1
|
Luo X, Wang L, Xue D. Clinical report and genetic analysis of a Chinese family with retinitis pigmentosa 79 caused by a novel loss-of-function HK1 variant. Genes Genomics 2024; 46:1437-1444. [PMID: 39361057 DOI: 10.1007/s13258-024-01574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/23/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Retinitis pigmentosa (RP) is a genetically heterogeneous disease. RP 79 has been associated with heterozygous variants of hexokinase 1 (HK1). Only two missense HK1 variants have been reported in 11 families. OBJECTIVE To discover the molecular pathogenic mechanism of RP and validate the biological harm of HK1 through in vitro experiments. METHODS We conducted a genetic analysis of a 3-year-old female patient with RP and her family. We also evaluated the ocular phenotypes caused by HK1 (the identified variant). Peripheral blood samples were collected from the patient, her parents, and her brother, and trio whole-exome sequencing was performed. A protein structure analysis was performed to assess the functional impact of the variant, and a mutant plasmid was constructed for the quantitative polymerase chain reaction (qPCR) and western blot (WB) analysis of the effects of the variant on transcription and protein translation. RESULTS The patient harbored the NM_000188.3: c.613del (p.Ala205Leufs*3) variant, which is a heterozygous variant of HK1. Sanger sequencing confirmed the presence of this variant in the patient; however, the patient's parents and brother had the wild-type variant. The protein structure analysis indicated that the variant resulted in a truncated protein caused by premature termination of amino acid coding. The qPCR results indicated that the variant may not have affected the transcription process. However, the WB analysis demonstrated that the mutant HK-1 protein was not expressed and that the wild-type group exhibited normal expression. CONCLUSIONS Our patient had a loss-of-function (LoF) variant of HK1, which may be the genetic cause of typical features of RP that are observed at an early age. These findings expand the spectrum of HK1 variants and phenotypes and suggest that LoF variants of HK1 may represent a specific pathogenic mechanism of RP.
Collapse
Affiliation(s)
- Xin Luo
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi'an People's Hospital(Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, No. 21 Jiefang Road, Xi'an, 710004, China
| | - Lu Wang
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi'an People's Hospital(Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, No. 21 Jiefang Road, Xi'an, 710004, China
| | - Daxi Xue
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi'an People's Hospital(Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, No. 21 Jiefang Road, Xi'an, 710004, China.
| |
Collapse
|
2
|
Palanivel V, Gupta V, Chitranshi N, Tietz O, Vander Wall R, Blades R, Maha Thananthirige KP, Salkar A, Shen C, Mirzaei M, Gupta V, Graham SL, Basavarajappa D. Neuropeptide Y receptor activation preserves inner retinal integrity through PI3K/Akt signaling in a glaucoma mouse model. PNAS NEXUS 2024; 3:pgae299. [PMID: 39114576 PMCID: PMC11305140 DOI: 10.1093/pnasnexus/pgae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024]
Abstract
Neuropeptide Y (NPY), an endogenous peptide composed of 36 amino acids, has been investigated as a potential therapeutic agent for neurodegenerative diseases due to its neuroprotective attributes. This study investigated the neuroprotective effects of NPY in a mouse model of glaucoma characterized by elevated intraocular pressure (IOP) and progressive retinal ganglion cell degeneration. Elevated IOP in mice was induced through intracameral microbead injections, accompanied by intravitreal administration of NPY peptide. The results demonstrated that NPY treatment preserved both the structural and functional integrity of the inner retina and mitigated axonal damage and degenerative changes in the optic nerve under high IOP conditions. Further, NPY treatment effectively reduced inflammatory glial cell activation, as evidenced by decreased expression of glial fibrillary acidic protein and Iba-1. Notably, endogenous NPY expression and its receptors (NPY-Y1R and NPY-Y4R) levels were negatively affected in the retina under elevated IOP conditions. NPY treatment restored these changes to a significant extent. Molecular analysis revealed that NPY mediates its protective effects through the mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling pathways. These findings highlight the therapeutic potential of NPY in glaucoma treatment, underscoring its capacity to preserve retinal health, modulate receptor expression under stress, reduce neuroinflammation, and impart protection against axonal impairment.
Collapse
Affiliation(s)
- Viswanthram Palanivel
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Vivek Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Ole Tietz
- Faculty of Medicine, Health and Human Sciences, Dementia Research Centre, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Roshana Vander Wall
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Reuben Blades
- Faculty of Medicine, Health and Human Sciences, Dementia Research Centre, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Kanishka Pushpitha Maha Thananthirige
- Faculty of Medicine, Health and Human Sciences, Dementia Research Centre, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Akanksha Salkar
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Chao Shen
- Microscopy Unit, Faculty of Science and Engineering, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Stuart L Graham
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| |
Collapse
|
3
|
Xu Y, Tummala SR, Chen X, Vardi N. VDAC in Retinal Health and Disease. Biomolecules 2024; 14:654. [PMID: 38927058 PMCID: PMC11201675 DOI: 10.3390/biom14060654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The retina, a tissue of the central nervous system, is vital for vision as its photoreceptors capture light and transform it into electrical signals, which are further processed before they are sent to the brain to be interpreted as images. The retina is unique in that it is continuously exposed to light and has the highest metabolic rate and demand for energy amongst all the tissues in the body. Consequently, the retina is very susceptible to oxidative stress. VDAC, a pore in the outer membrane of mitochondria, shuttles metabolites between mitochondria and the cytosol and normally protects cells from oxidative damage, but when a cell's integrity is greatly compromised it initiates cell death. There are three isoforms of VDAC, and existing evidence indicates that all three are expressed in the retina. However, their precise localization and function in each cell type is unknown. It appears that most retinal cells express substantial amounts of VDAC2 and VDAC3, presumably to protect them from oxidative stress. Photoreceptors express VDAC2, HK2, and PKM2-key proteins in the Warburg pathway that also protect these cells. Consistent with its role in initiating cell death, VDAC is overexpressed in the retinal degenerative diseases retinitis pigmentosa, age related macular degeneration (AMD), and glaucoma. Treatment with antioxidants or inhibiting VDAC oligomerization reduced its expression and improved cell survival. Thus, VDAC may be a promising therapeutic candidate for the treatment of these diseases.
Collapse
Affiliation(s)
- Ying Xu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (Y.X.); (X.C.)
| | - Shanti R. Tummala
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Xiongmin Chen
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (Y.X.); (X.C.)
| | - Noga Vardi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Lee SJ, Emery D, Vukmanic E, Wang Y, Lu X, Wang W, Fortuny E, James R, Kaplan HJ, Liu Y, Du J, Dean DC. Metabolic transcriptomics dictate responses of cone photoreceptors to retinitis pigmentosa. Cell Rep 2023; 42:113054. [PMID: 37656622 PMCID: PMC10591869 DOI: 10.1016/j.celrep.2023.113054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023] Open
Abstract
Most mutations in retinitis pigmentosa (RP) arise in rod photoreceptors, but cone photoreceptors, responsible for high-resolution daylight and color vision, are subsequently affected, causing the most debilitating features of the disease. We used mass spectroscopy to follow 13C metabolites delivered to the outer retina and single-cell RNA sequencing to assess photoreceptor transcriptomes. The S cone metabolic transcriptome suggests engagement of the TCA cycle and ongoing response to ROS characteristic of oxidative phosphorylation, which we link to their histone modification transcriptome. Tumor necrosis factor (TNF) and its downstream effector RIP3, which drive ROS generation via mitochondrial dysfunction, are induced and activated as S cones undergo early apoptosis in RP. The long/medium-wavelength (L/M) cone transcriptome shows enhanced glycolytic capacity, which maintains their function as RP progresses. Then, as extracellular glucose eventually diminishes, L/M cones are sustained in long-term dormancy by lactate metabolism.
