1
|
He Y, Huang A, Liu Y. A New Phospholipase D-Producing Bacillus cereus: Taxonomy, Mutagenesis, Fermentation Optimization and Enzyme Characterization. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05278-1. [PMID: 40392408 DOI: 10.1007/s12010-025-05278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2025] [Indexed: 05/22/2025]
Abstract
Phospholipase D (PLD) is a valuable enzyme in industrial processes for converting phosphatidylcholine (PC) to phosphatidylserine (PS). In this study, a strain of Bacillus cereus was isolated from soil and identified through 16S rRNA sequencing. To enhance PLD activity, various mutagenesis strategies-including chemical treatment, irradiation, and their combinations-were employed, resulting in four high-activity positive mutants (C-7, I-12, CI 7-12, and IC 13-14). Among these, the CI 7-12 mutant exhibited a significantly higher enzymatic activity, showing a 3.12-fold increase (312.2%) compared to the wild-type strain. Fermentation conditions were optimied using response surface methodology (RSM), achieving a PLD activity of 35 U/mL. The enzyme demonstrated stability over a wide temperature range (30-60 °C) and pH range (6-10), with a half-life of 128 days. Kinetic analysis revealed a Vmax of 20.04 μmol/h and a Km of 7.13 μmol/mL, indicating efficient activity. In bioconversion experiments, the PLD-enriched fermentation broth catalyzed the conversion of PC to PS, achieving a 53.0% conversion rate and a 92.3% selectivity for PS in a two-phase system. These findings expand the potential sources of PLD and underscore its applicability for PS production in biotechnological applications.
Collapse
Affiliation(s)
- Ying He
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ao Huang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yun Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
2
|
Krishnamurthy P, Shetty R, Isaac KP, Unni SN, Rao SS, Parthasarathy K. Differentiation of Bacterial Species in Liquid Culture Using Laser Speckle Contrast Imaging. JOURNAL OF BIOPHOTONICS 2025; 18:e202400565. [PMID: 40040567 DOI: 10.1002/jbio.202400565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 03/06/2025]
Abstract
Bacterial identification is vital for healthcare and environmental quality control. Traditional bacterial identification methods require extensive sample preparation, including cultivation, staining, and microscopy, making them time-consuming and labor-intensive. This study proposes the application of Laser Speckle Contrast Imaging (LSCI) as a novel approach to capture variations in speckle patterns between the start and end of the lag caused by changes in the shape and arrangement of bacterial cells during cell division in liquid cultures at lower cell concentrations, such as in the lag phase. Our approach offers an efficient alternative to traditional methods of bacterial species identification demonstrated with Escherichia coli and Micrococcus luteus pairs. Also, the differentiation of strains ( E. coli ATCC25922 and DH5α) is carried out based on the percentage change in speckle contrast between the end of lag and mid-log phase of their growth curve.
Collapse
Affiliation(s)
- Priya Krishnamurthy
- Biophotonics Lab, Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology, Chennai, India
| | - Roshni Shetty
- Biophotonics Lab, Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology, Chennai, India
| | - Kiran Philip Isaac
- Biophotonics Lab, Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology, Chennai, India
| | - Sujatha Narayanan Unni
- Biophotonics Lab, Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology, Chennai, India
| | - Sudhanarayani S Rao
- Center for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, India
| | - Krupakar Parthasarathy
- Center for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, India
| |
Collapse
|
3
|
Ubah CS, Pokhrel LR, Williams JE, Akula SM, Richards SL, Kearney GD, Williams A. Antibacterial efficacy, mode of action, and safety of a novel nano-antibiotic against antibiotic-resistant Escherichia coli strains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171675. [PMID: 38485022 DOI: 10.1016/j.scitotenv.2024.171675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/17/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Globally rising antibiotic-resistant (AR) and multi-drug resistant (MDR) bacterial infections are of public health concern due to treatment failure with current antibiotics. Enterobacteria, particularly Escherichia coli, cause infections of surgical wound, bloodstream, and urinary tract, including pneumonia and sepsis. Herein, we tested in vitro antibacterial efficacy, mode of action (MoA), and safety of novel amino-functionalized silver nanoparticles (NH2-AgNP) against the AR bacteria. Two AR E. coli strains (i.e., ampicillin- and kanamycin-resistant E. coli), including a susceptible strain of E. coli DH5α, were tested for susceptibility to NH2-AgNP using Kirby-Bauer disk diffusion and standard growth assays. Dynamic light scattering (DLS) was used to determine cell debris and relative conductance was used as a measure of cell leakage, and results were confirmed with transmission electron microscopy (TEM). Multiple oxidative stress assays were used for in vitro safety evaluation of NH2-AgNP in human lung epithelial cells. Results showed that ampicillin and kanamycin did not inhibit growth in either AR bacterial strain with doses up to 160 μg/mL tested. NH2-AgNP exhibited broad-spectrum bactericidal activity, inhibiting the growth of all three bacterial strains at doses ≥1 μg/mL. DLS and TEM revealed cell debris formation and cell leakage upon NH2-AgNP treatment, suggesting two possible MoAs: electrostatic interactions followed by cell wall damage. Safety evaluation revealed NH2-AgNP as noncytotoxic and antioxidative to human lung epithelial cells. Taken together, these results suggest that NH2-AgNP may serve as an effective and safer bactericidal therapy against AR bacterial infections compared to common antibiotics.
