y-12632. The enhanced expression of ZWF1 appeared to drive glucose metabolism in favor of pentose phosphate pathway over glycolysis at earlier steps of glucose metabolisms. Cofactor NAD(P)H generation steps were likely accelerated by enzymes encoded by ZWF1, GND1, GND2, TDH1, and ALD4. NAD(P)H-dependent aldehyde reductions including conversion of furfural and HMF, in return, provided sufficient NAD(P)(+) for NAD(P)H regeneration in the yeast detoxification pathways. Enriched genetic background and a well maintained redox balance through reprogrammed expression responses of Y-50049 were accountable for the acquired tolerance and detoxification of furfural to furan methanol and HMF to furan dimethanol. We present significant gene interactions and regulatory networks involved in NAD(P)H regenerations and functional aldehyde reductions under the inhibitor stress.
Collapse
Affiliation(s)
- Z Lewis Liu
- U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA.
| | | | | |
Collapse
|
33
|
Song M, Ouyang Z, Liu ZL. Discrete dynamical system modelling for gene regulatory networks of 5-hydroxymethylfurfural tolerance for ethanologenic yeast. IET Syst Biol 2009; 3:203-18. [PMID: 19449980 DOI: 10.1049/iet-syb.2008.0089] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Composed of linear difference equations, a discrete dynamical system (DDS) model was designed to reconstruct transcriptional regulations in gene regulatory networks (GRNs) for ethanologenic yeast Saccharomyces cerevisiae in response to 5-hydroxymethylfurfural (HMF), a bioethanol conversion inhibitor. The modelling aims at identification of a system of linear difference equations to represent temporal interactions among significantly expressed genes. Power stability is imposed on a system model under the normal condition in the absence of the inhibitor. Non-uniform sampling, typical in a time-course experimental design, is addressed by a log-time domain interpolation. A statistically significant DDS model of the yeast GRN derived from time-course gene expression measurements by exposure to HMF, revealed several verified transcriptional regulation events. These events implicate Yap1 and Pdr3, transcription factors consistently known for their regulatory roles by other studies or postulated by independent sequence motif analysis, suggesting their involvement in yeast tolerance and detoxification of the inhibitor.
Collapse
Affiliation(s)
- M Song
- Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA.
| | | | | |
Collapse
|
34
|
Liu ZL, Moon J. A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene 2009; 446:1-10. [PMID: 19577617 DOI: 10.1016/j.gene.2009.06.018] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 06/16/2009] [Accepted: 06/19/2009] [Indexed: 10/20/2022]
Abstract
Aldehyde inhibitors such as furfural, 5-hydroxymethylfurfural, anisaldehyde, benzaldehyde, cinnamaldehyde, and phenylaldehyde are commonly generated during lignocellulosic biomass conversion process for low-cost cellulosic ethanol production that interferes with subsequent microbial growth and fermentation. In situ detoxification of the aldehyde inhibitors is possible by the tolerant ethanologenic yeast that involves multiple genes including numerous functional reductases. In this study, we report a novel aldehyde reductase gene clone Y63 from ethanologenic yeast Saccharomyces cerevisiae NRRL Y12632, representing the uncharacterized ORF YGL157W, which demonstrated NADPH-dependent reduction activities toward at least 14 aldehyde substrates. The identity of gene clone Y63 is the same with YGL157W of SGD since a variation of only 35 nucleotides in genomic sequence and three amino acid residues were observed between the two that share the same length of 347 residues in size. As one among the highly induced genes, YGL157W of Y-12632 showed significantly high levels of transcript abundance in response to furfural and HMF challenges. Based on the deduced amino acid sequence and the most conserved functional motif analyses including closely related reductases from five other yeast species to this date, YGL157W was identified as a member of the subclass 'intermediate' of the SDR (short-chain dehydrogenase/reductase) superfamily with the following typical characteristics: the most conserved catalytic site to lie at Tyr(169)-X-X-X-Lys(173); an indispensable reduction catalytic triad at Ser(131), Tyr(169), and Lys(173), and an approved cofactor-binding motif at Gly(11)-X-X-Gly(14)-X-X-Ala(17) near the N-terminus. YGL039W, YDR541C, and YOL151W (GRE2) appeared to be the similar type of enzymes falling into the same category of the intermediate subfamily.