Collapse
Affiliation(s)
- Sang Joon Lee
- Department of Medicine, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA; Department of Ophthalmology, Kosin University College of Medicine, #262 Gamcheon-ro, Seo-gu, Busan 49267, Korea
| | - Douglas Emery
- Department of Medicine, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Eric Vukmanic
- Department of Medicine, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Yekai Wang
- Departments of Ophthalmology and Visual Sciences and Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Xiaoqin Lu
- Department of Medicine, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Enzo Fortuny
- Department of Neurosurgery, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Robert James
- Department of Neurosurgery, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Henry J Kaplan
- Department of Ophthalmology, St. Louis University School of Medicine, St. Louis MO 63110, USA
| | - Yongqing Liu
- Department of Medicine, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Jianhai Du
- Departments of Ophthalmology and Visual Sciences and Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA.
| | - Douglas C Dean
- Department of Medicine, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA.
| |
Collapse
|
5
|
Shegay PV, Shatova OP, Zabolotneva AA, Shestopalov AV, Kaprin AD. Moonlight functions of glycolytic enzymes in cancer. Front Mol Biosci 2023; 10:1076138. [PMID: 37449059 PMCID: PMC10337784 DOI: 10.3389/fmolb.2023.1076138] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Since an extensive genome research has started, basic principle "one gene-one protein-one function" was significantly revised. Many proteins with more than one function were identified and characterized as "moonlighting" proteins, which activity depend not only on structural peculiarities but also on compartmentation and metabolic environment. It turned out that "housekeeping" glycolytic enzymes show important moonlight functions such as control of development, proliferation, apoptosis, migration, regulation of transcription and cell signaling. Glycolytic enzymes emerged very early in evolution and because of the limited content of genomes, they could be used as ancient regulators for intercellular and intracellular communication. The multifunctionality of the constitutively expressed enzymes began to serve cancer cell survival and growth. In the present review we discuss some moonlight functions of glycolytic enzymes that important for malignant transformation and tumor growth.
Collapse
Affiliation(s)
- Petr V. Shegay
- Federal State Budget Institution, National Medical Research Radiology Center of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Olga P. Shatova
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Biochemistry Department, Peoples’ Friendship University of Russia, Moscow, Russia
| | - Anastasia A. Zabolotneva
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- National Medical Research Centre for Endocrinology, Laboratory of Biochemistry of Signaling Pathways, Moscow, Russia
| | - Aleksandr V. Shestopalov
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- National Medical Research Centre for Endocrinology, Laboratory of Biochemistry of Signaling Pathways, Moscow, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrei D. Kaprin
- Federal State Budget Institution, National Medical Research Radiology Center of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
- Biochemistry Department, Peoples’ Friendship University of Russia, Moscow, Russia
| |
Collapse
|
6
|
Shatova OP, Shegay PV, Zabolotneva AA, Shestopalov AV, Kaprin AD. Evolutionary Acquisition of Multifunctionality by Glycolytic Enzymes. J EVOL BIOCHEM PHYS+ 2023. [DOI: 10.1134/s002209302301009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
7
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
8
|
Abstract
The outer retina is nourished from the choroid, a capillary bed just inside the sclera. O2, glucose, and other nutrients diffuse out of the choroid and then filter through a monolayer of retinal pigment epithelium (RPE) cells to fuel the retina. Recent studies of energy metabolism have revealed striking differences between retinas and RPE cells in the ways that they extract energy from fuels. The purpose of this review is to suggest and evaluate the hypothesis that the retina and RPE have complementary metabolic roles that make them depend on each other for survival and for their abilities to perform essential and specialized functions. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- James B Hurley
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, Washington 98115, USA;
| |
Collapse
|
9
|
Pan WW, Wubben TJ, Besirli CG. Photoreceptor metabolic reprogramming: current understanding and therapeutic implications. Commun Biol 2021; 4:245. [PMID: 33627778 PMCID: PMC7904922 DOI: 10.1038/s42003-021-01765-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Acquired and inherited retinal disorders are responsible for vision loss in an increasing proportion of individuals worldwide. Photoreceptor (PR) death is central to the vision loss individuals experience in these various retinal diseases. Unfortunately, there is a lack of treatment options to prevent PR loss, so an urgent unmet need exists for therapies that improve PR survival and ultimately, vision. The retina is one of the most energy demanding tissues in the body, and this is driven in large part by the metabolic needs of PRs. Recent studies suggest that disruption of nutrient availability and regulation of cell metabolism may be a unifying mechanism in PR death. Understanding retinal cell metabolism and how it is altered in disease has been identified as a priority area of research. The focus of this review is on the recent advances in the understanding of PR metabolism and how it is critical to reduction-oxidation (redox) balance, the outer retinal metabolic ecosystem, and retinal disease. The importance of these metabolic processes is just beginning to be realized and unraveling the metabolic and redox pathways integral to PR health may identify novel targets for neuroprotective strategies that prevent blindness in the heterogenous group of retinal disorders.
Collapse
Affiliation(s)
- Warren W Pan
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Thomas J Wubben
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Abstract
The field of phosphoinositide signaling has expanded significantly in recent years. Phosphoinositides (also known as phosphatidylinositol phosphates or PIPs) are universal signaling molecules that directly interact with membrane proteins or with cytosolic proteins containing domains that directly bind phosphoinositides and are recruited to cell membranes. Through the activities of phosphoinositide kinases and phosphoinositide phosphatases, seven distinct phosphoinositide lipid molecules are formed from the parent molecule, phosphatidylinositol. PIP signals regulate a wide range of cellular functions, including cytoskeletal assembly, membrane budding and fusion, ciliogenesis, vesicular transport, and signal transduction. Given the many excellent reviews on phosphoinositide kinases, phosphoinositide phosphatases, and PIPs in general, in this review, we discuss recent studies and advances in PIP lipid signaling in the retina. We specifically focus on PIP lipids from vertebrate (e.g., bovine, rat, mouse, toad, and zebrafish) and invertebrate (e.g., Drosophila, horseshoe crab, and squid) retinas. We also discuss the importance of PIPs revealed from animal models and human diseases, and methods to study PIP levels both in vitro and in vivo. We propose that future studies should investigate the function and mechanism of activation of PIP-modifying enzymes/phosphatases and further unravel PIP regulation and function in the different cell types of the retina.
Collapse
Affiliation(s)
- Raju V S Rajala
- Departments of Ophthalmology, Physiology, and Cell Biology, and Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.
| |
Collapse
|
11
|
Patrick AT, He W, Madu J, Sripathi SR, Choi S, Lee K, Samson FP, Powell FL, Bartoli M, Jee D, Gutsaeva DR, Jahng WJ. Mechanistic dissection of diabetic retinopathy using the protein-metabolite interactome. J Diabetes Metab Disord 2021; 19:829-848. [PMID: 33520806 DOI: 10.1007/s40200-020-00570-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/20/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Purpose The current study aims to determine the molecular mechanisms of diabetic retinopathy (DR) using the protein-protein interactome and metabolome map. We examined the protein network of novel biomarkers of DR for direct (physical) and indirect (functional) interactions using clinical target proteins in different models. Methods We used proteomic tools including 2-dimensional gel electrophoresis, mass spectrometry analysis, and database search for biomarker identification using in vivo murine and human model of diabetic retinopathy and in vitro model of oxidative stress. For the protein interactome and metabolome mapping, various bioinformatic tools that include STRING and OmicsNet were used. Results We uncovered new diabetic biomarkers including prohibitin (PHB), dynamin 1, microtubule-actin crosslinking factor 1, Toll-like receptor (TLR 7), complement activation, as well as hypothetical proteins that include a disintegrin and metalloproteinase (ADAM18), vimentin III, and calcium-binding C2 domain-containing phospholipid-binding switch (CAC2PBS) using a proteomic approach. Proteome networks of protein interactions with diabetic biomarkers were established using known DR-related proteome data. DR metabolites were interconnected to establish the metabolome map. Our results showed that mitochondrial protein interactions were changed during hyperglycemic conditions in the streptozotocin-treated murine model and diabetic human tissue. Conclusions Our interactome mapping suggests that mitochondrial dysfunction could be tightly linked to various phases of DR pathogenesis including altered visual cycle, cytoskeletal remodeling, altered lipid concentration, inflammation, PHB depletion, tubulin phosphorylation, and altered energy metabolism. The protein-metabolite interactions in the current network demonstrate the etiology of retinal degeneration and suggest the potential therapeutic approach to treat DR.