Collapse
Affiliation(s)
- Chukwudi S Ubah
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Lok R Pokhrel
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Jordan E Williams
- Environmental Health Science Program, Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC, USA
| | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Stephanie L Richards
- Environmental Health Science Program, Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC, USA
| | - Gregory D Kearney
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | | |
Collapse
|
4
|
Czajkowska A, Korsak D, Fiedoruk-Pogrebniak M, Koncki R, Strzelak K. Turbidimetric flow analysis system for the investigation of microbial growth. Talanta 2024; 268:125303. [PMID: 37852015 DOI: 10.1016/j.talanta.2023.125303] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/20/2023]
Abstract
The monitoring of life of microbial populations is of the uttermost importance in environmental and food analysis, agriculture, as well as in medicine. The duration of bacteria adaptation to new environmental conditions, its lifetime and the divisions' pace are the key information in many studies. It was found that the fully-mechanized flow analysis system based on solenoid valves and pumps, paired with a dedicated flow-through optoelectronic detector can be successfully applied for monitoring of bacteria growth. The applicability of the designed multicommutated flow analysis (MCFA) system was proved by analysis of solutions containing bacteria cells proceeded by tests of McFarland (McF) standards. The developed setup allowed modelling and simulation of microbial growth, as well as monitoring of the bacteria growth in real-time manner to be carried out. The monitor is useful for the quantitative estimation of the basic parameters of bacteria population like its size, the rate of bacteria multiplication, as well as the times of lag, log and stationary phases of microbial growth.
Collapse
Affiliation(s)
| | - Dorota Korsak
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Robert Koncki
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Kamil Strzelak
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
5
|
Zapata-Farfan J, Kafshgari MH, Patskovsky S, Meunier M. Dynamic multispectral detection of bacteria with nanoplasmonic markers. NANOSCALE 2023; 15:3309-3317. [PMID: 36625354 DOI: 10.1039/d2nr03047k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Culture-based diagnosis of bacterial diseases is a time-consuming technique that can lead not only to antibiotic resistance or bacterial mutation but also to fast-spreading diseases. Such mutations contribute to the fast deterioration of the patient's health and in some cases the death depending on the complexity of the infection. There is great interest in developing widely available molecular-level diagnostics that provide accurate and rapid diagnosis at the individual level and that do not require sophisticated analysis or expensive equipment. Here, we present a promising analytical approach to detect the presence of pathogenic bacteria based on their dynamic properties enhanced with nanoplasmonic biomarkers. These markers have shown greater photostability and biocompatibility compared to fluorescent markers and quantum dots, and serve as both a selective marker and an amplifying agent in optical biomedical detection. We show that a simple dark-field side- illumination technique can provide sufficiently high-contrast dynamic images of individual plasmonic nanoparticles attached to Escherichia coli (E. coli) for multiplex biodetection. Combined with numerical dynamic filtering, our proposed system shows great potential for the deployment of portable commercial devices for rapid diagnostic tests available to physicians in emergency departments, clinics and public hospitals as point-of-care devices.
