1
|
Castilla-Sedano AJ, Zapana-García J, Valdivia-Del Águila E, Padilla-Huamantinco PG, Guerra DG. Quantification of early biofilm growth in microtiter plates through a novel image analysis software. J Microbiol Methods 2024; 223:106979. [PMID: 38944284 DOI: 10.1016/j.mimet.2024.106979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Given the significant impact of biofilms on human health and material corrosion, research in this field urgently needs more accessible techniques to facilitate the testing of new control agents and general understanding of biofilm biology. Microtiter plates offer a convenient format for standardized evaluations, including high-throughput assays of alternative treatments and molecular modulators. This study introduces a novel Biofilm Analysis Software (BAS) for quantifying biofilms from microtiter plate images. We focused on early biofilm growth stages and compared BAS quantification to common techniques: direct turbidity measurement, intrinsic fluorescence detection linked to pyoverdine production, and standard crystal violet staining which enables image analysis and optical density measurement. We also assessed their sensitivity for detecting subtle growth effects caused by cyclic AMP and gentamicin. Our results show that BAS image analysis is at least as sensitive as the standard method of spectrophotometrically quantifying the crystal violet retained by biofilms. Furthermore, we demonstrated that bacteria adhered after short incubations (from 10 min to 4 h), isolated from planktonic populations by a simple rinse, can be monitored until their growth is detectable by intrinsic fluorescence, BAS analysis, or resolubilized crystal violet. These procedures are widely accessible for many laboratories, including those with limited resources, as they do not require a spectrophotometer or other specialized equipment.
Collapse
Affiliation(s)
- Anderson J Castilla-Sedano
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín De Porres, Lima 15102, Peru
| | - José Zapana-García
- Biomedical Engineering Program PUCP-UPCH, Pontificia Universidad Católica del Perú, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Erika Valdivia-Del Águila
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín De Porres, Lima 15102, Peru
| | - Pierre G Padilla-Huamantinco
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín De Porres, Lima 15102, Peru
| | - Daniel G Guerra
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín De Porres, Lima 15102, Peru.
| |
Collapse
|
2
|
Mhade S, Kaushik KS. Tools of the Trade: Image Analysis Programs for Confocal Laser-Scanning Microscopy Studies of Biofilms and Considerations for Their Use by Experimental Researchers. ACS OMEGA 2023; 8:20163-20177. [PMID: 37332792 PMCID: PMC10268615 DOI: 10.1021/acsomega.2c07255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/11/2023] [Indexed: 06/20/2023]
Abstract
Confocal laser-scanning microscopy (CLSM) is the bedrock of the microscopic visualization of biofilms. Previous applications of CLSM in biofilm studies have largely focused on observations of bacterial or fungal elements of biofilms, often seen as aggregates or mats of cells. However, the field of biofilm research is moving beyond qualitative observations alone, toward the quantitative analysis of the structural and functional features of biofilms, across clinical, environmental, and laboratory conditions. In recent times, several image analysis programs have been developed to extract and quantify biofilm properties from confocal micrographs. These tools not only vary in their scope and relevance to the specific biofilm features under study but also with respect to the user interface, compatibility with operating systems, and raw image requirements. Understanding these considerations is important when selecting tools for quantitative biofilm analysis, including at the initial experimental stages of image acquisition. In this review, we provide an overview of image analysis programs for confocal micrographs of biofilms, with a focus on tool selection and image acquisition parameters that are relevant for experimental researchers to ensure reliability and compatibility with downstream image processing.
