1
|
Hu C, Liu Y, Teng M, Jiao K, Zhen J, Wu M, Li Z. Resveratrol inhibits the proliferation of estrogen receptor-positive breast cancer cells by suppressing EZH2 through the modulation of ERK1/2 signaling. Cell Biol Toxicol 2019; 35:445-456. [PMID: 30941654 DOI: 10.1007/s10565-019-09471-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/22/2019] [Indexed: 02/06/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is frequently overexpressed in breast cancer and plays an important role in maintaining the cell proliferative capacity. However, the mechanisms underlying the transcriptional regulation of EZH2 in estrogen receptor (ER)-positive breast cancer cells remain unclear. The antitumor effects of resveratrol have been reported. However, whether EZH2 was involved in these effects needs further exploration. Here, we showed that EZH2 is required for estrogen-induced cell proliferation in ER-positive breast cancer. Exposure to 17β-estradiol (E2) upregulated EZH2 via ERα signaling, and this effect was blocked by U0126, a MEK inhibiter. Resveratrol inhibited the proliferation and colony formation in ER-positive breast cancer cells and downregulated EZH2 through inhibition of phospho-ERK1/2. These findings indicated that ERK1/2 and ER signaling-mediated EZH2 upregulation is crucial for the proliferation of ER-positive breast cancer cells. The suppression of EZH2 expression by ERK1/2 dephosphorylation is important for the antiproliferative activities of resveratrol against ER-positive breast cancer cells.
Collapse
Affiliation(s)
- Chunyan Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Yun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Mengying Teng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Kailin Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Jing Zhen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Maoxuan Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Zhong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.
| |
Collapse
|
2
|
Škiljić D, Petersen A, Karlsson JO, Behndig A, Nilsson S, Zetterberg M. Effects of 17β-Estradiol on Activity, Gene and Protein Expression of Superoxide Dismutases in Primary Cultured Human Lens Epithelial Cells. Curr Eye Res 2018; 43:639-646. [PMID: 29432033 DOI: 10.1080/02713683.2018.1437923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Protective effects of estradiol against H2O2-induced oxidative stress have been demonstrated in lens epithelial cells. The purpose of this study was to investigate the effects of 17β-estradiol (E2) on the different superoxide dismutase (SOD) isoenzymes, SOD-1, SOD-2, and SOD-3, as well as estrogen receptors (ERs), ERα and ERβ, in primary cultured human lens epithelial cells (HLECs). MATERIALS AND METHODS HLECs were exposed to 0.1 µM or 1 µM E2 for 1.5 h and 24 h after which the effects were studied. Protein expression and immunolocalization of SOD-1, SOD-2, ERα, and ERβ were studied with Western blot and immunocytochemistry. Total SOD activity was measured, and gene expression analyses were performed for SOD1, SOD2, and SOD3. RESULTS Increased SOD activity was seen after 1.5 h exposure to both 0.1 µM and 1 µM E2. There were no significant changes in protein or gene expression of the different SODs. Immunolabeling of SOD-1 was evident in the cytosol and nucleus; whereas, SOD-2 was localized in the mitochondria. Both ERα and ERβ were immunolocalized to the nucleus, and mitochondrial localization of ERβ was evident by colocalization with MitoTracker. Both ERα and ERβ showed altered protein expression levels after exposure to E2. CONCLUSIONS The observed increase in SOD activity after exposure to E2 without accompanying increase in gene or protein expression supports a role for E2 in protection against oxidative stress mediated through non-genomic mechanisms.
Collapse
Affiliation(s)
- Dragana Škiljić
- a Department of Clinical Neuroscience/Ophthalmology, Institute of Neuroscience and Physiology , The Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden.,b Department of Ophthalmology , Sahlgrenska University Hospital , Mölndal , Sweden
| | - Anne Petersen
- a Department of Clinical Neuroscience/Ophthalmology, Institute of Neuroscience and Physiology , The Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| | - Jan-Olof Karlsson
- c Department of Medical Chemistry and Cell Biology , Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| | - Anders Behndig
- d Department of Clinical Sciences/Ophthalmology , Umeå University , Umeå , Sweden
| | - Staffan Nilsson
- e Department of Mathematical Statistics, Institute of Mathematical Sciences , Chalmers University of Technology , Gothenburg , Sweden
| | - Madeleine Zetterberg
- a Department of Clinical Neuroscience/Ophthalmology, Institute of Neuroscience and Physiology , The Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden.,b Department of Ophthalmology , Sahlgrenska University Hospital , Mölndal , Sweden
| |
Collapse
|
3
|
Abstract
OBJECTIVE No studies investigated the effects of age at first childbirth on cataract formation. This study was performed to determine the relationships of age at first childbirth to age-related cataract in postmenopausal women. METHODS Study population included 7,021 postmenopausal women in the Korea National Health and Nutrition Examination Survey, 2008 to 2012. Participants were subdivided in quartiles according to the age at first childbirth as follows: 13 to 21, 22 to 23, 24 to 25, and 26 to 44 years. We used odds ratios (ORs) and 95% confidence intervals (CIs) to address the relationships between age at first childbirth and age-related cataract with adjustments for confounders. RESULTS Mean participants' age and age at first childbirth were 64.4 and 23.6 years, respectively. The prevalence of any subtype of age-related cataract was 64.9%. Nuclear cataract prevalence was significantly higher in postmenopausal women with later age at first childbirth (24-25 and 26-44 years) compared with those with the earliest age at first childbirth (13-21 years): ORs (95% CIs) were 1.23 (1.05-1.45) and 1.24 (1.05-1.46), respectively. A significant linear trend across quintile was observed (P = 0.006). Age at first childbirth linearly 4% (OR 1.04, 95% CI 1.01-1.06) and 2% (OR 1.02, 95% CI 1.00-1.04) increased risk for nuclear and cortical cataract formation, respectively. The population-attributable fraction of nuclear cataract caused by the first childbirth at 24 years or later was 4.9% (95% CI 1.20%-8.59%, P = 0.009). CONCLUSIONS Later age of first childbirth was independently associated with higher risks of nuclear and cortical cataract in postmenopausal women. Further prospective studies are needed to elucidate the role of age at first childbirth in developing age-related cataract.