Collapse
Affiliation(s)
- Jennyfer Zapata-Farfan
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec, H3C 3A7, Canada.
| | | | - Sergiy Patskovsky
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec, H3C 3A7, Canada.
| | - Michel Meunier
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec, H3C 3A7, Canada.
| |
Collapse
|
6
|
Elvira L, Fernández A, León L, Ibáñez A, Parrilla M, Martínez Ó, Jiménez J. Evaluation of the Cell Concentration in Suspensions of Human Leukocytes by Ultrasound Imaging: The Influence of Size Dispersion and Cell Type. SENSORS (BASEL, SWITZERLAND) 2023; 23:977. [PMID: 36679773 PMCID: PMC9866977 DOI: 10.3390/s23020977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
This work focuses on the use of ultrasound imaging to evaluate the cell concentration of dilute leukocyte suspensions in the range of 10-3000 cells/µL. First, numerical simulations were used to study the influence of the size dispersion and the leukocyte type on the performance of the concentration estimation algorithms, which were developed in previous works assuming single-sized scatterers. From this analysis, corrections to the mentioned algorithms were proposed and then the performance of these corrections was evaluated from experiments. For this, ultrasound images were captured from suspensions of lymphocytes, granulocytes, and their mixtures. These images were obtained using a 20 MHz single-channel scanning system. Results confirmed that concentration estimates provided by conventional algorithms were affected by the size dispersion of cells, leading to a remarkable underestimation of results. The proposed correction to compensate for cell size dispersion obtained from simulations improved the concentration estimation of these algorithms, for the cell suspensions tested, approaching the results to the reference optical characterization. Moreover, it was shown that these models provided a total leukocyte concentration from the ultrasound images which was independent of the relative populations of different white blood cell types.
Collapse
Affiliation(s)
- Luis Elvira
- Instituto de Tecnologías Físicas y de la Información (CSIC), Serrano 144, 28006 Madrid, Spain
| | - Alba Fernández
- Instituto de Tecnologías Físicas y de la Información (CSIC), Serrano 144, 28006 Madrid, Spain
| | - Lucía León
- Instituto de Tecnologías Físicas y de la Información (CSIC), Serrano 144, 28006 Madrid, Spain
| | - Alberto Ibáñez
- Instituto de Tecnologías Físicas y de la Información (CSIC), Serrano 144, 28006 Madrid, Spain
| | - Montserrat Parrilla
- Instituto de Tecnologías Físicas y de la Información (CSIC), Serrano 144, 28006 Madrid, Spain
| | - Óscar Martínez
- Instituto de Tecnologías Físicas y de la Información (CSIC), Serrano 144, 28006 Madrid, Spain
| | - Javier Jiménez
- Newborn Solutions, Baldiri Reixac, 4-12 i 15, 08028 Barcelona, Spain
| |
Collapse
|
7
|
Rösner LS, Walter F, Ude C, John GT, Beutel S. Sensors and Techniques for On-Line Determination of Cell Viability in Bioprocess Monitoring. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120762. [PMID: 36550968 PMCID: PMC9774925 DOI: 10.3390/bioengineering9120762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
In recent years, the bioprocessing industry has experienced significant growth and is increasingly emerging as an important economic sector. Here, efficient process management and constant control of cellular growth are essential. Good product quality and yield can only be guaranteed with high cell density and high viability. Whereas the on-line measurement of physical and chemical process parameters has been common practice for many years, the on-line determination of viability remains a challenge and few commercial on-line measurement methods have been developed to date for determining viability in industrial bioprocesses. Thus, numerous studies have recently been conducted to develop sensors for on-line viability estimation, especially in the field of optical spectroscopic sensors, which will be the focus of this review. Spectroscopic sensors are versatile, on-line and mostly non-invasive. Especially in combination with bioinformatic data analysis, they offer great potential for industrial application. Known as soft sensors, they usually enable simultaneous estimation of multiple biological variables besides viability to be obtained from the same set of measurement data. However, the majority of the presented sensors are still in the research stage, and only a few are already commercially available.