Collapse
Affiliation(s)
- Ambrose Teru Patrick
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| | - Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI USA
| | - Joshua Madu
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| | - Srinivas R Sripathi
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Seulggie Choi
- Division of Vitreous and Retina, Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Kook Lee
- Division of Vitreous and Retina, Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Faith Pwaniyibo Samson
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| | - Folami L Powell
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA USA
| | - Manuela Bartoli
- Department of Ophthalmology, Augusta University, Augusta, GA USA
| | - Donghyun Jee
- Division of Vitreous and Retina, Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Diana R Gutsaeva
- Department of Ophthalmology, Augusta University, Augusta, GA USA
| | - Wan Jin Jahng
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| |
Collapse
|
12
|
Mitochondria: The Retina's Achilles' Heel in AMD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:237-264. [PMID: 33848005 DOI: 10.1007/978-3-030-66014-7_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Strong experimental evidence from studies in human donor retinas and animal models supports the idea that the retinal pathology associated with age-related macular degeneration (AMD) involves mitochondrial dysfunction and consequent altered retinal metabolism. This chapter provides a brief overview of mitochondrial structure and function, summarizes evidence for mitochondrial defects in AMD, and highlights the potential ramifications of these defects on retinal health and function. Discussion of mitochondrial haplogroups and their association with AMD brings to light how mitochondrial genetics can influence disease outcome. As one of the most metabolically active tissues in the human body, there is strong evidence that disruption in key metabolic pathways contributes to AMD pathology. The section on retinal metabolism reviews cell-specific metabolic differences and how the metabolic interdependence of each retinal cell type creates a unique ecosystem that is disrupted in the diseased retina. The final discussion includes strategies for therapeutic interventions that target key mitochondrial pathways as a treatment for AMD.
Collapse
|
13
|
The Synthetic Flavonoid Derivative GL-V9 Induces Apoptosis and Autophagy in Cutaneous Squamous Cell Carcinoma via Suppressing AKT-Regulated HK2 and mTOR Signals. Molecules 2020; 25:molecules25215033. [PMID: 33143000 PMCID: PMC7663336 DOI: 10.3390/molecules25215033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
Cutaneous squamous-cell carcinoma (cSCC) is one of most common type of non-black skin cancer. The malignancy degree and the death risk of cSCC patients are significantly higher than basal cell carcinoma patients. GL-V9 is a synthesized flavonoid derived from natural active ingredient wogonin and shows potent growth inhibitory effects in liver and breast cancer cells. In this study, we investigated the anti-cSCC effect and the underlying mechanism of GL-V9. The results showed that GL-V9 induced both apoptosis and autophagy in human cSCC cell line A431 cells, and prevented the growth progression of chemical induced primary skin cancer in mice. Metabolomics assay showed that GL-V9 potentially affected mitochondrial function, inhibiting glucose metabolism and Warburg effect. Further mechanism studies demonstrated that AKT played important roles in the anti-cSCC effect of GL-V9. On one hand, GL-V9 suppressed AKT-modulated mitochondrial localization of HK2 and promoted the protein degradation of HK2, resulting in cell apoptosis and glycolytic inhibition. On the other hand, GL-V9 induced autophagy via inhibiting Akt/mTOR pathway. Interestingly, though the autophagy induced by GL-V9 potentially antagonized its effect of apoptosis induction, the anti-cSCC effect of GL-V9 was not diluted. All above, our studies suggest that GL-V9 is a potent candidate for cSCC treatment.
Collapse
|
14
|
Li B, Zhang T, Liu W, Wang Y, Xu R, Zeng S, Zhang R, Zhu S, Gillies MC, Zhu L, Du J. Metabolic Features of Mouse and Human Retinas: Rods versus Cones, Macula versus Periphery, Retina versus RPE. iScience 2020; 23:101672. [PMID: 33196018 PMCID: PMC7644940 DOI: 10.1016/j.isci.2020.101672] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Photoreceptors, especially cones, which are enriched in the human macula, have high energy demands, making them vulnerable to metabolic stress. Metabolic dysfunction of photoreceptors and their supporting retinal pigment epithelium (RPE) is an important underlying cause of degenerative retinal diseases. However, how cones and the macula support their exorbitant metabolic demand and communicate with RPE is unclear. By profiling metabolite uptake and release and analyzing metabolic genes, we have found cone-rich retinas and human macula share specific metabolic features with upregulated pathways in pyruvate metabolism, mitochondrial TCA cycle, and lipid synthesis. Human neural retina and RPE have distinct but complementary metabolic features. Retinal metabolism centers on NADH production and neurotransmitter biosynthesis. The retina needs aspartate to sustain its aerobic glycolysis and mitochondrial metabolism. RPE metabolism is directed toward NADPH production and biosynthesis of acetyl-rich metabolites, serine, and others. RPE consumes multiple nutrients, including proline, to produce metabolites for the retina.
Collapse
Affiliation(s)
- Bo Li
- Departments of Ophthalmology and Biochemistry, West Virginia University, WVU Eye Institute, One Medical Center Dr, PO Box 9193, Morgantown, WV 26506, USA.,Department of Ophthalmology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225100, China
| | - Ting Zhang
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Wei Liu
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yekai Wang
- Departments of Ophthalmology and Biochemistry, West Virginia University, WVU Eye Institute, One Medical Center Dr, PO Box 9193, Morgantown, WV 26506, USA
| | - Rong Xu
- Departments of Ophthalmology and Biochemistry, West Virginia University, WVU Eye Institute, One Medical Center Dr, PO Box 9193, Morgantown, WV 26506, USA
| | - Shaoxue Zeng
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Rui Zhang
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Siyan Zhu
- Departments of Ophthalmology and Biochemistry, West Virginia University, WVU Eye Institute, One Medical Center Dr, PO Box 9193, Morgantown, WV 26506, USA
| | - Mark C Gillies
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Ling Zhu
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Jianhai Du
- Departments of Ophthalmology and Biochemistry, West Virginia University, WVU Eye Institute, One Medical Center Dr, PO Box 9193, Morgantown, WV 26506, USA
| |
Collapse
|
15
|
Haydinger CD, Kittipassorn T, Peet DJ. Power to see-Drivers of aerobic glycolysis in the mammalian retina: A review. Clin Exp Ophthalmol 2020; 48:1057-1071. [PMID: 32710505 DOI: 10.1111/ceo.13833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/03/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
The mammalian retina converts most glucose to lactate rather than catabolizing it completely to carbon dioxide via oxidative phosphorylation, despite the availability of oxygen. This unusual metabolism is known as aerobic glycolysis or the Warburg effect. Molecules and pathways that drive aerobic glycolysis have been identified and thoroughly studied in the context of cancer but remain relatively poorly understood in the retina. Here, we review recent research on the molecular mechanisms that underly aerobic glycolysis in the retina, focusing on key glycolytic enzymes including hexokinase 2 (HK2), pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA). We also discuss the potential involvement of cell signalling and transcriptional pathways including phosphoinositide 3-kinase (PI3K) signalling, fibroblast growth factor receptor (FGFR) signalling, and hypoxia-inducible factor 1 (HIF-1), which have been implicated in driving aerobic glycolysis in the context of cancer.
Collapse
Affiliation(s)
- Cameron D Haydinger
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Thaksaon Kittipassorn
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Mahidol, Thailand
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
16
|
Weh E, Lutrzykowska Z, Smith A, Hager H, Pawar M, Wubben TJ, Besirli CG. Hexokinase 2 is dispensable for photoreceptor development but is required for survival during aging and outer retinal stress. Cell Death Dis 2020; 11:422. [PMID: 32499533 PMCID: PMC7272456 DOI: 10.1038/s41419-020-2638-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Photoreceptor death is the ultimate cause of vision loss in many retinal degenerative conditions. Identifying novel therapeutic avenues for prolonging photoreceptor health and function has the potential to improve vision and quality of life for patients suffering from degenerative retinal disorders. Photoreceptors are metabolically unique among other neurons in that they process the majority of their glucose via aerobic glycolysis. One of the main regulators of aerobic glycolysis is hexokinase 2 (HK2). Beyond its enzymatic function of phosphorylating glucose to glucose-6-phosphate, HK2 has additional non-enzymatic roles, including the regulation of apoptotic signaling via AKT signaling. Determining the role of HK2 in photoreceptor homeostasis may identify novel signaling pathways that can be targeted with neuroprotective agents to boost photoreceptor survival during metabolic stress. Here we show that following experimental retinal detachment, p-AKT is upregulated and HK2 translocates to mitochondria. Inhibition of AKT phosphorylation in 661W photoreceptor-like cells results in translocation of mitochondrial HK2 to the cytoplasm, increased caspase activity, and decreased cell viability. Rod-photoreceptors lacking HK2 upregulate HK1 and appear to develop normally. Interestingly, we found that HK2-deficient photoreceptors are more susceptible to acute nutrient deprivation in the experimental retinal detachment model. Additionally, HK2 appears to be important for preserving photoreceptors during aging. We show that retinal glucose metabolism is largely unchanged after HK2 deletion, suggesting that the non-enzymatic role of HK2 is important for maintaining photoreceptor health. These results suggest that HK2 expression is critical for preserving photoreceptors during acute nutrient stress and aging. More specifically, p-AKT mediated translocation of HK2 to the mitochondrial surface may be critical for protecting photoreceptors from acute and chronic stress.