Collapse
|
4
|
Nagai N, Ito Y, Shibata T, Kubo E, Sasaki H. A positive feedback loop between nitric oxide and amyloid β (1-42) accelerates mitochondrial damage in human lens epithelial cells. Toxicology 2017; 381:19-30. [PMID: 28242320 DOI: 10.1016/j.tox.2017.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 02/03/2023]
Abstract
We have reported that excessive nitric oxide (NO), like other reactive oxygen species (ROS), causes a decrease in cytochrome c oxidase (CCO) activity and ATP levels (mitochondrial damage) resulting in lens opacity. In addition, previous reports have shown that oxidative stress caused by ROS enhances amyloid β (Aβ) production in mammalian lenses, and that Aβ1-42 stimulates inducible nitric oxide synthase (iNOS) promoter activity. Based on these reports, we investigated the relationship between NO and Aβ1-42 production in human lens epithelial (HLE) cells. iNOS was induced by the co-incubation of HLE cells with 1000 IU interferon-γ (IFN-γ) and 100ng/ml lipopolysaccharide (LPS) for 48h. This led to enhanced NO release, an increase in the gene expression levels of proteins related to Aβ production, and the cellular accumulation of Aβ1-42. Moreover, both aminoguanidine (AG, a selective inhibitor of iNOS) and diethyldithiocarbamate (DDC, a nuclear factor-kappa B (NFκB) inhibitor) attenuated these changes in IFN-γ and LPS stimulated HLE cells. Based on our finding that Aβ1-42 accumulation is induced by co-incubation of HLE cells with both IFN-γ and LPS, we prepared a HLE cell model with Aβ1-42 accumulation (Aβ-accumulated-HLE cell model) by pre-stimulating cells with IFN-γ and LPS for 48h. Aβ1-42 accumulation caused NO production via iNOS, resulting in an enhancement in the mRNA levels for enzymes necessary for the proteolysis of amyloid precursor protein (APP) to Aβ in HLE cells. In addition, excessive NO produced in response to Aβ1-42 accumulation led to a decrease in CCO activity and ATP levels. Taken together, we hypothesize that excessive NO production in the lens epithelium enhances Aβ1-42 production, and that this enhancement accelerates NO release. The enhancement in NO production in the lens epithelium based on positive feedback (NO-Aβ positive feedback loop, a vicious cycle) may promote the onset of cataracts (lens opacification) via the decrease in CCO activity and ATP levels. These findings provide significant information that can be used to design further studies aimed at developing anti-cataract drugs.
Collapse
Affiliation(s)
- Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Yoshimasa Ito
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Teppei Shibata
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku Uchinada-machi, Kahoku-gun, Ishikawa, 920-0293, Japan
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku Uchinada-machi, Kahoku-gun, Ishikawa, 920-0293, Japan
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku Uchinada-machi, Kahoku-gun, Ishikawa, 920-0293, Japan
| |
Collapse
|
5
|
Huang C, Yuan P, Wu J, Huang J. Estrogen regulates excitatory amino acid carrier 1 (EAAC1) expression through sphingosine kinase 1 (SphK1) transacting FGFR-mediated ERK signaling in rat C6 astroglial cells. Neuroscience 2016; 319:9-22. [PMID: 26804240 DOI: 10.1016/j.neuroscience.2016.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 12/28/2022]
Abstract
Excitatory amino acid carrier 1 (EAAC1) is one important subtype of the excitatory amino acid transporters (EAATs), and its absence can increase the vulnerability to oxidative stress in neural tissue. Enhanced expression of EAAC1 can provide neuroprotection in multiple disorders, including ischemia and multiple sclerosis. However, the mechanism regulating EAAC1 expression is not fully understood. Using rat C6 astroglial cells, which specifically express EAAC1, we found that 17β-estradiol (E2) and (±)-1-[(3aR(∗),4S(∗),9bS(∗))-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone (G1), an agonist of the G-protein-coupled estrogen receptor (GPR30), strongly increased EAAC1 protein levels and protected cells from hydrogen peroxide (H2O2) toxicity. We further found that E2/G1 activated sphingosine kinase 1 (SphK1) via GPR30, resulting in the transcription of fibroblast growth factor 2 (FGF2), which stimulated its receptor (FGFR) and led to the phosphorylation of FGFR substrate 2α (FRS2α). This triggered downstream ERK1/2 signaling for the expression of EAAC1. Both the knockdown of FGF2 by siRNA and the pharmacological suppression of the FGFR-ERK cascade abolished the E2/G1 effect on EAAC1 expression. Overall, our work characterizes a signaling pathway by which E2 transactivates FGFR-ERK to induce EAAC1 expression in an FGF2-dependent manner. This occurs through SphK1 activation via GPR30 and leads to a resistance to H2O2 toxicity. This signal transduction pathway may provide novel insights into our understanding of the neuroprotective effects of E2 and may reveal new therapeutic targets or drugs for regulating the oxidative toxicity effects of various neurological diseases.