Collapse
Affiliation(s)
- Shreeya Mhade
- Department
of Biotechnology, Savitribai Phule Pune
University, Pune 411007, India
| | - Karishma S Kaushik
- Department
of Biotechnology, Savitribai Phule Pune
University, Pune 411007, India
| |
Collapse
|
3
|
Wang F, Wu Y, Du W, Shao Q, Huang W, Fang S, Cheng X, Cao J, Luo J. How does the polyhexamethylene guanidine interact with waste activated sludge and affect the metabolic functions in anaerobic fermentation for volatile fatty acids production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156329. [PMID: 35654193 DOI: 10.1016/j.scitotenv.2022.156329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Antibacterial agents are frequently used to ensure public hygiene. Most of the massively consumed chemicals are discarded and accumulated in waste activated sludge (WAS), which might influence the subsequent anaerobic fermentation process for WAS treatment. This study mainly investigated the impacts of polyhexamethylene guanidine (PHMG, considered as a safe and efficient broad-spectrum antibacterial agent) on the volatile fatty acids (VFAs) production derived from WAS anaerobic fermentation and disclosed the key mechanisms. Results demonstrated that low level of PHMG evidently increased the VFAs accumulation as well as the acetic acid proportion, while the excessive dose posed evident negative effects. Further analysis found that appropriate PHMG synchronously stimulated the solubilization/hydrolysis and acidification processes but inhibited methanogenesis. Mechanistic exploration revealed that PHMG firstly absorbed on WAS due to electric attraction but then interacted with WAS to promote extracellular polymeric substance (EPS) disintegration and organics release (especially proteinaceous matter). Moreover, PHMG affected the microbial community structure and metabolic functions. The low level of PHMG evidently enriched functional VFAs producers (i.e., Desulfobulbus, Macellibacteroides and Sporanaerobacter) and upregulated the critical genes expression responsible for substrates metabolism (particularly the proteins) and VFAs biosynthesis (i.e., aldehyde dehydrogenase (NAD+) (K00128) and molybdopterin oxidoreductase (K00184)). This study provides an in-depth understanding of emerging pollutant impacts on WAS fermentation and provides insightful guidance on WAS disposal.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wei Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Qianqi Shao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, China.
| |
Collapse
|
4
|
Pettygrove BA, Smith HJ, Pallister KB, Voyich JM, Stewart PS, Parker AE. Experimental Designs to Study the Aggregation and Colonization of Biofilms by Video Microscopy With Statistical Confidence. Front Microbiol 2022; 12:785182. [PMID: 35095798 PMCID: PMC8793059 DOI: 10.3389/fmicb.2021.785182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/06/2021] [Indexed: 01/14/2023] Open
Abstract
The goal of this study was to quantify the variability of confocal laser scanning microscopy (CLSM) time-lapse images of early colonizing biofilms to aid in the design of future imaging experiments. To accomplish this a large imaging dataset consisting of 16 independent CLSM microscopy experiments was leveraged. These experiments were designed to study interactions between human neutrophils and single cells or aggregates of Staphylococcus aureus (S. aureus) during the initial stages of biofilm formation. Results suggest that in untreated control experiments, variability differed substantially between growth phases (i.e., lag or exponential). When studying the effect of an antimicrobial treatment (in this case, neutrophil challenge), regardless of the inoculation level or of growth phase, variability changed as a frown-shaped function of treatment efficacy (i.e., the reduction in biofilm surface coverage). These findings were used to predict the best experimental designs for future imaging studies of early biofilms by considering differing (i) numbers of independent experiments; (ii) numbers of fields of view (FOV) per experiment; and (iii) frame capture rates per hour. A spreadsheet capable of assessing any user-specified design is included that requires the expected mean log reduction and variance components from user-generated experimental results. The methodology outlined in this study can assist researchers in designing their CLSM studies of antimicrobial treatments with a high level of statistical confidence.