Collapse
Affiliation(s)
- Laura S. Rösner
- Institute for Technical Chemistry, Leibniz University of Hanover, 30167 Hannover, Germany
| | - Franziska Walter
- Institute for Technical Chemistry, Leibniz University of Hanover, 30167 Hannover, Germany
| | - Christian Ude
- Institute for Technical Chemistry, Leibniz University of Hanover, 30167 Hannover, Germany
| | - Gernot T. John
- PreSens Precision Sensing GmbH, Am BioPark 11, 93053 Regensburg, Germany
| | - Sascha Beutel
- Institute for Technical Chemistry, Leibniz University of Hanover, 30167 Hannover, Germany
- Correspondence:
| |
Collapse
|
8
|
Dönmez Sİ, Needs SH, Osborn HMI, Reis NM, Edwards AD. Label-free 1D microfluidic dipstick counting of microbial colonies and bacteriophage plaques. LAB ON A CHIP 2022; 22:2820-2831. [PMID: 35792607 DOI: 10.1039/d2lc00280a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Counting viable bacterial cells and functional bacteriophage is fundamental to microbiology underpinning research, surveillance, biopharmaceuticals and diagnostics. Colony forming unit (CFU) and plaque forming unit (PFU) counting still requires slow and laborious solid culture on agar in Petri dishes or plates. Here, we show that dip-stick microfluidic strips can be used without growth indicator dye for rapid and simple CFU ml-1 and PFU ml-1 measurement. We demonstrate for the first time that fluoropolymer microcapillaries combined with digital imaging allow bacteriophage plaques to be counted rapidly in a dip-and-test format. The microfluidic length scales offer a linear 1-dimensional alternative to a 2D solid agar medium surface, with colonies or plaques clearly visible as "dashes" or "gaps". An inexpensive open source darkfield biosensor system using Raspberry Pi imaging permits label-free detection and counting of colonies or plaques within 4-8 hours in a linear, liquid matrix within ∼200 μm inner diameter microcapillaries. We obtained full quantitative agreement between 1D microfluidic colony counting in dipsticks versus conventional 2D solid agar Petri dish plates for S. aureus and E. coli, and for T2 phage and phage K, but up to 6 times faster. Time-lapse darkfield imaging permitted detailed kinetic analysis of colony growth in the microcapillaries, providing new insight into microfluidic microbiology and colony growth, not possible with Petri dishes. Surprisingly, whilst E. coli colonies appeared earlier, subsequent colony expansion was faster along the microcapillaries for S. aureus. This may be explained by the microenvironment offered for 1D colony growth within microcapillaries, linked to a mass balance between nutrient (glucose) diffusion and bacterial growth kinetics. Counting individual colonies in liquid medium was not possible for motile strains that spread rapidly along the capillary, however inclusion of soft agar inhibited spreading, making this new simple dip-and-test counting method applicable to both motile and non-motile bacteria. Label-free dipstick colony and plaque counting has potential for many analytical microbial tasks, and the innovation of 1D colony counting has relevance to other microfluidic microbiology.
Collapse
Affiliation(s)
| | - Sarah H Needs
- Reading School of Pharmacy, University of Reading, Whiteknights, RG6 6AD, UK.
| | - Helen M I Osborn
- Reading School of Pharmacy, University of Reading, Whiteknights, RG6 6AD, UK.
| | - Nuno M Reis
- Department of Chemical Engineering and Centre for Biosensors, Biodevices and Bioelectronics (C3Bio), University of Bath, Claverton Down, Bath BA2 7AY, UK
- Capillary Film Technology Ltd, Daux Road, Billingshurst, West Sussex RH14 9SJ, UK
| | - Alexander D Edwards
- Reading School of Pharmacy, University of Reading, Whiteknights, RG6 6AD, UK.
- Capillary Film Technology Ltd, Daux Road, Billingshurst, West Sussex RH14 9SJ, UK
| |
Collapse
|
9
|
Separovic F, Hofferek V, Duff AP, McConville MJ, Sani MA. In-cell DNP NMR reveals multiple targeting effect of antimicrobial peptide. J Struct Biol X 2022; 6:100074. [PMID: 36147732 PMCID: PMC9486116 DOI: 10.1016/j.yjsbx.2022.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
DNP NMR allowed simultaneous monitoring of lipids, proteins and nucleic acids of E. coli cells. The bacterial stress response against an antimicrobial peptide was measured in situ. The antimicrobial peptide maculatin 1.1 significantly compacted nucleic acids in bacteria. Maculatin 1.1 prevented salt bridges forming between membrane lipids.