Collapse
Affiliation(s)
- C Huang
- College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - P Yuan
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - J Wu
- College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - J Huang
- College of Life Science, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
6
|
Wijayagunawardane MPB, Hambruch N, Haeger JD, Pfarrer C. Effect of epidermal growth factor (EGF) on the phosphorylation of mitogen-activated protein kinase (MAPK) in the bovine oviduct in vitro: Alteration by heat stress. J Reprod Dev 2015; 61:383-9. [PMID: 26050642 PMCID: PMC4623143 DOI: 10.1262/jrd.2014-061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epidermal growth factor (EGF) has been shown to be involved in control of the oviductal microenvironment. To elucidate the potential mechanisms responsible for the detrimental effect of heat stress and to identify the relation with the endocrine status, the effects of EGF on the level of phosphorylated mitogen-activated-protein kinase (MAPK) and proliferation of bovine oviductal epithelial cells (OECs) exposed to different cyclic ovarian steroidal environments (luteal phase (LP), follicular phase (FP) and postovulatory phase (PO)) and temperatures (mild heat stress (40 C) and severe heat stress (43 C)) were investigated. Western blot was performed to evaluate phosphorylated MAPK, while proliferation was analyzed by MTT assay. Stimulation of OECs with EGF alone or with EGF in the PO and FP environments significantly increased the amount of phosphorylated MAPK, with MAPK 44 phosphorylation being highest during exposure to PO conditions. These effects were not observed in the
LP. Heat treatment completely blocked effects of EGF on phosphorylated MAPK. Additionally, severe heat stress led to a significantly lower basal level of phosphorylated MAPK. PD98059 (MAPK inhibitor) completely abolished EGF-stimulated MAPK phosphorylation and OECs proliferation. Overall the results indicate that EGF has the potential to increase the amount of phosphorylated MAPK in OECs and therefore could be involved in regulation of the bovine oviductal microenvironment. However, these regulatory mechanisms may be compromised in the presence of heat stress (high ambient temperature), leading to low fertility rates and impaired embryo survival.
Collapse
|
7
|
Abstract
There is evidence from epidemiologic data that cataract is more common in women than men. This is not solely due to a higher rate of cataract extraction in women, as is the case in the western world, but several population-based studies show that females have a higher prevalence of lens opacities, especially cortical. There is no firm evidence that lifestyle-related factors are the cause of this gender discrepancy. Focus has therefore been directed towards the role of estrogen in cataract formation. Although data on endogenous and exogenous estrogen involvement in cataractogenesis are conflicting, some studies have indicated that hormone therapy may decrease the risk of cataract and thus be protective. It has been hypothesized that the decrease in estrogen at menopause cause increased risk of cataract in women, i.e. not strictly the concentration of estrogen, but more the withdrawal effect. Estrogens are known to exert several anti-aging effects that may explain the longer lifespan in women, including metabolically beneficial effects, neuroprotection, preservation of telomeres and anti-oxidative properties. Since oxidative stress is considered important in cataractogenesis, studies have investigated the effects of estrogens on lens epithelial cells in culture or in animal models. Several investigators have found protection by physiological concentrations of 17β-estradiol against oxidative stress induced by H2O2 in cultured lens epithelial cells. Although both main types of estrogen receptors, ERα and ERβ, have been demonstrated in lens epithelium, most studies so far indicate that the estrogen-mediated protection in the lens is exerted through non-genomic, i.e. receptor-independent mechanisms, possibly through phosphorylation of extracellular signal-regulated kinase (ERK1/ERK2), a member of the mitogen-activated protein kinase (MAPK)-signaling pathway. Further studies are needed, both epidemiologic as to the role of hormone therapies, and laboratory studies regarding molecular estrogen-mediated mechanisms, in order to comprehend the role of estrogens on cataract formation.
Collapse
Affiliation(s)
- Madeleine Zetterberg
- Department of Clinical Neuroscience and Rehabilitation/Ophthalmology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| | | |
Collapse
|
8
|
Feng CY, Huang XR, Qi MX, Tang SW, Chen S, Hu YH, Ke FJ, Wang X. Mitochondrial proteomic analysis of ecdysterone protection against oxidative damage in human lens epithelial cells. Int J Ophthalmol 2014; 7:38-43. [PMID: 24634861 DOI: 10.3980/j.issn.2222-3959.2014.01.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 10/12/2012] [Indexed: 01/28/2023] Open
Abstract
AIM To investigate the protective effects of the natural medicinal monomer ecdysterone (ECR) with estrogenic activity against oxidative damage in human lens epithelial cells B3 (HLE-B3) caused by hydrogen peroxide 21(H2O2) and to pursue the possible mitochondrial proteomic regularity of the protective effects. METHODS HLE-B3 cells were treated with H2O2 (300µmol/L), β-estuarial (E2; 10(-8)mol/L) and H2O2, ECR (10(-6)mol/L) and H2O2, or left untreated. Altered expression of all mitochondrial proteins was analyzed by protein array and surface-enhanced laser desorption ionization time of flight mass spectrometry (SELDI-TOF-MS). The mass/charge (M/Z) ratios of each peak were tested by the Kruskal-Wallis rank sum test, and the protein peak value of the M/Z ratio for each treatment by pair comparison was analyzed with the Nemenyi test. RESULTS H2O2 up-regulated expression of two protein spots (with M/Z of 6 532 and 6 809). When E2 mitigated the oxidative damage, the expression of one protein spot (M/Z 6 532) was down-regulated. In contrast, ECR down-regulated both of protein spots (M/Z 6 532 and 6 809). CONCLUSION ECR could effectively inhibite H2O2 induced oxidative damage in HLE-B3 cells. The protein spot at M/Z of 6 532 might be the target spot of ECR against oxidative damage induced by H2O2.