Collapse
Affiliation(s)
- Eric Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US
| | | | - Andrew Smith
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US
| | - Mercy Pawar
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US
| | - Thomas J Wubben
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US
| | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US.
| |
Collapse
|
17
|
Stachyra-Strawa P, Cisek P, Janiszewski M, Grzybowska-Szatkowska L. The role of hexokinase in cancer. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0014.1528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A thorough understanding of the processes occurring in cancer cells is necessary to make cancer treatment as effective as possible. Changes in cellular metabolism in relation to normal cells are considered particularly important. One of the most interesting and promising areas is glucose metabolism and the factors affecting this process, with special emphasis on the potential role of hexokinases, especially the isoform II of this enzyme. Hexokinases (HK) are transferase enzymes involved in the process of glycolysis. Hexokinase II (HK II) plays an important role in initiating and maintaining the glycolysis process at a high level of efficiency, which is crucial for the growth and proliferation of cancer cells. An increase in the number of copies of the HK II gene and increased transcription of this enzyme resulting in the suppression of apoptosis and the enhancement of cell proliferation have been found in tumor cells. Hexokinase II also participates in the Crabtree effect by affecting the amount of ATP and thus the efficiency of the Ca2+ removal process outside the cell membrane by Ca2+ ATPase. Overexpression of HK II has thus far been found in pancreatic cancer, gastric cancer, breast cancer, squamous cell carcinoma of the larynx, glioblastoma multiforme, ovarian cancer and biliary tract cancer, indicating the possible key role of this enzyme in their formation and progression and providing the basis for seeking potential benefits of cancer treatment using HK II as a target of new drugs.
Collapse
Affiliation(s)
| | - Paweł Cisek
- Department of Radiotherapy, Medical University of Lublin, Poland
| | | | | |
Collapse
|
18
|
Ramírez-Pérez G, Sánchez-Chávez G, Salceda R. Mitochondrial bound hexokinase type I in normal and streptozotocin diabetic rat retina. Mitochondrion 2020; 52:212-217. [DOI: 10.1016/j.mito.2020.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022]
|
19
|
Das A, Bell CM, Berlinicke CA, Marsh-Armstrong N, Zack DJ. Programmed switch in the mitochondrial degradation pathways during human retinal ganglion cell differentiation from stem cells is critical for RGC survival. Redox Biol 2020; 34:101465. [PMID: 32473993 PMCID: PMC7327961 DOI: 10.1016/j.redox.2020.101465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/13/2020] [Indexed: 01/08/2023] Open
Abstract
Retinal ganglion cell (RGC) degeneration is the root cause for vision loss in glaucoma as well as in other forms of optic neuropathy. A variety of studies have implicated abnormal mitochondrial quality control (MQC) as contributing to RGC damage and degeneration in optic neuropathies. The ability to differentiate human pluripotent stem cells (hPSCs) into RGCs provides an opportunity to study RGC MQC in great detail. Degradation of damaged mitochondria is a critical step of MQC, and here we have used hPSC-derived RGCs (hRGCs) to analyze how altered mitochondrial degradation pathways in hRGCs affect their survival. Using pharmacological methods, we have investigated the role of the proteasomal and endo-lysosomal pathways in degrading damaged mitochondria in hRGCs and their precursor stem cells. We found that upon mitochondrial damage induced by the proton uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP), hRGCs more efficiently degraded mitochondria than did their precursor stem cells. We further identified that for degrading damaged mitochondria, stem cells predominantly use the ubiquitine-proteasome system (UPS) while hRGCs use the endo-lysosomal pathway. UPS inhibition causes apoptosis and cell death in stem cells, while hRGC viability is dependent on the endo-lysosomal pathway but not on the UPS pathway. These findings suggest that manipulation of the endo-lysosomal pathway could be therapeutically relevant for RGC protection in treating optic neuropathies associated with mitophagy defects. Endo-lysosome dependent cell survival is also conserved in other human neurons as we found that differentiated human cerebral cortical neurons also degenerated upon endo-lysosomal inhibition but not with proteasome inhibition. Human retinal ganglion cells (hRGCs) degrade damaged mitochondria more efficiently than the origin stem cells. Human stem cells rely on the ubiquitin proteasome system (UPS) for damaged mitochondrial clearance and survival. hRGCs rely on the endo-lysosomal pathway for mitochondrial clearance and survival. Unlike stem cells, proteasomal inhibition did not cause severe cell death for hRGCs. Transition from the UPS to endo-lysosomal pathway during differentiation was also observed for cerebral cortical neurons.
Collapse
Affiliation(s)
- Arupratan Das
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
| | - Claire M Bell
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Cynthia A Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | | | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
| |
Collapse
|
20
|
Petit L, Ma S, Cipi J, Cheng SY, Zieger M, Hay N, Punzo C. Aerobic Glycolysis Is Essential for Normal Rod Function and Controls Secondary Cone Death in Retinitis Pigmentosa. Cell Rep 2019; 23:2629-2642. [PMID: 29847794 PMCID: PMC5997286 DOI: 10.1016/j.celrep.2018.04.111] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 03/22/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023] Open
Abstract
Aerobic glycolysis accounts for ~80%–90% of glucose used by adult photoreceptors (PRs); yet, the importance of aerobic glycolysis for PR function or survival remains unclear. Here, we further established the role of aerobic glycolysis in murine rod and cone PRs. We show that loss of hexokinase-2 (HK2), a key aerobic glycolysis enzyme, does not affect PR survival or structure but is required for normal rod function. Rods with HK2 loss increase their mitochondrial number, suggesting an adaptation to the inhibition of aerobic glycolysis. In contrast, cones adapt without increased mitochondrial number but require HK2 to adapt to metabolic stress conditions such as those encountered in retinitis pigmentosa, where the loss of rods causes a nutrient shortage in cones. The data support a model where aerobic glycolysis in PRs is not a necessity but rather a metabolic choice that maximizes PR function and adaptability to nutrient stress conditions.
Collapse
Affiliation(s)
- Lolita Petit
- Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shan Ma
- Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Joris Cipi
- Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shun-Yun Cheng
- Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marina Zieger
- Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Claudio Punzo
- Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
21
|
New Insights into the Mechanisms of Action of Topical Administration of GLP-1 in an Experimental Model of Diabetic Retinopathy. J Clin Med 2019; 8:jcm8030339. [PMID: 30862093 PMCID: PMC6463072 DOI: 10.3390/jcm8030339] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 12/25/2022] Open
Abstract
The main goals of this work were to assess whether the topical administration of glucagon-like peptide-1 (GLP-1) could revert the impairment of the neurovascular unit induced by long-term diabetes (24 weeks) in diabetic mice and to look into the underlying mechanisms. For that reason, db/db mice were treated with eye drops of GLP-1 or vehicle for 3 weeks. Moreover, db/+ mice were used as control. Studies performed in vivo included electroretinogramand the assessment of vascular leakage by using Evans Blue. NF-κB, GFAP and Ki67 proteins were analyzed by immunofluorescence (IF). Additionally, caspase 9, AMPK, IKBα, NF-κB, AKT, GSK3, β-catenin, Bcl-xl, and VEGF were analyzed by WB. Finally, VEGF, IL-1β, IL-6, TNF-α, IL-18, and NLRP3 were studied by reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence. We found that topical administration of GLP-1 reverted reactive gliosis and albumin extravasation, and protected against apoptosis and retinal dysfunction. Regarding the involved mechanisms, GLP-1 exerted an anti-inflammatory action by decreasing NF-κB, inflammosome, and pro-inflammatory factors. In addition, it also decreased VEGF expression. Furthermore, GLP-1 promoted cell survival by increasing the anti-apoptotic protein Bcl-xl and the signaling pathway Akt/GSK3b/β-catenin. Finally, Ki67 results revealed that GLP-1 treatment could induce neurogenesis. In conclusion, the topical administration of GLP-1 reverts the impairment of the neurovascular unit by modulating essential pathways involved in the development of diabetic retinopathy (DR). These beneficial effects on the neurovascular unit could pave the way for clinical trials addressed to confirm the effectiveness of GLP-1 in early stages of DR.
