1
|
Zhao H, Qiu X, Wang S, Wang Y, Xie L, Xia X, Li W. Multiple pathways through which the gut microbiota regulates neuronal mitochondria constitute another possible direction for depression. Front Microbiol 2025; 16:1578155. [PMID: 40313405 PMCID: PMC12043685 DOI: 10.3389/fmicb.2025.1578155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
As a significant mental health disorder worldwide, the treatment of depression has long faced the challenges of a low treatment rate, significant drug side effects and a high relapse rate. Recent studies have revealed that the gut microbiota and neuronal mitochondrial dysfunction play central roles in the pathogenesis of depression: the gut microbiota influences the course of depression through multiple pathways, including immune regulation, HPA axis modulation and neurotransmitter metabolism. Mitochondrial function serves as a key hub that mediates mood disorders through mechanisms such as defective energy metabolism, impaired neuroplasticity and amplified neuroinflammation. Notably, a bidirectional regulatory network exists between the gut microbiota and mitochondria: the flora metabolite butyrate enhances mitochondrial biosynthesis through activation of the AMPK-PGC1α pathway, whereas reactive oxygen species produced by mitochondria counteract the flora composition by altering the intestinal epithelial microenvironment. In this study, we systematically revealed the potential pathways by which the gut microbiota improves neuronal mitochondrial function by regulating neurotransmitter synthesis, mitochondrial autophagy, and oxidative stress homeostasis and proposed the integration of probiotic supplementation, dietary fiber intervention, and fecal microbial transplantation to remodel the flora-mitochondrial axis, which provides a theoretical basis for the development of novel antidepressant therapies targeting gut-brain interactions.
Collapse
Affiliation(s)
- Hongyi Zhao
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiongfeng Qiu
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuyu Wang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Wang
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Xie
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiuwen Xia
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weihong Li
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan College of Traditional Chinese Medicine, Mianyang, China
| |
Collapse
|
2
|
Yang M, Huang Y, Tang A, Zhang Y, Liu Y, Fan Z, Li M. Research Hotspots in Mitochondria-Related Studies for AKI Treatment: A Bibliometric Study. Drug Des Devel Ther 2024; 18:4051-4063. [PMID: 39280255 PMCID: PMC11402358 DOI: 10.2147/dddt.s473426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024] Open
Abstract
Purpose Acute kidney injury (AKI) is a common clinical critical condition that has become a significant healthcare burden. In recent years, the relationship between AKI and mitochondria has attracted increasing attention. Protecting mitochondria or restoring their function has emerged as a novel therapeutic strategy for alleviating AKI. This study aims to analyze and summarize the current status, research trends, and hotspots in this field, providing references and directions for future research. Methods AKI and mitochondria-related literature from the Web of Science core collection were retrieved and collected. Bibliometric and visualization analyses were conducted using Microsoft Excel 2021, bibliometric tools (VosViewer, Citespace 6.3.R1, and the bibliometrix R package), R 4.3.2, and SCImagoGraphica software. Results A total of 2433 publications were included in this study. The number of annual publications in this field has increased year by year. China and the United States are the two most productive countries. Central South University is the most influential research institution in terms of research output, and Parikh SM, Schnellmann RG, and Dong Z are the most influential authors in this field. KIDNEY INTERNATIONAL, JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, and AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY are the most influential journals. Initially, the research focused on keywords such as oxidative stress, ischemia-reperfusion injury, apoptosis, inflammation, and autophagy. In recent years, new research hotspots have emerged, including ferroptosis, aging, mitochondrial quality control, messenger RNA, mitochondrial-targeted antioxidants, extracellular vesicles, and nanodrug delivery. Conclusion Research on the relationship between mitochondria and AKI has broad developing prospects, and targeting mitochondrial regulation will become a focus of future AKI prevention and treatment research.