Dynamic nuclear polarization NMR spectroscopy was used to investigate the effect of the antimicrobial peptide (AMP) maculatin 1.1 on E. coli cells. The enhanced 15N NMR signals from nucleic acids, proteins and lipids identified a number of unanticipated physiological responses to peptide stress, revealing that membrane-active AMPs can have a multi-target impact on E. coli cells. DNP-enhanced 15N-observed 31P-dephased REDOR NMR allowed monitoring how Mac1 induced DNA condensation and prevented intermolecular salt bridges between the main E. coli lipid phosphatidylethanolamine (PE) molecules. The latter was supported by similar results obtained using E. coli PE lipid systems. Overall, the ability to monitor the action of antimicrobial peptides in situ will provide greater insight into their mode of action.
Collapse
Affiliation(s)
- Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vinzenz Hofferek
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Anthony P. Duff
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW 2232, Australia
| | - Malcom J. McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia
- Corresponding author.
| |
Collapse
|
10
|
Bzura J, Korsak D, Koncki R. Bioanalytical insight into the life of microbial populations: A chemical monitoring of ureolytic bacteria growth. Enzyme Microb Technol 2021; 153:109899. [PMID: 34670184 DOI: 10.1016/j.enzmictec.2021.109899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/03/2022]
Abstract
In this publication an alternative approach to investigations of bacterial growth is proposed. Contrary to the conventional physical methods it is based on enzyme activity detection. The procedure for real-time and on-line monitoring of microbial ureolytic activity (applied as a model experimental biosystem) in the flow analysis format is presented. The developed fully-mechanized bioanalytical flow system is composed of solenoid micropumps and microvalves actuated by Arduino microcontroller. The photometric detection based on Nessler reaction is performed using dedicated flow-through optoelectronic detector made of paired light emitting diodes. The developed bioanalytical system allows discrete assaying of microbial urease in the wide range of activity up to 5.4 U mL-1 with detection limit below 0.44 U mL-1, a high sensitivity in the linear range of response (up to 200 mV U-1 mL and relatively high throughput (9 detection per hour). The proposed differential procedure of measurements (i.e. a difference between peaks register for sample with and without external addition of urea is treated as an analytical signal) allows elimination of interfering effects from substrate and products of biocatalysed reaction as well as other components of medium used for microbial growth. The developed bioanalytical system was successfully applied for the control of growth of urease-positive bacteria strains (Proteus vulgaris, Klebsiella pneumoniae and Paracoccus yeei) including examination of effects from various microbial cultivation conditions like temperature, composition of culture medium and amount of substrate required for induction of bacterial enzymatic activity. The developed bioanalytical flow system can be applied for metabolic activity-based estimation of parameters of lag and log phases of microbial growth as well as for detection of decline phase.
Collapse
Affiliation(s)
- Justyna Bzura
- Faculty of Chemistry, University of Warsaw, L. Pasteura 1, 02-093, Warsaw, Poland
| | - Dorota Korsak
- Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096, Warsaw, Poland
| | - Robert Koncki
- Faculty of Chemistry, University of Warsaw, L. Pasteura 1, 02-093, Warsaw, Poland.
| |
Collapse
|
11
|
Resistance of detached-cells of biofilm formed by Staphylococcus aureus to ultra high pressure homogenization. Food Res Int 2021; 139:109954. [PMID: 33509506 DOI: 10.1016/j.foodres.2020.109954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/07/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022]
Abstract
Staphylococcus aureus is one of the main pathogens contributing to foodborne outbreaks, owing in part to its ability to form biofilms on food-contact surfaces. Cells that can detach from mature biofilms are a source for microbial cross-contamination in liquid food systems. The study was to evaluate and compare the resistance of detached-cells of biofilm formed by S. aureus and planktonic cells to Ultra High Pressure Homogenization (UHPH), a non-thermal technology applied in food processing. The results showed that the survival of both detached-cells and planktonic cells was dependent upon the applied pressure ranging from 30,000 PSI to 40,000 PSI, and cycle numbers with 1 and 3. A significant difference in UHPH resistance was observed at pressures of 35,000 PSI to 40,000 PSI whereby planktonic cell numbers were reduced about 2.0 log CFU/mL compared to a 0.5 log CFU/mL reduction of detached-cells. Cell resistance was further evaluated following UHPH by measuring membrane integrity and potential, as well as observing the cells using scanning electron microscopy (SEM). SEM images revealed more scattered exopolysaccharides in the biofilm after UHPH treatment compared to the control. Additionally, UHPH treatment resulted in planktonic cells having a greater shift to smaller cell size and a wider cell size distribution compared with detached-cells; this indicated a higher resistance of detached-cells to UHPH. This finding suggests that although UHPH has great potential application in food sterilization, the resistance of detached-cells cannot be ignored.