Collapse
|
22
|
Mirzaei M, Pushpitha K, Deng L, Chitranshi N, Gupta V, Rajput R, Mangani AB, Dheer Y, Godinez A, McKay MJ, Kamath K, Pascovici D, Wu JX, Salekdeh GH, Karl T, Haynes PA, Graham SL, Gupta VK. Upregulation of Proteolytic Pathways and Altered Protein Biosynthesis Underlie Retinal Pathology in a Mouse Model of Alzheimer's Disease. Mol Neurobiol 2019; 56:6017-6034. [PMID: 30707393 DOI: 10.1007/s12035-019-1479-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022]
Abstract
Increased amyloid β (Aβ) aggregation is a hallmark feature of Alzheimer's disease (AD) pathology. The APP/PS1 mouse model of AD exhibits accumulation of Aβ in the retina and demonstrates reduced retinal function and other degenerative changes. The overall molecular effects of AD pathology on the retina remain undetermined. Using a proteomics approach, this study assessed the molecular effects of Aβ accumulation and progression of AD pathology on the retina. Retinal tissues from younger (2.5 months) and older 8-month APP/PS1 mice were analysed for protein expression changes. A multiplexed proteomics approach using chemical isobaric tandem mass tags was applied followed by functional and protein-protein interaction analyses using Ingenuity pathway (IPA) and STRING computational tools. We identified approximately 2000 proteins each in the younger (upregulated 50; downregulated 36) and older set of APP/PS1 (upregulated 85; downregulated 79) mice retinas. Amyloid precursor protein (APP) was consistently upregulated two to threefold in both younger and older retinas (p < 0.0001). Mass spectrometry data further revealed that older APP/PS1 mice retinas had elevated levels of proteolytic enzymes cathepsin D, presenilin 2 and nicastrin that are associated with APP processing. Increased levels of proteasomal proteins Psma5, Psmd3 and Psmb2 were also observed in the older AD retinas. In contrast to the younger animals, significant downregulation of protein synthesis and elongation associated proteins such as Eef1a1, Rpl35a, Mrpl2 and Eef1e1 (p < 0.04) was identified in the older mice retinas. This study reports for the first time that not only old but also young APP/PS1 animals demonstrate increased amyloid protein levels in their retinas. Quantitative proteomics reveals new molecular insights which may represent a cellular response to clear amyloid build-up. Further, downregulation of ribosomal proteins involved in protein biosynthesis was observed which might be considered a toxicity effect.
Collapse
Affiliation(s)
- Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia. .,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia. .,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia.
| | - Kanishka Pushpitha
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Liting Deng
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Rashi Rajput
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Abu Bakr Mangani
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Angela Godinez
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Matthew J McKay
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Karthik Kamath
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Dana Pascovici
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Jemma X Wu
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Molecular Systems Biology, Cell Science Research Center, Royan, Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Paul A Haynes
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
23
|
Dheer Y, Chitranshi N, Gupta V, Sharma S, Pushpitha K, Abbasi M, Mirzaei M, You Y, Graham SL, Gupta V. Retinoid x receptor modulation protects against ER stress response and rescues glaucoma phenotypes in adult mice. Exp Neurol 2019; 314:111-125. [PMID: 30703361 DOI: 10.1016/j.expneurol.2019.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/23/2018] [Accepted: 01/22/2019] [Indexed: 11/26/2022]
Abstract
Retinoid X receptors (RXRs) play an important role in transcription, are involved in numerous cellular networks from cell proliferation to lipid metabolism and are essential for normal eye development. RXRs form homo or heterodimers with other nuclear receptors, bind to DNA response elements and regulate several biological processes including neurogenesis. Mounting evidence suggests that RXR activation by selective RXR modulators (sRXRms) may be neuroprotective in the central nervous system. However, their potential neuroprotective role in the retina and specifically in glaucoma remains unexplored. This study investigated changes in RXR expression in the human and mouse retina under glaucomatous stress conditions and investigated the effect of RXR modulation on the RGCs using pharmacological approaches. RXR protein levels in retina were downregulated in both human glaucoma and experimental RGC injury models while RXR agonist, bexarotene treatment resulted in upregulation of RXR expression particularly in the inner retinal layers. Retinal electrophysiological recordings and histological analysis indicated that inner retinal function and retinal laminar structure were preserved upon treatment with bexarotene. These protective effects were associated with downregulation of ER stress marker response upon bexarotene treatment under glaucoma conditions. Overall, retinal RXR modulation by bexarotene significantly protected RGCs in vivo in both acute and chronic glaucoma models.
Collapse
Affiliation(s)
- Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia.
| | - Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, Australia
| | - Samridhi Sharma
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Kanishka Pushpitha
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Mojdeh Abbasi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Mehdi Mirzaei
- Department of Molecular Science, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yuyi You
- Save Sight Institute, Sydney University, Sydney, NSW 2000, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; Save Sight Institute, Sydney University, Sydney, NSW 2000, Australia
| | - Vivek Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia.
| |
Collapse
|
24
|
Loss of Shp2 Rescues BDNF/TrkB Signaling and Contributes to Improved Retinal Ganglion Cell Neuroprotection. Mol Ther 2018; 27:424-441. [PMID: 30341011 DOI: 10.1016/j.ymthe.2018.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is characterized by the loss of retinal ganglion cells (RGC), and accordingly the preservation of RGCs and their axons has recently attracted significant attention to improve therapeutic outcomes in the disease. Here, we report that Src homology region 2-containing protein tyrosine phosphatase 2 (Shp2) undergoes activation in the RGCs, in animal model of glaucoma as well as in the human glaucoma tissues and that Shp2 dephosphorylates tropomyosin receptor kinase B (TrkB) receptor, leading to reduced BDNF/TrkB neuroprotective survival signaling. This was elucidated by specifically modulating Shp2 expression in the RGCs in vivo, using adeno-associated virus serotype 2 (AAV2) constructs. Shp2 upregulation promoted endoplasmic reticulum (ER) stress and apoptosis, along with functional and structural deficits in the inner retina. In contrast, loss of Shp2 decelerated the loss of RGCs, preserved their function, and suppressed ER stress and apoptosis in glaucoma. This report constitutes the first identification of Shp2-mediated TrkB regulatory mechanisms in the RGCs that can become a potential therapeutic target in both glaucoma and other neurodegenerative disorders.
Collapse
|
25
|
Sánchez-Cruz A, Villarejo-Zori B, Marchena M, Zaldivar-Díez J, Palomo V, Gil C, Lizasoain I, de la Villa P, Martínez A, de la Rosa EJ, Hernández-Sánchez C. Modulation of GSK-3 provides cellular and functional neuroprotection in the rd10 mouse model of retinitis pigmentosa. Mol Neurodegener 2018; 13:19. [PMID: 29661219 PMCID: PMC5902946 DOI: 10.1186/s13024-018-0251-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 04/09/2018] [Indexed: 12/29/2022] Open
Abstract
Background Retinitis pigmentosa (RP) is a group of hereditary retinal neurodegenerative conditions characterized by primary dysfunction and death of photoreceptor cells, resulting in visual loss and, eventually, blindness. To date, no effective therapies have been transferred to clinic. Given the diverse genetic etiology of RP, targeting common cellular and molecular retinal alterations has emerged as a potential therapeutic strategy. Methods Using the Pde6brd10/rd10 mouse model of RP, we investigated the effects of daily intraperitoneal administration of VP3.15, a small-molecule heterocyclic GSK-3 inhibitor. Gene expression was analyzed by quantitative PCR and protein expression and phosphorylation by Western blot. Photoreceptor preservation was evaluated by histological analysis and visual function was assessed by electroretinography. Results In rd10 retinas, increased expression of pro-inflammatory markers and reactive gliosis coincided with the early stages of retinal degeneration. Compared with wild-type controls, GSK-3β expression (mRNA and protein) remained unchanged during the retinal degeneration period. However, levels of GSK-3βSer9 and its regulator AktSer473 were increased in rd10 versus wild-type retinas. In vivo administration of VP3.15 reduced photoreceptor cell loss and preserved visual function. This neuroprotective effect was accompanied by a decrease in the expression of neuroinflammatory markers. Conclusions These results provide proof of concept of the therapeutic potential of VP3.15 for the treatment of retinal neurodegenerative conditions in general, and RP in particular. Electronic supplementary material The online version of this article (10.1186/s13024-018-0251-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alonso Sánchez-Cruz
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain.,Neurovascular Research Unit, Department of Pharmacology, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Beatriz Villarejo-Zori
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Miguel Marchena
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Josefa Zaldivar-Díez
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Valle Palomo
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Carmen Gil
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Ignacio Lizasoain
- Neurovascular Research Unit, Department of Pharmacology, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Pedro de la Villa
- Department of Systems Biology, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Ana Martínez
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Enrique J de la Rosa
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Catalina Hernández-Sánchez
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain.
| |
Collapse
|
26
|
Abbasi M, Gupta V, Chitranshi N, You Y, Dheer Y, Mirzaei M, Graham SL. Regulation of Brain-Derived Neurotrophic Factor and Growth Factor Signaling Pathways by Tyrosine Phosphatase Shp2 in the Retina: A Brief Review. Front Cell Neurosci 2018; 12:85. [PMID: 29636665 PMCID: PMC5880906 DOI: 10.3389/fncel.2018.00085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/09/2018] [Indexed: 01/31/2023] Open
Abstract
SH2 domain-containing tyrosine phosphatase-2 (PTPN11 or Shp2) is a ubiquitously expressed protein that plays a key regulatory role in cell proliferation, differentiation and growth factor (GF) signaling. This enzyme is well expressed in various retinal neurons and has emerged as an important player in regulating survival signaling networks in the neuronal tissues. The non-receptor phosphatase can translocate to lipid rafts in the membrane and has been implicated to regulate several signaling modules including PI3K/Akt, JAK-STAT and Mitogen Activated Protein Kinase (MAPK) pathways in a wide range of biochemical processes in healthy and diseased states. This review focuses on the roles of Shp2 phosphatase in regulating brain-derived neurotrophic factor (BDNF) neurotrophin signaling pathways and discusses its cross-talk with various GF and downstream signaling pathways in the retina.