Collapse
Affiliation(s)
- Z Lewis Liu
- U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N University St., Peoria, IL 61604, USA.
| | | |
Collapse
|
35
|
Liu ZL, Palmquist DE, Ma M, Liu J, Alexander NJ. Application of a master equation for quantitative mRNA analysis using qRT-PCR. J Biotechnol 2009; 143:10-6. [PMID: 19539678 DOI: 10.1016/j.jbiotec.2009.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/27/2009] [Accepted: 06/09/2009] [Indexed: 12/01/2022]
Abstract
The qRT-PCR has been widely accepted as the assay of choice for mRNA quantification. For conventional practice, housekeeping genes have been applied as internal reference for data normalization and analysis since the technology appeared. However, housekeeping genes vary under different conditions and environmental stimuli and no commonly accepted housekeeping gene references are available. Accurate data acquisition and data reproducibility remain challenging and it is difficult to compare results from different experimental sources. Using yeast and a Fusarium fungus as examples, we demonstrate the independent performance of a sole reference gene, CAB, designated as a constant manual threshold for data acquisition, normalization, and analysis for multiple plate reactions. A robust master equation based on the CAB reference and the set of calibration control genes thereafter was established to estimate mRNA abundance for the same RNA background reactions. A valid range of amplification efficiency between 95% and 100% was observed for the control genes in different RNA background applied on an ABI real time PCR 7500 system. This newly developed robust quality control system provides a reliable means for absolute quantification of mRNA using the qRT-PCR, simplifies the conventional qRT-PCR procedures, and increases data reliability, reproducibility, and throughput of the assay.
Collapse
Affiliation(s)
- Z Lewis Liu
- National Center for Agricultural Utilization Research, USDA-ARS 1815N University St. Peoria, IL 61604, USA.
| | | | | | | | | |
Collapse
|
36
|
Liu ZL, Moon J, Song MJ. Genomic mechanisms of inhibitor-detoxification for low-cost lignocellulosic bioethanol conversion. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Ellefsen S, Stensløkken KO, Sandvik GK, Kristensen TA, Nilsson GE. Improved normalization of real-time reverse transcriptase polymerase chain reaction data using an external RNA control. Anal Biochem 2008; 376:83-93. [PMID: 18294949 DOI: 10.1016/j.ab.2008.01.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Revised: 01/21/2008] [Accepted: 01/23/2008] [Indexed: 11/26/2022]
Abstract
No golden standard exists for normalization of real-time reverse transcriptase polymerase chain reaction (RT PCR) data and procedures used are often not validated. Numerous studies have indicated that current approaches are inadequate. Here, we report the development of an external RNA control approach. It is the first to add external RNA to tissue on a per unit weight basis, and we demonstrate its accuracy, suitability, and necessity in experiments involving severe physiological challenges. We utilized the approach to examine the expression of the internal RNA control genes (reference genes) beta-actin, cyclophilin A, and glyceraldehyde 3-phospate dehydrogenase in brain and heart of normoxic and anoxic crucian carp (Carassius carassius). The internal RNA control genes differed significantly in expression in experimental groups, especially in heart. We also demonstrate that the external RNA control approach provides a more accurate normalization of target genes. For example, it revealed a 2.5-fold increase in the expression of the stress-response gene HSC70, which was not detected using beta-actin or geNorm. Further, we demonstrate and discuss the need for using the optimized and standardized external RNA control protocol reported. Collectively, our data suggest that the normalization of real-time RT PCR data is considerably improved by adding an external RNA control to the samples.
Collapse
Affiliation(s)
- Stian Ellefsen
- Physiology Programme, Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway.
| | | | | | | | | |
Collapse
|
38
|
CcpA regulates central metabolism and virulence gene expression in Streptococcus mutans. J Bacteriol 2008; 190:2340-9. [PMID: 18223086 DOI: 10.1128/jb.01237-07] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CcpA globally regulates transcription in response to carbohydrate availability in many gram-positive bacteria, but its role in Streptococcus mutans remains enigmatic. Using the fructan hydrolase (fruA) gene of S. mutans as a model, we demonstrated that CcpA plays a direct role in carbon catabolite repression (CCR). Subsequently, the expression of 170 genes was shown to be differently expressed (> or = 2-fold) in glucose-grown wild-type (UA159) and CcpA-deficient (TW1) strains (P < or = 0.001). However, there were differences in expression of only 96 genes between UA159 and TW1 when cells were cultivated with the poorly repressing substrate galactose. Interestingly, 90 genes were expressed differently in wild-type S. mutans when glucose- and galactose-grown cells were compared, but the expression of 515 genes was altered in the CcpA-deficient strain in a similar comparison. Overall, our results supported the hypothesis that CcpA has a major role in CCR and regulation of gene expression but revealed that in S. mutans there is a substantial CcpA-independent network that regulates gene expression in response to the carbohydrate source. Based on the genetic studies, biochemical and physiological experiments demonstrated that loss of CcpA impacts the ability of S. mutans to transport and grow on selected sugars. Also, the CcpA-deficient strain displayed an enhanced capacity to produce acid from intracellular stores of polysaccharides, could grow faster at pH 5.5, and could acidify the environment more rapidly and to a greater extent than the parental strain. Thus, CcpA directly modulates the pathogenic potential of S. mutans through global control of gene expression.