Collapse
Affiliation(s)
- Mengfan Yang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Youqun Huang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Anqi Tang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Yu Zhang
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Provincial, People’s Republic of China
| | - Yu Liu
- Department of Nephrology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Zhenliang Fan
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Mingquan Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
3
|
Jia PP, Li Y, Zhang LC, Wu MF, Li TY, Pei DS. Metabolome evidence of CKDu risks after chronic exposure to simulated Sri Lanka drinking water in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116149. [PMID: 38412632 DOI: 10.1016/j.ecoenv.2024.116149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/10/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
It is still a serious public health issue that chronic kidney disease of uncertain etiology (CKDu) in Sri Lanka poses challenges in identification, prevention, and treatment. What environmental factors in drinking water cause kidney damage remains unclear. This study aimed to investigate the risks of various environmental factors that may induce CKDu, including water hardness, fluoride (HF), heavy metals (HM), microcystin-LR (MC-LR), and their combined exposure (HFMM). The research focused on comprehensive metabolome analysis, and correlation with transcriptomic and gut microbiota changes. Results revealed that chronic exposure led to kidney damage and pancreatic toxicity in adult zebrafish. Metabolomics profiling showed significant alterations in biochemical processes, with enriched metabolic pathways of oxidative phosphorylation, folate biosynthesis, arachidonic acid metabolism, FoxO signaling pathway, lysosome, pyruvate metabolism, and purine metabolism. The network analysis revealed significant changes in metabolites associated with renal function and diseases, including 20-Hydroxy-LTE4, PS(18:0/22:2(13Z,16Z)), Neuromedin N, 20-Oxo-Leukotriene E4, and phenol sulfate, which are involved in the fatty acyls and glycerophospholipids class. These metabolites were closely associated with the disrupted gut bacteria of g_ZOR0006, g_Pseudomonas, g_Tsukamurella, g_Cetobacterium, g_Flavobacterium, which belonged to dominant phyla of Firmicutes and Proteobacteria, etc., and differentially expressed genes (DEGs) such as egln3, ca2, jun, slc2a1b, and gls2b in zebrafish. Exploratory omics analyses revealed the shared significantly changed pathways in transcriptome and metabolome like calcium signaling and necroptosis, suggesting potential biomarkers for assessing kidney disease.
Collapse
Affiliation(s)
- Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yan Li
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Lan-Chen Zhang
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Ming-Fei Wu
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Tian-Yun Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
4
|
Qiao L, Dou X, Song X, Chang J, Yi H, Xu C. Targeting mitochondria with antioxidant nutrients for the prevention and treatment of postweaning diarrhea in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:275-287. [PMID: 38033610 PMCID: PMC10685042 DOI: 10.1016/j.aninu.2023.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 12/02/2023]
Abstract
Post-weaning diarrhea (PWD) in piglets poses a significant challenge and presents a grave threat to the global swine industry, resulting in considerable financial losses and compromising the welfare of animals. PWD is commonly associated with gut homeostatic imbalance, including oxidative stress, excessive inflammation, and microbiota dysbiosis. Antibiotic use has historically been a common initiative to combat PWD, but concerns about the development of antibiotic resistance have led to increased interest in alternative strategies. Mitochondria are key players in maintaining cellular homeostasis, and their dysfunction is intricately linked to the onset and progression of PWD. Accumulating evidence suggests that targeting mitochondrial function using antioxidant nutrients, such as vitamins, minerals and polyphenolic compounds, may represent a promising approach for preventing and treating PWD. Moreover, nutrients based on antioxidant strategies have been shown to improve mitochondrial function, restore intestinal redox balance, and reduce oxidative damage, which is a key driver of PWD. The present review begins with an overview of the potential interplay between mitochondria and gut homeostasis in the pathogenesis of PWD in piglets. Subsequently, alternative strategies to prevent and treat PWD using antioxidant nutrients to target mitochondria are described and discussed. Ultimately, we delve into potential limitations and suggest future research directions in this field for further advancement. Overall, targeting mitochondria using antioxidant nutrients may be a promising approach to combat PWD and provides a potential nutrition intervention strategy for regulating gut homeostasis of weaned piglets.