Collapse
Affiliation(s)
- Mojdeh Abbasi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vivek Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Yuyi You
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
27
|
Chitranshi N, Dheer Y, Abbasi M, You Y, Graham SL, Gupta V. Glaucoma Pathogenesis and Neurotrophins: Focus on the Molecular and Genetic Basis for Therapeutic Prospects. Curr Neuropharmacol 2018; 16:1018-1035. [PMID: 29676228 PMCID: PMC6120108 DOI: 10.2174/1570159x16666180419121247] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Retinal ganglion cell (RGC) degeneration is a major feature of glaucoma pathology. Neuroprotective approaches that delay or halt the progression of RGC loss are needed to prevent vision loss which can occur even after conventional medical or surgical treatments to lower intraocular pressure. OBJECTIVE The aim of this review was to examine the progress in genetics and cellular mechanisms associated with endoplasmic reticulum (ER) stress, RGC dysfunction and cell death pathways in glaucoma. MATERIALS AND METHODS Here, we review the involvement of neurotrophins like brain derived neurotrophic factor (BDNF) and its high affinity receptor tropomyosin receptor kinase (TrkB) in glaucoma. The role of ER stress markers in human and animal retinas in health and disease conditions is also discussed. Further, we analysed the literature highlighting genetic linkage in the context of primary open angle glaucoma and suggested mechanistic insights into potential therapeutic options relevant to glaucoma management. RESULTS The literature review of the neurobiology underlying neurotrophin pathways, ER stress and gene associations provide critical insights into association of RGCs death in glaucoma. Alteration in signalling pathway is associated with increased risk of misfolded protein aggregation in ER promoting RGC apoptosis. Several genes that are linked with neurotrophin signalling pathways have been reported to be associated with glaucoma pathology. CONCLUSION Understanding genetic heterogeneity and involvement of neurotrophin biology in glaucoma could help to understand the complex pathophysiology of glaucoma. Identification of novel molecular targets will be critical for drug development and provide neuroprotection to the RGCs and optic nerve.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Address correspondence to this author at the Faculty of Medicine and Health Sciences, 75, Talavera Road, Macquarie University, Sydney, NSW 2109, Australia; Tel: +61-298502760; E-mail:
| | | | | | | | | | | |
Collapse
|
28
|
Chitranshi N, Dheer Y, Gupta V, Abbasi M, Mirzaei M, You Y, Chung R, Graham SL, Gupta V. PTPN11 induces endoplasmic stress and apoptosis in SH-SY5Y cells. Neuroscience 2017; 364:175-189. [PMID: 28947394 DOI: 10.1016/j.neuroscience.2017.09.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/25/2022]
Abstract
PTPN11 is associated with regulation of growth factor signaling pathways in neuronal cells. Using SH-SY5Y neuroblastoma cells, we showed that adeno-associated virus (AAV)-mediated PTPN11 upregulation was associated with TrkB antagonism, reduced neuritogenesis and enhanced endoplasmic reticulum (ER) stress response leading to apoptotic changes. Genetic knock-down of PTPN11 on the other hand leads to increased TrkB phosphorylation in SH-SY5Y cells. ER stress response induced by PTPN11 upregulation was alleviated pharmacologically by a TrkB agonist. Conversely the enhanced ER stress response induced by TrkB receptor antagonism was ameliorated by PTPN11 suppression, providing evidence of cross-talk of PTPN11 effects with TrkB actions. BDNF treatment of neuronal cells with PTPN11 upregulation also resulted in reduced expression of ER stress protein markers. This study provides evidence of molecular interactions between PTPN11 and the TrkB receptor in SH-SY5Y cells. The results reinforce the role played by PTPN11 in regulating neurotrophin protective signaling in neuronal cells and highlight that PTPN11 dysregulation promotes apoptotic activation. Based on these findings we suggest that blocking PTPN11 could have potential beneficial effects to limit the progression of neuronal loss in neurodegenerative disorders.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia.
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Veer Gupta
- School of Medical Sciences, Edith Cowan University, Perth, Australia
| | - Mojdeh Abbasi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia; Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yuyi You
- Save Sight Institute, Sydney University, Sydney, NSW 2000, Australia
| | - Roger Chung
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; Save Sight Institute, Sydney University, Sydney, NSW 2000, Australia
| | - Vivek Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| |
Collapse
|
29
|
Gupta V, Mirzaei M, Gupta VB, Chitranshi N, Dheer Y, Vander Wall R, Abbasi M, You Y, Chung R, Graham S. Glaucoma is associated with plasmin proteolytic activation mediated through oxidative inactivation of neuroserpin. Sci Rep 2017; 7:8412. [PMID: 28827627 PMCID: PMC5566433 DOI: 10.1038/s41598-017-08688-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 07/13/2017] [Indexed: 12/15/2022] Open
Abstract
Neuroserpin is a serine protease inhibitor that regulates the activity of plasmin and its activators in the neuronal tissues. This study provides novel evidence of regulatory effect of the neuroserpin on plasmin proteolytic activity in the retina in glaucoma. Human retinal and vitreous tissues from control and glaucoma subjects as well as retinas from experimental glaucoma rats were analysed to establish changes in plasmin and neuroserpin activity. Neuroserpin undergoes oxidative inactivation in glaucoma which leads to augmentation of plasmin activity. Neuroserpin contains several methionine residues in addition to a conserved reactive site methionine and our study revealed enhanced oxidation of Met residues in the serpin under glaucoma conditions. Met oxidation was associated with loss of neuroserpin inhibitory activity and similar findings were observed in the retinas of superoxide dismutase (SOD) mutant mice that have increased oxidative stress. Treatment of purified neuroserpin with H2O2 further established that Met oxidation inversely correlated with its plasmin inhibitory activity. Dysregulation of the plasmin proteolytic system associated with increased degradation of the extracellular matrix (ECM) proteins in the retina. Collectively, these findings delineate a novel molecular basis of plasmin activation in glaucoma and potentially for other neuronal disorders with implications in disease associated ECM remodelling.
Collapse
Affiliation(s)
- Vivek Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Veer Bala Gupta
- School of Medical Sciences, Edith Cowan University, Perth, Australia
| | - Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Roshana Vander Wall
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Mojdeh Abbasi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Yuyi You
- Save Sight Institute, Sydney University, Sydney, Australia
| | - Roger Chung
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Stuart Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
- Save Sight Institute, Sydney University, Sydney, Australia
| |
Collapse
|
30
|
Mathur A, Pandey VK, Kakkar P. PHLPP: a putative cellular target during insulin resistance and type 2 diabetes. J Endocrinol 2017; 233:R185-R198. [PMID: 28428363 DOI: 10.1530/joe-17-0081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/20/2017] [Indexed: 12/29/2022]
Abstract
Progressive research in the past decade converges to the impact of PHLPP in regulating the cellular metabolism through PI3K/AKT inhibition. Aberrations in PKB/AKT signaling coordinates with impaired insulin secretion and insulin resistance, identified during T2D, obesity and cardiovascular disorders which brings in the relevance of PHLPPs in the metabolic paradigm. In this review, we discuss the impact of PHLPP isoforms in insulin signaling and its associated cellular events including mitochondrial dysfunction, DNA damage, autophagy and cell death. The article highlights the plausible molecular targets that share the role during insulin-resistant states, whose understanding can be extended into treatment responses to facilitate targeted drug discovery for T2D and allied metabolic syndromes.