Collapse
Affiliation(s)
- Brian A. Pettygrove
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Heidi J. Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Kyler B. Pallister
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Jovanka M. Voyich
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Philip S. Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States
| | - Albert E. Parker
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, United States
- *Correspondence: Albert E. Parker
| |
Collapse
|
5
|
Shao Y, Zhou Z, Jiang J, Jiang LM, Huang J, Zuo Y, Ren Y, Zhao X. Membrane fouling in anoxic/oxic membrane reactors coupled with carrier-enhanced anaerobic side-stream reactor: Effects of anaerobic hydraulic retention time and mechanism insights. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Nunes J, Farias I, Vieira C, Ribeiro T, Sampaio F, Menezes V. Antimicrobial activity and toxicity of glass ionomer cement containing an essential oil. Braz J Med Biol Res 2020; 53:e9468. [PMID: 33146285 PMCID: PMC7643930 DOI: 10.1590/1414-431x20209468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 08/28/2020] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to evaluate the antimicrobial activity and toxicity of glass ionomer cement (GIC) modified with 5-methyl-2-(1-methylethyl)phenol (thymol) against Streptococcus mutans in silico and in vitro. The antimicrobial activity of thymol on GIC modified with concentrations of 2% (GIC-2) and 4% (GIC-4) was evaluated in a model of planktonic cell biofilm using agar diffusion test, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), dynamic biofilm (continuous flow cell parallel), and bacterial kinetics. Conventional GIC (GIC-0) was used as a control. Thymol toxicity was evaluated in Artemia salina and in silico using Osiris® software. Differences between groups were estimated by analysis of variance, followed by Tukey post hoc test, with a 5% significance level. The results of the agar diffusion test between groups were not significantly different (P≥0.05). Thymol had potential bacteriostatic and bactericidal activity against Streptococcus mutans with respect to planktonic growth, with MIC of 100 µg/mL and MBC of 400 µg/mL. The groups GIC-0, GIC-2, and GIC-4 reduced the biofilm by approximately 10, 85, and 95%, respectively. Bacterial kinetics showed efficiency of the modified GICs for up to 96 h. GIC with thymol was effective against S. mutans, with significant inhibition of the biofilms. Analyses in silico and using Artemia salina resulted in no relevant toxicity, suggesting potential for use in humans. GIC-2 was effective against S. mutans biofilm, with decreased cell viability.
Collapse
Affiliation(s)
- J.M.F.F. Nunes
- Laboratório de Biologia Bucal, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - I.A.P. Farias
- Laboratório de Biologia Bucal, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - C.A. Vieira
- Laboratório de Biologia Bucal, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - T.M. Ribeiro
- Laboratório de Biologia Bucal, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - F.C. Sampaio
- Laboratório de Biologia Bucal, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - V.A. Menezes
- Departamento de Odontologia, Faculdade de Odontologia, Universidade de Pernambuco, Camaragibe, PE, Brasil
| |
Collapse
|
7
|
Wickramasinghe NN, Hlaing MM, Ravensdale JT, Coorey R, Chandry PS, Dykes GA. Characterization of the biofilm matrix composition of psychrotrophic, meat spoilage pseudomonads. Sci Rep 2020; 10:16457. [PMID: 33020559 PMCID: PMC7536239 DOI: 10.1038/s41598-020-73612-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/11/2020] [Indexed: 02/02/2023] Open
Abstract
Psychrotrophic Pseudomonas species are the key spoilage bacteria of aerobically stored chilled meat. These organisms readily form biofilms on meat under refrigerated conditions leading to consumer rejection and associated economic losses. Limited information is available on the matrix composition of the biofilms formed by these bacteria. We quantified and characterized the main components of the matrix of mono-species biofilms of selected Pseudomonas fragi and Pseudomonas lundensis strains using chemical analysis and Raman spectroscopy. The biofilms were grown at 10 °C and 25 °C on nitro-cellulose membranes placed on surface sterilized beef cuts. Extra-cellular polymeric substances of the matrix were extracted in soluble and bound forms and were chemically assessed for total carbohydrates, proteins and extra-cellular DNA. Both Pseudomonas species showed a significant increase in total carbohydrates and total proteins when grown at 10 °C as compared to 25 °C. Extra-cellular DNA did not show a strong correlation with growth temperature. Raman spectra were obtained from planktonic bacteria and membrane grown biofilms at 10 °C and 25 °C. Higher levels of guanine were detected in planktonic cells as compared to biofilm cells. This study suggests that psychrotrophic Pseudomonas species may respond to cold stress by increasing extra-cellular polymer secretions.