Collapse
Affiliation(s)
- Lei Qiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xina Dou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xiaofan Song
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jiajing Chang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science of Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Chunlan Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
5
|
Xie Z, Zhang M, Luo Y, Jin D, Guo X, Yang W, Zheng J, Zhang H, Zhang L, Deng C, Zheng W, Tan EK, Jin K, Zhu S, Wang Q. Healthy Human Fecal Microbiota Transplantation into Mice Attenuates MPTP-Induced Neurotoxicity via AMPK/SOD2 Pathway. Aging Dis 2023; 14:2193-2214. [PMID: 37199590 PMCID: PMC10676800 DOI: 10.14336/ad.2023.0309] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/09/2023] [Indexed: 05/19/2023] Open
Abstract
Increasing evidence has shown that gut dysbacteriosis may play a crucial role in neuroinflammation in Parkinson's disease (PD). However, the specific mechanisms that link gut microbiota to PD remain unexplored. Given the critical roles of blood-brain barrier (BBB) dysfunction and mitochondrial dysfunction in the development of PD, we aimed to evaluate the interactions among the gut microbiota, BBB, and mitochondrial resistance to oxidation and inflammation in PD. We investigated the effects of fecal microbiota transplantation (FMT) on the physiopathology of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. The aim was to explore the role of fecal microbiota from PD patients and healthy human controls in neuroinflammation, BBB components, and mitochondrial antioxidative capacity via the AMPK/SOD2 pathway. Compared to control mice, MPTP-treated mice exhibited elevated levels of Desulfovibrio, whereas mice given FMT from PD patients exhibited enriched levels of Akkermansia and mice given FMT from healthy humans showed no significant alterations in gut microbiota. Strikingly, FMT from PD patients to MPTP-treated mice significantly aggravated motor impairments, dopaminergic neurodegeneration, nigrostriatal glial activation and colonic inflammation, and inhibited the AMPK/SOD2 signaling pathway. However, FMT from healthy human controls greatly improved the aforementioned MPTP-caused effects. Surprisingly, the MPTP-treated mice displayed a significant loss in nigrostriatal pericytes, which was restored by FMT from healthy human controls. Our findings demonstrate that FMT from healthy human controls can correct gut dysbacteriosis and ameliorate neurodegeneration in the MPTP-induced PD mouse model by suppressing microgliosis and astrogliosis, ameliorating mitochondrial impairments via the AMPK/SOD2 pathway, and restoring the loss of nigrostriatal pericytes and BBB integrity. These findings raise the possibility that the alteration in the human gut microbiota may be a risk factor for PD and provide evidence for potential application of FMT in PD preclinical treatment.
Collapse
Affiliation(s)
- Zhenchao Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Mahui Zhang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Dana Jin
- College of Biological Science, University of California, Davis, CA 95616, USA.
| | - Xingfang Guo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Wanlin Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Jialing Zheng
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Hongfei Zhang
- Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangdong, China.
| | - Lu Zhang
- Key Laboratory of Functional Proteomics of Guangdong Province, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.
| | - Chao Deng
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, Australia.
| | - Wenhua Zheng
- Centre of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Macau, China.
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore.
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Liu B, Jiang L, Liu Y, Sun H, Yan J, Kang C, Yang B. Enterohaemorrhagic E. coli utilizes host- and microbiota-derived L-malate as a signaling molecule for intestinal colonization. Nat Commun 2023; 14:7227. [PMID: 37945607 PMCID: PMC10636207 DOI: 10.1038/s41467-023-43149-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
The mammalian gastrointestinal tract is a complex environment that hosts a diverse microbial community. To establish infection, bacterial pathogens must be able to compete with the indigenous microbiota for nutrients, as well as sense the host environment and modulate the expression of genes essential for colonization and virulence. Here, we found that enterohemorrhagic Escherichia coli (EHEC) O157:H7 imports host- and microbiota-derived L-malate using the DcuABC transporters and converts these substrates into fumarate to fuel anaerobic fumarate respiration during infection, thereby promoting its colonization of the host intestine. Moreover, L-malate is important not only for nutrient metabolism but also as a signaling molecule that activates virulence gene expression in EHEC O157:H7. The complete virulence-regulating pathway was elucidated; the DcuS/DcuR two-component system senses high L-malate levels and transduces the signal to the master virulence regulator Ler, which in turn activates locus of enterocyte effacement (LEE) genes to promote EHEC O157:H7 adherence to epithelial cells of the large intestine. Disruption of this virulence-regulating pathway by deleting either dcuS or dcuR significantly reduced colonization by EHEC O157:H7 in the infant rabbit intestinal tract; therefore, targeting these genes and altering physiological aspects of the intestinal environment may offer alternatives for EHEC infection treatment.
Collapse
Affiliation(s)
- Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Jun Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China.
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China.
| |
Collapse
|
7
|
Ma L, Zhang L, Li J, Zhang X, Xie Y, Li X, Yang B, Yang H. The potential mechanism of gut microbiota-microbial metabolites-mitochondrial axis in progression of diabetic kidney disease. Mol Med 2023; 29:148. [PMID: 37907885 PMCID: PMC10617243 DOI: 10.1186/s10020-023-00745-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Diabetic kidney disease (DKD), has become the main cause of end-stage renal disease (ESRD) worldwide. Lately, it has been shown that the onset and advancement of DKD are linked to imbalances of gut microbiota and the abnormal generation of microbial metabolites. Similarly, a body of recent evidence revealed that biological alterations of mitochondria ranging from mitochondrial dysfunction and morphology can also exert significant effects on the occurrence of DKD. Based on the prevailing theory of endosymbiosis, it is believed that human mitochondria originated from microorganisms and share comparable biological characteristics with the microbiota found in the gut. Recent research has shown a strong correlation between the gut microbiome and mitochondrial function in the occurrence and development of metabolic disorders. The gut microbiome's metabolites may play a vital role in this communication. However, the relationship between the gut microbiome and mitochondrial function in the development of DKD is not yet fully understood, and the role of microbial metabolites is still unclear. Recent studies are highlighted in this review to examine the possible mechanism of the gut microbiota-microbial metabolites-mitochondrial axis in the progression of DKD and the new therapeutic approaches for preventing or reducing DKD based on this biological axis in the future.