Collapse
Affiliation(s)
- Alpana Mathur
- Herbal Research LaboratoryCSIR-Indian Institute of Toxicology Research, Lucknow, India
- Babu Banarasi Das UniversityBBD City, Lucknow, India
| | - Vivek Kumar Pandey
- Herbal Research LaboratoryCSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative ResearchCSIR-IITR, Lucknow, India
| | - Poonam Kakkar
- Herbal Research LaboratoryCSIR-Indian Institute of Toxicology Research, Lucknow, India
- Babu Banarasi Das UniversityBBD City, Lucknow, India
- Academy of Scientific and Innovative ResearchCSIR-IITR, Lucknow, India
| |
Collapse
|
31
|
Chitranshi N, Dheer Y, Wall RV, Gupta V, Abbasi M, Graham SL, Gupta V. Computational analysis unravels novel destructive single nucleotide polymorphisms in the non-synonymous region of human caveolin gene. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2016.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
The Warburg Effect Mediator Pyruvate Kinase M2 Expression and Regulation in the Retina. Sci Rep 2016; 6:37727. [PMID: 27883057 PMCID: PMC5121888 DOI: 10.1038/srep37727] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/31/2016] [Indexed: 01/06/2023] Open
Abstract
The tumor form of pyruvate kinase M2 (PKM2) undergoes tyrosine phosphorylation and gives rise to the Warburg effect. The Warburg effect defines a pro-oncogenic metabolism switch such that cancer cells take up more glucose than normal tissue and favor incomplete oxidation of glucose, even in the presence of oxygen. Retinal photoreceptors are highly metabolic and their energy consumption is equivalent to that of a multiplying tumor cell. In the present study, we found that PKM2 is the predominant isoform in both rod- and cone-dominant retina, and that it undergoes a light-dependent tyrosine phosphorylation. We also discovered that PKM2 phosphorylation is signaled through photobleaching of rhodopsin. Our findings suggest that phosphoinositide 3-kinase activation promotes PKM2 phosphorylation. Light and tyrosine phosphorylation appear to regulate PKM2 to provide a metabolic advantage to photoreceptor cells, thereby promoting cell survival.
Collapse
|
33
|
Spencer WJ, Pearring JN, Salinas RY, Loiselle DR, Skiba NP, Arshavsky VY. Progressive Rod-Cone Degeneration (PRCD) Protein Requires N-Terminal S-Acylation and Rhodopsin Binding for Photoreceptor Outer Segment Localization and Maintaining Intracellular Stability. Biochemistry 2016; 55:5028-37. [PMID: 27509380 PMCID: PMC5513659 DOI: 10.1021/acs.biochem.6b00489] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The light-sensing outer segments of photoreceptor cells harbor hundreds of flattened membranous discs containing the visual pigment, rhodopsin, and all the proteins necessary for visual signal transduction. PRCD (progressive rod-cone degeneration) protein is one of a few proteins residing specifically in photoreceptor discs, and the only one with completely unknown function. The importance of PRCD is highlighted by its mutations that cause photoreceptor degeneration and blindness in canine and human patients. Here we report that PRCD is S-acylated at its N-terminal cysteine and anchored to the cytosolic surface of disc membranes. We also showed that mutating the S-acylated cysteine to tyrosine, a common cause of blindness in dogs and a mutation found in affected human families, causes PRCD to be completely mislocalized from the photoreceptor outer segment. We next undertook a proteomic search for PRCD-interacting partners in disc membranes and found that it binds rhodopsin. This interaction was confirmed by reciprocal precipitation and co-chromatography experiments. We further demonstrated this interaction to be critically important for supporting the intracellular stability of PRCD, as the knockout of rhodopsin caused a drastic reduction in the photoreceptor content of PRCD. These data reveal the cause of photoreceptor disease in PRCD mutant dogs and implicate rhodopsin to be involved in PRCD's unknown yet essential function in photoreceptors.
Collapse
Affiliation(s)
- William J. Spencer
- Department of Pharmacology, Duke University, Durham, NC 27710
- Department of Ophthalmology, Duke University, Durham, NC 27710
| | | | - Raquel Y. Salinas
- Department of Pharmacology, Duke University, Durham, NC 27710
- Department of Ophthalmology, Duke University, Durham, NC 27710
| | | | | | - Vadim Y. Arshavsky
- Department of Pharmacology, Duke University, Durham, NC 27710
- Department of Ophthalmology, Duke University, Durham, NC 27710
| |
Collapse
|
34
|
Gupta VK, Chitranshi N, Gupta VB, Golzan M, Dheer Y, Wall RV, Georgevsky D, King AE, Vickers JC, Chung R, Graham S. Amyloid β accumulation and inner retinal degenerative changes in Alzheimer's disease transgenic mouse. Neurosci Lett 2016; 623:52-6. [PMID: 27133194 DOI: 10.1016/j.neulet.2016.04.059] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/31/2016] [Accepted: 04/26/2016] [Indexed: 11/26/2022]
Abstract
The APP-PS1ΔE9 mouse model of Alzheimer's disease (AD) exhibits age dependent amyloid β (Aβ) plaque formation in their central nervous system due to high expression of mutated human APP and PSEN1 transgenes. Here we evaluated Aβ deposition and changes in soluble Aβ accumulation in the retinas of aged APP-PS1 mice using a combination of immunofluorescence, retinal flat mounts and western blotting techniques. Aβ accumulation in the retina has previously been shown to be associated with retinal ganglion cell apoptosis in animal models of glaucoma. This study investigated changes in the inner retinal function and structure in APP-PS1 mice using electrophysiology and histological approaches respectively. We report for the first time a significant decline in scotopic threshold response (STR) amplitudes which represents inner retinal function in transgenic animals compared to the wild type counterparts (p<0.0001). Thinning of the retina particularly involving inner retinal layers and reduction in axonal density in the optic nerve was also observed. TUNEL staining was performed to examine neuronal apoptosis in the inner retina. Intraocular pressure (IOP) measurements showed that APP-PS1ΔE9 mice had a slightly elevated IOP, but the significance of this finding is not yet known. Together, these results substantiate previous observations and highlight that APP-PS1ΔE9 mice show evidence of molecular, functional and morphological degenerative changes in the inner retina.
Collapse
Affiliation(s)
- Vivek K Gupta
- Faculty of Medicine and Health sciences, Macquarie University, Australia.
| | - Nitin Chitranshi
- Faculty of Medicine and Health sciences, Macquarie University, Australia
| | - Veer B Gupta
- School of Medical Sciences, Edith Cowan University, Perth, Australia
| | - Mojtaba Golzan
- Faculty of Medicine and Health sciences, Macquarie University, Australia
| | - Yogita Dheer
- Faculty of Medicine and Health sciences, Macquarie University, Australia
| | | | - Dana Georgevsky
- Faculty of Medicine and Health sciences, Macquarie University, Australia
| | - Anna E King
- Wicking Dementia Research & Education Centre, School of Medicine, University of Tasmania, Australia
| | - James C Vickers
- Wicking Dementia Research & Education Centre, School of Medicine, University of Tasmania, Australia
| | - Roger Chung
- Faculty of Medicine and Health sciences, Macquarie University, Australia
| | - Stuart Graham
- Faculty of Medicine and Health sciences, Macquarie University, Australia; Save Sight Institute, Sydney University, Australia
| |
Collapse
|
35
|
Hribal ML, Mancuso E, Spiga R, Mannino GC, Fiorentino TV, Andreozzi F, Sesti G. PHLPP phosphatases as a therapeutic target in insulin resistance-related diseases. Expert Opin Ther Targets 2016; 20:663-75. [PMID: 26652182 DOI: 10.1517/14728222.2016.1130822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Pleckstrin homology domain leucine-rich repeat protein phosphatases (PHLPPs), originally identified as Akt kinase hydrophobic motif specific phosphatases, have subsequently been shown to regulate several molecules recurring within the insulin signaling pathway. This observation suggests that PHLPP phosphatases may have a clinically relevant role in the pathogenesis of insulin resistance-related diseases and may thus represent suitable targets for the treatment of these conditions. AREAS COVERED The literature pertaining to PHLPPs substrates is reviewed herein, along with information on the molecular players involved in regulating the activity and expression of PHLPP phosphatases. In the present review, knowledge of genetic variants in the genes that encode for PHLPP isozymes and the surrounding regulatory regions is also summarized. In addition, data from the studies addressing the role of PHLPPs in insulin resistance-related disorders and from those investigating the possibility to manipulate these phosphatases for therapeutic purposes are presented. EXPERT OPINION A number of issues should be resolved before PHLPPs are pursued as therapeutic targets including: the mechanisms regulating the specificity of PHLPP isozymes; the possibility of differentially regulating PHLPP family members and the possible impact of PHLPPs modulation on the risk of cancer.