Collapse
Affiliation(s)
- Chun-Yan Feng
- Department of Ophthalmology, Second Affiliated Peoples Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350003, Fujian Province, China
| | - Xiu-Rong Huang
- Research Center of Pathophysiology, Fujian University of Traditional Chinese Medicine, Fuzhou 350003, Fujian Province, China
| | - Ming-Xin Qi
- Department of Ophthalmology, Second Affiliated Peoples Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350003, Fujian Province, China
| | - Song-Wen Tang
- Research Center of Pathophysiology, Fujian University of Traditional Chinese Medicine, Fuzhou 350003, Fujian Province, China
| | - Sheng Chen
- Department of Ophthalmology, Second Affiliated Peoples Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350003, Fujian Province, China
| | - Yan-Hong Hu
- Department of Ophthalmology, Second Affiliated Peoples Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350003, Fujian Province, China
| | - Fa-Jie Ke
- Department of Ophthalmology, Second Affiliated Peoples Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350003, Fujian Province, China
| | - Xin Wang
- Department of Laboratory, Fujian University of Traditional Chinese Medicine subsidiary Rehabilitation Hospital, Fuzhou 350003, Fujian Province, China
| |
Collapse
|
9
|
Estrogen mediated protection of cytoskeleton against oxidative stress. Indian J Med Res 2013; 137:117-24. [PMID: 23481060 PMCID: PMC3657873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND & OBJECTIVES Cytoskeletal proteins are deregulated during oxidative stress and cataract formation. However, estrogen which protects against cataract formation and harmful effects of oxidative stress has not been tested on the cytoskeleton of lens epithelial cells (LECs). The current study was undertaken to assess if the protection rendered to LECs by estrogen was mediated by preserving the cytoskeletal proteins. METHODS Oxidative stress was induced by 50 μM of H 2 O 2 in cultured goat LECs (gLECs) and effect of 1 μM 17β-estradiol (E 2 ) was tested. After treatment, morphological analysis of cells was carried out using haematoxylin-eosin staining and cell density was also quantified. Cell viability was determined using Hoechst (Ho), YO-Pro (YP) and propidium iodide (PI). F-actin and vimentin were localized using phalloidin and anti-vimentin antibody, respectively, and viewed under fluorescence microscopy. Vimentin was further analysed at protein level by Western blotting. RESULTS H 2 O 2 led to increased condensation of nucleus, cell death and apoptosis but these were prevented with pre- and co-treatment of E 2 with increase in cell viability (P<0.001). E 2 also prevented H 2 O 2 mediated depolymerization of cytoskeleton but was not able to reverse the changes when given after induction of oxidative stress. INTERPRETATION & CONCLUSIONS Our findings showed that E 2 helped in preventing deteriorating effect of H 2 O 2 , inhibited cell death, apoptosis and depolymerisation of cytoskeletal proteins in LECs. However, the exact mechanism by which estrogen renders this protection to cytoskeleton of lens epithelial cells remains to be determined.
Collapse
|
10
|
Mitochondrial proteomic analysis of isopsoralen protection against oxidative damage in human lens epithelial cells. Chin J Integr Med 2012; 18:529-33. [PMID: 22772916 DOI: 10.1007/s11655-012-1144-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To investigate the protective effects of the natural medicinal monomer isopsoralen (ISR) with estrogenic activity against oxidative damage in human lens epithelial cells B3 (HLE-B3) caused by hydrogen peroxide (H(2)O(2)) and to pursue the possible mitochondrial proteomic regularity of the protective effects. METHODS HLE-B3 cells were treated with H(2)O(2) (300 μ mol/L), β-estradiol (E(2): 10(-8) mol/L) and H(2)O(2), ISR (10(-5) mol/L) and H(2)O(2), or left untreated. Altered expressions of all mitochondrial proteins were analyzed by protein array and surfaceenhanced laser desorption ionization time of flight mass spectrometry (SELDI-TOF-MS). The mass/charge (m/z) ratios of each peak were tested by the Kruskal-Wallis rank sum test, and the protein peak value of the m/z ratio for each treatment by pair comparison was analyzed with the Nemenyi test. RESULTS H(2)O(2) up-regulated the expressions of two protein spots (with m/z of 6532 and 6809). E(2) mitigated the oxidative damage, and the expression of one protein spot (m/z 6532) was down-regulated. In contrast, ISR down-regulated both of protein spots (m/z 6532 and 6809). CONCLUSIONS ISR could effectively inhibit H(2)O(2)-induced oxidative damage in HLE-B3 cells. The protein spot at m/z of 6532 might be the target spot of ISR against oxidative damage induced by H(2)O(2).
Collapse
|
11
|
Quantitative assessment of DNA damage directly in lens epithelial cells from senile cataract patients. Mol Vis 2011; 17:1-6. [PMID: 21224996 PMCID: PMC3017798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 12/31/2010] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Most of the studies regarding DNA damage in lens epithelial cells (LECs) of cataract patients have been done on lymphocyte or human LECs cultures. Studies of DNA damage directly in LECs of cataract patients are scanty and, to our knowledge, neither photographic evidence nor has a quantitative assessment of DNA damage have been put forward. In our study, we assessed and quantified DNA damage directly in the LECs of senile cataract patients, right after cataract surgery. METHODS LECs were taken from different morphologic types of senile cataract patients after surgery and DNA damage was immediately assessed by comet assay. Quantitative assessment of DNA damage was conducted using CometScore ™ software. RESULTS There were no prominent comets in most of the LECs of the control subjects, but comets were found in cataractous LECs. DNA fragments in the tail of the comet gave smearing (not banded), which was indicative of chemical damage (i.e., not site specific). DNA damage in the LECs of cataract patients was highly significant (p<0.001). DNA damage in cortical cataracts was significant (p<0.01) when compared to that of nuclear or posterior subcapsular cataracts, but the DNA damage between nuclear and posterior subcapsular cataracts was not significant. Furthermore, we found disrupted nuclear membranes in some of the nuclei in LECs of patients, but not in the control subjects. CONCLUSIONS In senile cataract patients, LECs DNA was randomly damaged and this type of damage was possible by reactive oxygen species (ROS). The damage was found maximally in the cortical type of cataracts. Oxidative DNA damage of the LECs may be one of the etiology of senile cataractogenesis.