Collapse
Affiliation(s)
- Leilei Ma
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Li Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Jing Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Xiaotian Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Yiran Xie
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Xiaochen Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China.
| |
Collapse
|
8
|
Mafra D, Kemp JA, Borges NA, Wong M, Stenvinkel P. Gut Microbiota Interventions to Retain Residual Kidney Function. Toxins (Basel) 2023; 15:499. [PMID: 37624256 PMCID: PMC10467110 DOI: 10.3390/toxins15080499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Residual kidney function for patients with chronic kidney disease (CKD) is associated with better quality of life and outcome; thus, strategies should be implemented to preserve kidney function. Among the multiple causes that promote kidney damage, gut dysbiosis due to increased uremic toxin production and endotoxemia need attention. Several strategies have been proposed to modulate the gut microbiota in these patients, and diet has gained increasing attention in recent years since it is the primary driver of gut dysbiosis. In addition, medications and faecal transplantation may be valid strategies. Modifying gut microbiota composition may mitigate chronic kidney damage and preserve residual kidney function. Although various studies have shown the influential role of diet in modulating gut microbiota composition, the effects of this modulation on residual kidney function remain limited. This review discusses the role of gut microbiota metabolism on residual kidney function and vice versa and how we could preserve the residual kidney function by modulating the gut microbiota balance.
Collapse
Affiliation(s)
- Denise Mafra
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niteroi 24020-140, Brazil;
- Graduate Program in Biological Sciences—Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Julie A. Kemp
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niteroi 24020-140, Brazil;
| | - Natalia A. Borges
- Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro 20550-170, Brazil;
| | - Michelle Wong
- Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
| | | |
Collapse
|
9
|
Tang C, Zhou R, Cao K, Liu J, Kan J, Qian C, Jin C. Current progress in the hypoglycemic mechanisms of natural polysaccharides. Food Funct 2023; 14:4490-4506. [PMID: 37083079 DOI: 10.1039/d3fo00991b] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Unhealthy dietary pattern-induced type 2 diabetes mellitus poses a great threat to human health all over the world. Accumulating evidence has revealed that the pathophysiology of type 2 diabetes mellitus is closely associated with the dysregulation of glucose metabolism and energy metabolism, serious oxidative stress, prolonged endoplasmic reticulum stress, metabolic inflammation and intestinal microbial dysbiosis. Most important of all, insulin resistance and insulin deficiency are two key factors inducing type 2 diabetes mellitus. Nowadays, natural polysaccharides have gained increasing attention owing to their numerous health-promoting functions, such as hypoglycemic, energy-regulating, antioxidant, anti-inflammatory and prebiotic activities. Therefore, natural polysaccharides have been used to alleviate diet-induced type 2 diabetes mellitus. Specifically, this review comprehensively summarizes the underlying hypoglycemic mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates hypoglycemic mechanisms of natural polysaccharides from the perspectives of their regulatory effects on glucose metabolism, insulin resistance and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Ruizheng Zhou
- Dongguan Institutes For Food and Drug Control, Dongguan 523808, Guangdong, China
| | - Kexin Cao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Chunlu Qian
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
10
|
Hobson S, Arefin S, Witasp A, Hernandez L, Kublickiene K, Shiels PG, Stenvinkel P. Accelerated Vascular Aging in Chronic Kidney Disease: The Potential for Novel Therapies. Circ Res 2023; 132:950-969. [PMID: 37053277 DOI: 10.1161/circresaha.122.321751] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The pathophysiology of vascular disease is linked to accelerated biological aging and a combination of genetic, lifestyle, biological, and environmental risk factors. Within the scenario of uncontrolled artery wall aging processes, CKD (chronic kidney disease) stands out as a valid model for detailed structural, functional, and molecular studies of this process. The cardiorenal syndrome relates to the detrimental bidirectional interplay between the kidney and the cardiovascular system. In addition to established risk factors, this group of patients is subjected to a plethora of other emerging vascular risk factors, such as inflammation, oxidative stress, mitochondrial dysfunction, vitamin K deficiency, cellular senescence, somatic mutations, epigenetic modifications, and increased apoptosis. A better understanding of the molecular mechanisms through which the uremic milieu triggers and maintains early vascular aging processes, has provided important new clues on inflammatory pathways and emerging risk factors alike, and to the altered behavior of cells in the arterial wall. Advances in the understanding of the biology of uremic early vascular aging opens avenues to novel pharmacological and nutritional therapeutic interventions. Such strategies hold promise to improve future prevention and treatment of early vascular aging not only in CKD but also in the elderly general population.