Collapse
Affiliation(s)
- Marta Letizia Hribal
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Elettra Mancuso
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Rosangela Spiga
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Gaia Chiara Mannino
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Teresa Vanessa Fiorentino
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Francesco Andreozzi
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Giorgio Sesti
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| |
Collapse
|
36
|
Hurley JB, Lindsay KJ, Du J. Glucose, lactate, and shuttling of metabolites in vertebrate retinas. J Neurosci Res 2015; 93:1079-92. [PMID: 25801286 PMCID: PMC4720126 DOI: 10.1002/jnr.23583] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 02/06/2023]
Abstract
The vertebrate retina has specific functions and structures that give it a unique set of constraints on the way in which it can produce and use metabolic energy. The retina's response to illumination influences its energy requirements, and the retina's laminated structure influences the extent to which neurons and glia can access metabolic fuels. There are fundamental differences between energy metabolism in retina and that in brain. The retina relies on aerobic glycolysis much more than the brain does, and morphological differences between retina and brain limit the types of metabolic relationships that are possible between neurons and glia. This Mini-Review summarizes the unique metabolic features of the retina with a focus on the role of lactate shuttling.
Collapse
Affiliation(s)
- James B. Hurley
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, Washington
| | - Kenneth J. Lindsay
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, Washington
| | - Jianhai Du
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, Washington
| |
Collapse
|
37
|
Rajala RVS, Ranjo-Bishop M, Wang Y, Rajala A, Anderson RE. The p110α isoform of phosphoinositide 3-kinase is essential for cone photoreceptor survival. Biochimie 2015; 112:35-40. [PMID: 25742742 DOI: 10.1016/j.biochi.2015.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/20/2015] [Indexed: 12/12/2022]
Abstract
Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that phosphorylates the 3'OH of the inositol ring of phosphoinositides (PIs). They are responsible for coordinating a diverse range of cellular functions. Class IA PI3K is a heterodimeric protein composed of a regulatory p85 and a catalytic p110 subunit. In this study, we conditionally deleted the p110α-subunit of PI3K in cone photoreceptor cells using the Cre-loxP system. Cone photoreceptors allow for color vision in bright light (daylight vision). Cone-specific deletion of p110α resulted in cone degeneration. Our studies suggest that PI3K signaling is essential for cone photoreceptor functions.
Collapse
Affiliation(s)
- Raju V S Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Michelle Ranjo-Bishop
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yuhong Wang
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ammaji Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Robert E Anderson
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
38
|
Abstract
Although photoreceptors account for most of the mass and metabolic activity of the retina, their role in the pathogenesis of diabetic retinopathy has been largely overlooked. Recent studies suggest that photoreceptors might play a critical role in the diabetes-induced degeneration of retinal capillaries, and thus can no longer be ignored. The present review summarizes diabetes-induced alterations in photoreceptor structure and function, and provides a rationale for further study of a role of photoreceptors in the pathogenesis of the retinopathy.
Collapse
Affiliation(s)
- Timothy S Kern
- Case Western Reserve University, Department of Medicine and Center for Diabetes Research Cleveland, Ohio, USA ; Veterans Administration Medical Center Research Service 151 Cleveland, Ohio, USA
| | - Bruce A Berkowitz
- Wayne State University School of Medicine, Departments of Anatomy and Cell Biology and Ophthalmology Detroit, Michigan, USA
| |
Collapse
|
39
|
Roberts DJ, Miyamoto S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ 2014; 22:248-57. [PMID: 25323588 DOI: 10.1038/cdd.2014.173] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 01/08/2023] Open
Abstract
Accumulating evidence reveals that metabolic and cell survival pathways are closely related, sharing common signaling molecules. Hexokinase catalyzes the phosphorylation of glucose, the rate-limiting first step of glycolysis. Hexokinase II (HK-II) is a predominant isoform in insulin-sensitive tissues such as heart, skeletal muscle, and adipose tissues. It is also upregulated in many types of tumors associated with enhanced aerobic glycolysis in tumor cells, the Warburg effect. In addition to the fundamental role in glycolysis, HK-II is increasingly recognized as a component of a survival signaling nexus. This review summarizes recent advances in understanding the protective role of HK-II, controlling cellular growth, preventing mitochondrial death pathway and enhancing autophagy, with a particular focus on the interaction between HK-II and Akt/mTOR pathway to integrate metabolic status with the control of cell survival.
Collapse
Affiliation(s)
- D J Roberts
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - S Miyamoto
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| |
Collapse
|
40
|
Wang F, Wang Y, Zhang B, Zhao L, Lyubasyuk V, Wang K, Xu M, Li Y, Wu F, Wen C, Bernstein PS, Lin D, Zhu S, Wang H, Zhang K, Chen R. A missense mutation in HK1 leads to autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 2014; 55:7159-64. [PMID: 25316723 DOI: 10.1167/iovs.14-15520] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Retinitis pigmentosa (RP) is a genetically heterogeneous disease with over 60 causative genes known to date. Nevertheless, approximately 40% of RP cases remain genetically unsolved, suggesting that many novel disease-causing genes are yet to be identified. In this study, we aimed to identify the causative mutation for a large autosomal dominant RP (adRP) family with negative results from known retinal disease gene screening. METHODS Linkage analysis followed by whole-exome sequencing was performed. Stringent variant filtering and prioritization was carried out to identify the causative mutation. RESULTS Linkage analysis identified a minimal disease region of 8 Mb on chromosome 10 with a peak parametric logarithm (base 10) of odds (LOD) score of 3.500. Further whole-exome sequencing identified a heterozygous missense mutation (NM_000188.2:c.2539G>A, p.E847K) in hexokinase 1 (HK1) that segregated with the disease phenotype in the family. Biochemical assays showed that the E847K mutation does not affect hexokinase enzymatic activity or the protein stability, suggesting that the mutation may impact other uncharacterized function or result in a gain of function of HK1. CONCLUSIONS Here, we identified HK1 as a novel causative gene for adRP. This is the first report that associates the glucose metabolic pathway with human retinal degenerative disease, suggesting a potential new disease mechanism.
Collapse
Affiliation(s)
- Feng Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Yandong Wang
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bin Zhang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Li Zhao
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas, United States
| | - Vera Lyubasyuk
- Shiley Eye Center and Institute for Genomic Medicine, University of California-San Diego, La Jolla, California, United States
| | - Keqing Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Mingchu Xu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Frances Wu
- Shiley Eye Center and Institute for Genomic Medicine, University of California-San Diego, La Jolla, California, United States
| | - Cindy Wen
- Shiley Eye Center and Institute for Genomic Medicine, University of California-San Diego, La Jolla, California, United States
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Danni Lin
- Shiley Eye Center and Institute for Genomic Medicine, University of California-San Diego, La Jolla, California, United States
| | - Susanna Zhu
- Shiley Eye Center and Institute for Genomic Medicine, University of California-San Diego, La Jolla, California, United States
| | - Hui Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Kang Zhang
- Shiley Eye Center and Institute for Genomic Medicine, University of California-San Diego, La Jolla, California, United States Veterans Administration Healthcare System, San Diego, California, United States
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas, United States The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
41
|
Abcouwer SF, Gardner TW. Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment. Ann N Y Acad Sci 2014; 1311:174-90. [PMID: 24673341 DOI: 10.1111/nyas.12412] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetic retinopathy (DR) impairs vision of patients with type 1 and type 2 diabetes, associated with vascular dysfunction and occlusion, retinal edema, hemorrhage, and inappropriate growth of new blood vessels. The recent success of biologic treatments targeting vascular endothelial growth factor (VEGF) demonstrates that treating the vascular aspects in the later stages of the disease can preserve vision in many patients. It would also be highly desirable to prevent the onset of the disease or arrest its progression at a stage preceding the appearance of overt microvascular pathologies. The progression of DR is not necessarily linear but may follow a series of steps that evolve over the course of multiple years. Abundant data suggest that diabetes affects the entire neurovascular unit of the retina, with an early loss of neurovascular coupling, gradual neurodegeneration, gliosis, and neuroinflammation occurring before observable vascular pathologies. In this article, we consider the pathology of DR from the point of view that diabetes causes measurable dysfunctions in the complex integral network of cell types that produce and maintain human vision.
Collapse
Affiliation(s)
- Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan
| | | |
Collapse
|