Collapse
|
12
|
Zhang Z, Wang L, Mei M, Zhu Y, Du X, Lee C, Park I, Zhang J, Shi J. Both nongenomic and genomic effects are involved in estradiol's enhancing the phenotype of smooth muscle cells in cultured prostate stromal cells. Prostate 2010; 70:317-32. [PMID: 19862801 DOI: 10.1002/pros.21066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Stromal smooth muscle cells (SMCs) play an important role in the pathogenesis and clinical symptom of benign prostatic hyperplasia. We had reported that estrogen enhances the phenotype of SMC in cultured prostate stromal cells (PRSCs). Here we further investigate the mechanism by which estrogen affects the differentiation of PRSCs. METHODS Primary cultured PRSCs were stimulated with E2 or BSA-E2. The mRNA level of SMC-specific genes, smoothelin, and SM-MHC were measured by qRT-PCR. The SM-MHC protein was measured by Western blot. The mRNA and protein levels of TGF-beta1 were measured by qRT-PCR and ELISA. The MAPK inhibitor PD98059, the estrogen receptor antagonist ICI182,780 and neutralizing antibody to TGF-beta1 were used to reveal the mechanism of estrogen effect. RESULTS E2 and BSA-E2 significantly up-regulate the expression of SMC-specific genes in PRSCs. Both forms of estrogen could increase the expression of TGF-beta1, which can be blocked by pre-treating with PD98059. Moreover, PD98059 and TGF-beta1 neutralizing antibody could abrogate the effect of BSA-E2 on cell differentiation. However, they could only inhibit part of E2-induced SMC phenotype enhancement. ICI182,780 could partially suppress the pro-differentiation effect of E2 but had no influence on the effect of BSA-E2. Combined treatment with ICI182,780 and PD98059 can completely abrogate the effect of E2. CONCLUSIONS Estrogen could promote the expression of TGF-beta1 in PRSCs through nongenomic activation of MAPK pathway, and in turn enhance the SMC phenotype. Besides for this nongenomic effect, estrogen can also enhance the SMC phenotype through classical genomic action.
Collapse
Affiliation(s)
- Zhisong Zhang
- Bioactive Materials Key Lab of Ministry of Education, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen JQ, Cammarata PR, Baines CP, Yager JD. Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:1540-70. [PMID: 19559056 PMCID: PMC2744640 DOI: 10.1016/j.bbamcr.2009.06.001] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 12/21/2022]
Abstract
There has been increasing evidence pointing to the mitochondrial respiratory chain (MRC) as a novel and important target for the actions of 17beta-estradiol (E(2)) and estrogen receptors (ER) in a number of cell types and tissues that have high demands for mitochondrial energy metabolism. This novel E(2)-mediated mitochondrial pathway involves the cooperation of both nuclear and mitochondrial ERalpha and ERbeta and their co-activators on the coordinate regulation of both nuclear DNA- and mitochondrial DNA-encoded genes for MRC proteins. In this paper, we have: 1) comprehensively reviewed studies that reveal a novel role of estrogens and ERs in the regulation of MRC biogenesis; 2) discussed their physiological, pathological and pharmacological implications in the control of cell proliferation and apoptosis in relation to estrogen-mediated carcinogenesis, anti-cancer drug resistance in human breast cancer cells, neuroprotection for Alzheimer's disease and Parkinson's disease in brain, cardiovascular protection in human heart and their beneficial effects in lens physiology related to cataract in the eye; and 3) pointed out new research directions to address the key questions in this important and newly emerging area. We also suggest a novel conceptual approach that will contribute to innovative regimens for the prevention or treatment of a wide variety of medical complications based on E(2)/ER-mediated MRC biogenesis pathway.