Collapse
Affiliation(s)
- Nirmani N Wickramasinghe
- School of Public Health, Curtin University, Bentley, WA, 6102, Australia
- CSIRO, Agriculture and Food, Werribee, VIC, 3030, Australia
| | - Mya M Hlaing
- CSIRO, Agriculture and Food, Werribee, VIC, 3030, Australia
| | | | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | | | - Gary A Dykes
- Graduate Research School, Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|
8
|
Wickramasinghe NN, Ravensdale JT, Coorey R, Dykes GA, Scott Chandry P. In situ characterisation of biofilms formed by psychrotrophic meat spoilage pseudomonads. BIOFOULING 2019; 35:840-855. [PMID: 31558055 DOI: 10.1080/08927014.2019.1669021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Psychrotrophic Pseudomonas species form biofilms on meat during refrigerated and temperature abuse conditions. Biofilm growth leads to slime formation on meat which is a key organoleptic degradation characteristic. Limited research has been undertaken characterising biofilms grown on meat during chilled aerobic storage. In this work, biofilms formed by two key meat spoilage organisms, Pseudomonas fragi and Pseudomonas lundensis were studied in situ using five strains from each species. Biofilm structures were studied using confocal microscope images, cellular arrangement, cell counts and biomass quantifications. This work demonstrated that highly dense, compact biofilms are a characteristic of P. fragi strains. P. lundensis formed biofilms with loosely arranged cells. The cells in P. fragi biofilm appear to be vertically oriented whereas this characteristic was absent in P. lundensis biofilms formed under identical conditions. Despite the continued access to nutrients, biofilms formed on meat by proteolytic Pseudomonas species dispersed after a population maximum was reached.
Collapse
Affiliation(s)
- Nirmani N Wickramasinghe
- School of Public Health, Curtin University, Bentley, Western Australia, Australia
- Agriculture and Food, CSIRO, Werribee, Victoria, Australia
| | - Joshua T Ravensdale
- School of Public Health, Curtin University, Bentley, Western Australia, Australia
| | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Gary A Dykes
- School of Public Health, Curtin University, Bentley, Western Australia, Australia
| | | |
Collapse
|
9
|
Structure and Fluorescence Intensity Measurements in Biofilms. Methods Mol Biol 2019. [PMID: 31432478 DOI: 10.1007/978-1-4939-9686-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
Confocal laser scanning microscopy (CLSM) is one of the most relevant technologies for studying biofilms in situ. Several tools have been developed to investigate and quantify the architecture of biofilms. However, an approach to accurately quantify the intensity of a fluorescent signal over biofilm depth is still lacking. Here we present a tool developed in the ImageJ open-source software that can be used to extract both structure and fluorescence intensity from CLSM data: BIAM (Biofilm Intensity and Architecture Measurement). This is of utmost significance when studying the fundamental mechanisms of biofilm development, differentiation, and in situ gene expression or when aiming to understand the effect of external molecules on biofilm phenotypes.
Collapse
|
10
|
Wickramasinghe NN, Ravensdale J, Coorey R, Chandry SP, Dykes GA. The Predominance of Psychrotrophic Pseudomonads on Aerobically Stored Chilled Red Meat. Compr Rev Food Sci Food Saf 2019; 18:1622-1635. [DOI: 10.1111/1541-4337.12483] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Nirmani N. Wickramasinghe
- School of Public HealthCurtin Univ. Perth Western Australia 6845 Australia
- Dept. of Agriculture and FoodCSIRO Werribee Victoria 3030 Australia
| | - Joshua Ravensdale
- School of Public HealthCurtin Univ. Perth Western Australia 6845 Australia
| | - Ranil Coorey
- School of Molecular an Health SciencesCurtin Univ. Perth Western Australia 6845 Australia
| | - Scott P. Chandry
- Dept. of Agriculture and FoodCSIRO Werribee Victoria 3030 Australia
| | - Gary A. Dykes
- School of Public HealthCurtin Univ. Perth Western Australia 6845 Australia
| |
Collapse
|