Collapse
|
12
|
Espeso DR, Martínez-García E, de Lorenzo V. Quantitative assessment of morphological traits of planktonic bacterial aggregates. WATER RESEARCH 2021; 188:116468. [PMID: 33038714 DOI: 10.1016/j.watres.2020.116468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/12/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The efficiency of multi-strain planktonic flocs of bacteria as biocatalytic agents in aqueous media depends to a considerable extent on their three-dimensional aggregation patterns. Yet, numerical methodologies for full characterization of such heterogeneous biomass structures are largely missing. In this work we present a descriptive methodology for quantitatively portraying and identifying suspended cell clumps formed by planktonic bacteria. In order to benchmark the procedure, we tackled the behavior of cells of the environmental and biotechnologically robust species Pseudomonas putida whose surfaces were decorated with genetically encoded adhesins. Upon induction, such adhesins promoted specific inter-bacterial attachment leading to controllable and tractable floc formation in suspension. Microscopy and flow cytometry data were then gathered and further analyzed by means of a distinct metric set. Applying these parameters permitted creating comparable clumping footprints for every sample at both single-cell and population level. The hereby described approach provides a rigorous frame for following the assembly and organization of complex microbial communities as planktonic flocs.
Collapse
Affiliation(s)
- David R Espeso
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Esteban Martínez-García
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
13
|
Tonyali B, McDaniel A, Trinetta V, Yucel U. Evaluation of heating effects on the morphology and membrane structure of Escherichia coli using electron paramagnetic resonance spectroscopy. Biophys Chem 2019; 252:106191. [PMID: 31177024 DOI: 10.1016/j.bpc.2019.106191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 01/14/2023]
Abstract
Bacterial cell characteristics, such as size, morphology, and membrane integrity, are affected by environmental conditions. Thermal treatment results in related structural changes, extent of which is determined by the microorganism's survival skills and inactivation kinetics. The objective of this study was to characterize changes in cell structure of Escherichia coli during heating using the combined analysis of dynamic light scattering (DLS), electron paramagnetic resonance (EPR) spectroscopy, and transmission electron microscopy (TEM) techniques. The size of E. coli cells increased from 2.3 μm to 3.0 μm with heating up to 50 °C followed by a shrinkage with further heating up to 70 °C. The morphological changes were verified using transmission electron microscopy. Related changes in membrane integrity was quantified via the mobility of 16-doxylstearic acid (16-DSA) spin probe using EPR spectroscopy. Two order parameters S1 and S2 defined on x- and y-axes, respectively, decreased with increasing temperature indicating loss of membrane integrity. The combined techniques as in this study can be used to further understand factors that play role in survival behavior of microorganisms.
Collapse
Affiliation(s)
- Bade Tonyali
- Food Science Institute, Kansas State University, Manhattan, KS 66506, United States of America
| | - Austin McDaniel
- Food Science Institute, Kansas State University, Manhattan, KS 66506, United States of America
| | - Valentina Trinetta
- Food Science Institute, Kansas State University, Manhattan, KS 66506, United States of America; Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, United States of America
| | - Umut Yucel
- Food Science Institute, Kansas State University, Manhattan, KS 66506, United States of America; Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, United States of America.
| |
Collapse
|
14
|
Knaack D, Idelevich EA, Körber-Irrgang B, Kresken M, Becker K. Evaluation of a novel optical assay for rapid detection of methicillin-resistant Staphylococcus aureus in liquid culture. J Microbiol Methods 2018; 146:68-70. [PMID: 29410104 DOI: 10.1016/j.mimet.2018.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/31/2022]
|