Collapse
MESH Headings
- Alzheimer Disease/drug therapy
- Alzheimer Disease/etiology
- Animals
- Apoptosis/genetics
- Apoptosis/physiology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/etiology
- Cardiovascular Diseases/prevention & control
- Cell Proliferation
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Drug Resistance, Neoplasm
- Electron Transport/drug effects
- Electron Transport/genetics
- Electron Transport/physiology
- Estradiol/pharmacology
- Estradiol/physiology
- Estrogens/physiology
- Female
- Genome, Mitochondrial
- Humans
- Lens, Crystalline/drug effects
- Lens, Crystalline/physiology
- Male
- Mitochondria/drug effects
- Mitochondria/genetics
- Mitochondria/physiology
- Mitochondrial Proteins/physiology
- Mitochondrial Proton-Translocating ATPases/physiology
- Models, Biological
- Neoplasms, Hormone-Dependent/drug therapy
- Neoplasms, Hormone-Dependent/etiology
- Neuroprotective Agents/pharmacology
- Parkinson Disease/drug therapy
- Parkinson Disease/etiology
- Protein Biosynthesis/drug effects
- Receptors, Estrogen/physiology
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | |
Collapse
|
14
|
Huang L, Yappert MC, Jumblatt MM, Borchman D. Hyperoxia and Thyroxine Treatment and the Relationships between Reactive Oxygen Species Generation, Mitochondrial Membrane Potential, and Cardiolipin in Human Lens Epithelial Cell Cultures. Curr Eye Res 2009; 33:575-86. [DOI: 10.1080/02713680802167554] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Gajjar D, Patel D, Alapure B, Praveen MR, Patel A, Johar K, Vasavada AR. Rapid action of oestradiol against hydrogen peroxide-induced oxidative stress in cataractous lens epithelium: an in vitro study. Eye (Lond) 2008; 23:1456-63. [DOI: 10.1038/eye.2008.284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
16
|
Sarafian T, Montes C, Harui A, Beedanagari SR, Kiertscher S, Stripecke R, Hossepian D, Kitchen C, Kern R, Belperio J, Roth MD. Clarifying CB2 receptor-dependent and independent effects of THC on human lung epithelial cells. Toxicol Appl Pharmacol 2008; 231:282-90. [PMID: 18556036 PMCID: PMC2615389 DOI: 10.1016/j.taap.2008.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 03/04/2008] [Accepted: 05/01/2008] [Indexed: 01/05/2023]
Abstract
Marijuana smoking is associated with a number of abnormal findings in the lungs of habitual smokers. Previous studies revealed that Delta(9)-tetrahydrocannabinol (THC) caused mitochondrial injury in primary lung epithelial cells and in the cell line, A549 [Sarafian, T. A., Kouyoumjian, S., Khoshaghideh, F., Tashkin, D. P., and Roth, M. D. (2003). Delta 9-tetrahydrocannabinol disrupts mitochondrial function and cell energetics. Am J Physiol Lung Cell Mol Physiol 284, L298-306; Sarafian, T., Habib, N., Mao, J. T., Tsu, I. H., Yamamoto, M. L., Hsu, E., Tashkin, D. P., and Roth, M. D. (2005). Gene expression changes in human small airway epithelial cells exposed to Delta9-tetrahydrocannabinol. Toxicol Lett 158, 95-107]. The role of cannabinoid receptors in this injury was unclear, as was the potential impact on cell function. In order to investigate these questions, A549 cells were engineered to over-express the type 2 cannabinoid receptor (CB2R) using a self-inactivating lentiviral vector. This transduction resulted in a 60-fold increase in CB2R mRNA relative to cells transduced with a control vector. Transduced cell lines were used to study the effects of THC on chemotactic activity and mitochondrial function. Chemotaxis in response to a 10% serum gradient was suppressed in a concentration-dependent manner by exposure to THC. CB2R-transduced cells exhibited less intrinsic chemotactic activity (p<0.05) and were 80- to 100-fold more sensitive to the inhibitory effects of THC. Studies using SR144528, a selective CB2R antagonist, verified that these effects were mediated by the CB2R. Marijuana smoke extract, but not smoke extracts from tobacco or placebo marijuana cigarettes, reproduced these effects (p<0.05). THC decreased ATP level and mitochondrial membrane potential (Psi(m)) in both control and CB2R-transduced cells. However, these decreases did not play a significant role in chemotaxis inhibition since cyclosporine A, which protected against ATP loss, did not increase cell migration. Moreover, CB2R-transduced cells displayed higher Psi(m) than did control cells. Since both Psi(m) and chemotaxis are regulated by intracellular signaling, we investigated the effects of THC on the activation of multiple signaling pathways. Serum exposure activated several signaling events of which phosphorylation of IkappaB-alpha and JNK was regulated in a CB2R- and THC-dependent manner. We conclude that airway epithelial cells are sensitive to both CB2R-dependent and independent effects mediated by THC.
Collapse
Affiliation(s)
- Theodore Sarafian
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, 37-131 CHS, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Flynn JM, Dimitrijevich SD, Younes M, Skliris G, Murphy LC, Cammarata PR. Role of wild-type estrogen receptor-beta in mitochondrial cytoprotection of cultured normal male and female human lens epithelial cells. Am J Physiol Endocrinol Metab 2008; 295:E637-47. [PMID: 18577698 DOI: 10.1152/ajpendo.90407.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The influence of sexual category as a modifier of cellular function is underinvestigated. Whether sex differences affect estrogen-mediated mitochondrial cytoprotection was determined using cell cultures of normal human lens epithelia (nHLE) from postmortem male and female donors. Experimental indicators assessed included differences in estrogen receptor-beta (ERbeta) isoform expression, receptor localization in mitochondria, and estrogen-mediated prevention of loss of mitochondrial membrane potential using the potentiometric fluorescent compound JC-1 after nHLE were exposed to peroxide. The impact of wild-type ERbeta (wtERbeta1) was also assessed using wtERbeta1 siRNA to suppress expression. A triple-primer PCR assay was employed to determine the proportional distribution of the receptor isoforms (wtERbeta1, -beta2, and -beta5) from the total ERbeta message pool in male and female cell cultures. Irrespective of sex, nHLE express wtERbeta1 and the ERbeta2 and ERbeta5 splice variants in similar ratios. Confocal microscopy and immunofluorescence revealed localization of the wild-type receptor in peripheral mitochondrial arrays and perinuclear mitochondria as well as nuclear staining in both cell populations. The ERbeta2 and ERbeta5 isoforms were distributed primarily in the nucleus and cytosol, respectively; no association with the mitochondria was detected. Both male and female nHLE treated with E(2) (1 muM) displayed similar levels of protection against peroxide-induced oxidative stress. In conjunction with acute oxidative insult, RNA suppression of wtERbeta1 elicited the collapse of mitochondrial membrane potential and markedly diminished the otherwise protective effects of E(2). Thus, whereas the estrogen-mediated prevention of mitochondrial membrane permeability transition is sex independent, the mechanism of estrogen-induced mitochondrial cytoprotection is wtERbeta1 dependent.