Collapse
|
39
|
Sirisatta S, Kitagawa E, Yonekura M, Iwahashi H. Functional genomics analysis of n-alkyl sulfates toxicity in the yeast Saccharomyces cerevisiae. CHEM-BIO INFORMATICS JOURNAL 2008. [DOI: 10.1273/cbij.8.69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sophon Sirisatta
- Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST)
- Laboratory of Food Functionality, School of Agriculture, Ibaraki University
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Emiko Kitagawa
- Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST)
| | - Masami Yonekura
- Laboratory of Food Functionality, School of Agriculture, Ibaraki University
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Hitoshi Iwahashi
- Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
40
|
Abstract
The production of (p)ppGpp by Streptococcus mutans UA159 is catalyzed by three gene products: RelA, RelP, and RelQ. Here, we investigate the role of the RelA (Rel) homologue of S. mutans in the stringent response and in the global control of gene expression. RelA of S. mutans was shown to synthesize pppGpp in vitro from GTP and ATP in the absence of added ribosomes, as well as in vivo in an Escherichia coli relA-spoT mutant. Mupirocin (MUP) was shown to induce high levels of (p)ppGpp production in S. mutans in a relA-dependent manner, with a concomitant reduction in GTP pools. Transcription profiling after MUP treatment of S. mutans revealed that 104 genes were upregulated and 130 were downregulated (P < or = 0.001); mainly, genes for macromolecular biosynthesis, translation, and energy metabolism were downregulated. When a derivative of UA159 carrying a complete deletion of the relA gene was treated with MUP, 72 genes were upregulated and 52 were downregulated (P < or = 0.001). The expression of 50 genes (P < or = 0.001) was commonly affected by MUP treatment in the two strains, suggesting that S. mutans can mount a relA-independent response to MUP. Consistent with the gene expression profiling, RelA was shown to play major roles in the regulation of phenotypic traits that are required for establishment, persistence, and virulence expression by this oral pathogen. Thus, RelA is the major (p)ppGpp synthase controlling the stringent response in S. mutans, and it coordinates the expression of genes and phenotypes that contribute to the pathogenic potential of the organism.
Collapse
|
41
|
Kakuhata R, Watanabe M, Yamamoto T, Akamine R, Yamazaki N, Kataoka M, Fukuoka S, Ishikawa M, Ooie T, Baba Y, Hori T, Shinohara Y. Possible utilization of in vitro synthesized mRNAs specifically expressed in certain tissues as standards for quantitative evaluation of the results of microarray analysis. ACTA ACUST UNITED AC 2007; 70:755-60. [PMID: 17512601 DOI: 10.1016/j.jbbm.2007.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 04/07/2007] [Accepted: 04/17/2007] [Indexed: 11/28/2022]
Abstract
To examine the possible usefulness of in vitro synthesized RNA as standards in microarray analysis, we prepared full-length mRNAs encoded by 3 rat metabolic genes for heart/muscle type carnitine palmitoyltransferase I (M-CPTI), uncoupling protein (UCP1), and heart/muscle type fatty acid-binding protein (H-FABP). Artificial RNA samples were prepared by adding known amounts of these synthetic mRNAs to total RNA from rat liver, and transcript levels of various genes were compared between the prepared artificial RNA samples and total RNA samples of rat liver by using an Agilent oligo microarray system. Upon the addition of these synthetic RNAs, signals from the DNA spots corresponding to these 3 genes were elevated, but those from the DNA spots representing other genes were not markedly influenced. Using the ratio of the increase in signal intensity of DNA spot to the amount of added RNA, we estimated the expression levels of several genes and compared them with the absolute expression levels determined by calibrated Northern analysis. As a result, the absolute transcript levels of 3 genes encoding acidic ribosomal phosphoprotein P0, type-1 voltage-dependent anion channel (VDAC1), and type-2 glucose transporter (GLUT2) were successfully estimated by this procedure. Furthermore, genes specifically expressed in certain tissues such as UCP1 were concluded to be good candidates as standards for use in microarray analysis.
Collapse
Affiliation(s)
- Rei Kakuhata
- Institute for Genome Research, University of Tokushima, Kuramotocho-3, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|