Collapse
Affiliation(s)
- J M Flynn
- Department of Cell Biology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | | | | | | | | |
Collapse
|
18
|
Petersen A, Carlsson T, Karlsson JO, Jonhede S, Zetterberg M. Effects of dexamethasone on human lens epithelial cells in culture. Mol Vis 2008; 14:1344-52. [PMID: 18648526 PMCID: PMC2480483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 07/15/2008] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Treatment with glucocorticoids is a well known risk factor for cataract development, although the pathogenic mechanism has not been elucidated. The aim of the study was to investigate the effects of glucocorticoids in cultured human lens epithelial cells. METHODS Human lens epithelial cells (HLECs) were exposed to dexamethasone for 24 h. The number of viable cells was determined using the 3-[4, 5-dimethylthiazolyl-2]-2, 5-diphenyltetrazolium bromide (MTT) assay, and proliferation was quantified using Ki-67. Apoptosis was investigated by measuring caspase-3 activity and by evaluating nuclear morphology of cells stained with Hoechst 33342. Mitochondria depolarization was measured using the potential-sensitive color, JC-1. Cells were assayed for changes in superoxide production using dihydroethidium (HET), for alterations in peroxide production using dichlorofluorescein diacetate (DCFH-DA), and for glutathione (GSH) variations using monochlorobimane (MCB). Caspase-3 activity was also measured in HLECs simultaneously exposed to dexamethasone and the glucocorticoid antagonist, RU486. RESULTS Low doses of dexamethasone (0.1 microM) resulted in increased proliferation of HLECs. Apoptosis was increased in HLECs exposed to 1 microM, 10 microM, and 100 microM of dexamethasone as revealed by nuclear morphology studies. Apoptosis was also confirmed by measuring caspase-3 activation. No effect on superoxide production by dexamethasone was seen. There were no effects on GSH levels or mitochondrial depolarization either. Only the highest concentration of dexamethasone (100 microM) caused an increase in peroxide production. In HLECs incubated with the glucocorticoid antagonist, RU486, apoptosis was induced at a lower concentration of dexamethasone (0.1 microM) than with dexamethasone alone. CONCLUSIONS Low doses of dexamethasone cause a moderate increase in proliferation of cultured HLECs. Slightly higher but still physiologically relevant concentrations of dexamethasone result in a dose-dependent increase in apoptosis. Dexamethasone-induced apoptosis in HLECs does not seem to involve oxidative mechanisms. The proapoptotic effect of dexamethasone does not appear to act through the glucocorticoid receptor. Effects on proliferation and/or dysregulation of apoptosis in lens epithelial cells may be an important factor in human steroid-induced posterior subcapsular cataract.
Collapse
Affiliation(s)
- A. Petersen
- Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - T. Carlsson
- Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - J-O. Karlsson
- Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - S. Jonhede
- Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - M. Zetterberg
- Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden,Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, Section of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Gottipati S, Cammarata PR. Mitochondrial superoxide dismutase activation with 17 beta-estradiol-treated human lens epithelial cells. Mol Vis 2008; 14:898-905. [PMID: 18490963 PMCID: PMC2386510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 05/05/2008] [Indexed: 11/21/2022] Open
Abstract
PURPOSE 17 beta-estradiol (17beta-E(2)) protects human lens epithelial cells against oxidative stress by preserving mitochondrial function in part via the non-genomic rapid activation of prosurvival signal transduction pathways. The study described herein examined whether 17beta-E(2) also elicits genomic protection by influencing the expression (and activity) of mitochondrial-associated manganese superoxide dismutase (MnSOD) as a possible parallel mechanism by which 17beta-E(2) protects against oxidative stress. METHODS Virally-transformed human lens epithelial cells (HLE-B3) were pre-incubated with 17beta-E(2), and mRNA or protein lysates were collected over a time course ranging from 90 min to 24 h. Positive expression of lens epithelial cell MnSOD mRNA was determined by semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR), and its levels were monitored by real-time PCR up to 24 h after 17beta-E(2) administration. Western blot analysis was used to examine the pattern of protein expression as influenced by 17beta-E(2) treatment. MnSOD activity as influenced by 17beta-E(2) was determined by measuring enzymatic activity. RESULTS A significant rapid increase in the activity of MnSOD was observed with HLE-B3 cells by 90 min post-bolus addition of 17beta-E(2), which returned to control level by 240 min. Neither an increase in MnSOD mRNA nor in protein expression was detected up through 24 h. CONCLUSIONS These data demonstrate that 17beta-E(2) rapidly and transiently increases the activity of MnSOD but influences neither its mRNA expression nor its protein expression. The results suggest that (estrogen-activated) MnSOD plays an important role against mitochondrial oxidative stress by diminishing reactive oxygen species, thus promoting cell survival.
Collapse
|
20
|
Flynn JM, Lannigan DA, Clark DE, Garner MH, Cammarata PR. RNA suppression of ERK2 leads to collapse of mitochondrial membrane potential with acute oxidative stress in human lens epithelial cells. Am J Physiol Endocrinol Metab 2008; 294:E589-99. [PMID: 18171912 DOI: 10.1152/ajpendo.00705.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
17beta-Estradiol (E(2)) reduces oxidative stress-induced depolarization of mitochondrial membrane potential (MMP) in cultured human lens epithelial cells (HLE-B3). The mechanism by which the nongenomic effects of E(2) contributed to the protection against mitochondrial membrane depolarization was investigated. Mitochondrial membrane integrity is regulated by phosphorylation of BAD, and it is known that phosphorylation of Ser(112) inactivates BAD and prevents its participation in the mitochondrial death pathway. We found that E(2) rapidly increased both the phosphorylation of ERK2 and Ser(112) in BAD. Ser(112) is phosphorylated by p90 ribosomal S6 kinase (RSK), a Ser/Thr kinase, which is a downstream effector of ERK1/2. Inhibition of RSK by the RSK-specific inhibitor SL0101 did not reduce the level of E(2)-induced phosphorylation of Ser(112). Silencing BAD using small interfering RNA did not alter mitochondrial membrane depolarization elicited by peroxide insult. However, under the same conditions, silencing ERK2 dramatically increased membrane depolarization compared with the control small interfering RNA. Therefore, ERK2, functioning through a BAD-independent mechanism regulates MMP in humans lens epithelial cells. We propose that estrogen-induced activation of ERK2 acts to protect cells from acute oxidative stress. Moreover, despite the fact that ERK2 plays a regulatory role in mitochondrial membrane potential, estrogen was found to block mitochondrial membrane depolarization via an ERK-independent mechanism.
Collapse
Affiliation(s)
- James M Flynn
- Dept. of Cell Biology and Genetics, Univ. of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | | | | | | | | |
Collapse
|
21
|
Huang L, Tang D, Yappert MC, Borchman D. Oxidation-induced changes in human lens epithelial cells 2. Mitochondria and the generation of reactive oxygen species. Free Radic Biol Med 2006; 41:926-36. [PMID: 16934675 DOI: 10.1016/j.freeradbiomed.2006.05.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 05/12/2006] [Accepted: 05/19/2006] [Indexed: 01/08/2023]
Abstract
The relationships among reactive oxygen species (ROS) generation, lipid compositional changes, antioxidant power, and mitochondrial membrane potential were determined in a human lens epithelial cell line, HLE-B3. Cells grown in a hyperoxic atmosphere grew linearly for about 3 days, and then progressively died. Total antioxidant power and ROS generation increased by 50 and 43%, respectively, in cells grown in a hyperoxic atmosphere compared to those cultured in a normoxic atmosphere. By specifically uncoupling the mitochondrial proton gradient, we determined that the mitochondria are most likely the major source of ROS generation. ROS generation correlated inversely with mitochondrial membrane potential and the amount of cardiolipin, factors likely to contribute to loss of cell viability. Our results support the idea that hyperoxic damage to HLE-B3 cells derives from enhanced generation of ROS from the mitochondrial electron transport chain resulting in the oxidation of cardiolipin. With extended hyperoxic insult, the oxidants overwhelm the antioxidant defense system and eventually cell death ensues.
Collapse
Affiliation(s)
- Li Huang
- Department of Ophthalmology and Visual Science, University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
22
|
Cammarata PR, Flynn J, Gottipati S, Chu S, Dimitrijevich S, Younes M, Skliris G, Murphy LC. Differential expression and comparative subcellular localization of estrogen receptor beta isoforms in virally transformed and normal cultured human lens epithelial cells. Exp Eye Res 2005; 81:165-75. [PMID: 16080910 DOI: 10.1016/j.exer.2005.01.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 12/17/2004] [Accepted: 01/20/2005] [Indexed: 02/01/2023]
Abstract
A number of variants of the wild-type (wt) estrogen receptor beta (ERbeta-1) coexist in a wide range of tissues. In the human these include, together with others, the expression of several isoforms (ERbeta-2-ERbeta-5) due to alternative splicing of exons encoding the carboxy terminus. In this study, we determined whether virally transformed cell cultures of human lens epithelial cells (HLE-B3) express both full length (or wt) and variant isoforms of ERbeta in comparison to normal secondary cultures of human lens epithelial cells (nHLE) and furthermore, identify the subcellular localization of the wtERbeta-1 and ERbeta isoform variants in HLE-B3 and nHLE cells, as well as from human breast adenocarcinoma cells (MCF-7) which provided a positive control. ERbeta isoform mRNA expression was evaluated by coupled RT-PCR. Subcellular localization of ERbeta isoforms was determined on formaldehyde-fixed, Saponin-permeabilized cells using conventional immunofluorescence techniques and affinity purified polyclonal antibodies specific for ERbeta-1 as well as to two of the truncated carboxy terminus isoforms (beta-2 and beta-5). Total RNA was extracted from HLE-B3 and nHLE cells and lens tissue, as well as from human breast adenocarcinoma cells (MCF-7) and subjected to RT-PCR using specific estrogen receptor primers intended to distinguish ERbeta-1-ERbeta-5 mRNA. The PCR products corresponded to wtERbeta-1 as well as to the isoform variants beta-2 and beta-5. The proportional distribution of wtERbeta-1, beta-2 and beta-5 PCR products differed between the normal lens epithelial cells and the SV-40 transformed lens epithelial cell line; the nHLE being similar to lens tissue with respect to relative expression of ERbeta isoform cDNAs. Confocal microscopy and immunofluorescence revealed ERbeta-2 was distributed throughout the cytosol and was associated with the nucleus of all cells examined, although sporadic immunostaining was observed with the nuclei of MCF-7. Prominent immunostaining of ERbeta-1 appeared in the mitochondria (along with weaker staining in the nucleus) of all cell types as authenticated by co-localization with Mitotrack-633. ERbeta-5 immunostaining was diffuse in the cytosol and also associated with the nuclei of all cell types. The differential subcellular partitioning of ERbeta-1 to the mitochondria and ERbeta-2 to the nucleus suggests a new aspect of regulation and function of the estrogen signalling system.
Collapse
Affiliation(s)
- Patrick R Cammarata
- Department of Cell Biology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | | | | | | | | | | | | | | |
Collapse
|