Collapse
Affiliation(s)
- S Hobson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - S Arefin
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - A Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - L Hernandez
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - K Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - P G Shiels
- School of Molecular Biosciences, MVLS, University of Glasgow, United Kingdom (P.G.S.)
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| |
Collapse
|
11
|
Zhang Y, Zhang J, Duan L. The role of microbiota-mitochondria crosstalk in pathogenesis and therapy of intestinal diseases. Pharmacol Res 2022; 186:106530. [DOI: 10.1016/j.phrs.2022.106530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
12
|
Yuan S, Cai Z, Luan X, Wang H, Zhong Y, Deng L, Feng J. Gut microbiota: A new therapeutic target for diabetic cardiomyopathy. Front Pharmacol 2022; 13:963672. [PMID: 36091756 PMCID: PMC9461091 DOI: 10.3389/fphar.2022.963672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetic cardiomyopathy seriously affects quality of life and even threatens life safety of patients. The pathogenesis of diabetic cardiomyopathy is complex and multifactorial, and it is widely accepted that its mechanisms include oxidative stress, inflammation, insulin resistance, apoptosis, and autophagy. Some studies have shown that gut microbiota plays an important role in cardiovascular diseases. Gut microbiota and its metabolites can affect the development of diabetic cardiomyopathy by regulating oxidative stress, inflammation, insulin resistance, apoptosis, and autophagy. Here, the mechanisms of gut microbiota and its metabolites resulting in diabetic cardiomyopathy are reviewed. Gut microbiota may be a new therapeutic target for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Suxin Yuan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhengyao Cai
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xingzhao Luan
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Haibo Wang
- Department of Cardiology, Gulin People’s Hospital, Luzhou, Sichuan, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Deng
- Department of Rheumatology, The Affiliated, Hospital of Southwest Medical University, Luzhou, Sichaun, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- *Correspondence: Jian Feng,
| |
Collapse
|
13
|
Imenez Silva PH, Mohebbi N. Kidney metabolism and acid-base control: back to the basics. Pflugers Arch 2022; 474:919-934. [PMID: 35513635 PMCID: PMC9338915 DOI: 10.1007/s00424-022-02696-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/18/2023]
Abstract
Kidneys are central in the regulation of multiple physiological functions, such as removal of metabolic wastes and toxins, maintenance of electrolyte and fluid balance, and control of pH homeostasis. In addition, kidneys participate in systemic gluconeogenesis and in the production or activation of hormones. Acid-base conditions influence all these functions concomitantly. Healthy kidneys properly coordinate a series of physiological responses in the face of acute and chronic acid-base disorders. However, injured kidneys have a reduced capacity to adapt to such challenges. Chronic kidney disease patients are an example of individuals typically exposed to chronic and progressive metabolic acidosis. Their organisms undergo a series of alterations that brake large detrimental changes in the homeostasis of several parameters, but these alterations may also operate as further drivers of kidney damage. Acid-base disorders lead not only to changes in mechanisms involved in acid-base balance maintenance, but they also affect multiple other mechanisms tightly wired to it. In this review article, we explore the basic renal activities involved in the maintenance of acid-base balance and show how they are interconnected to cell energy metabolism and other important intracellular activities. These intertwined relationships have been investigated for more than a century, but a modern conceptual organization of these events is lacking. We propose that pH homeostasis indissociably interacts with central pathways that drive progression of chronic kidney disease, such as inflammation and metabolism, independent of etiology.
Collapse
Affiliation(s)
- Pedro Henrique Imenez Silva
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland.
| | - Nilufar Mohebbi
- National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
- Praxis Und Dialysezentrum Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Cao C, Zhu H, Yao Y, Zeng R. Gut Dysbiosis and Kidney Diseases. Front Med (Lausanne) 2022; 9:829349. [PMID: 35308555 PMCID: PMC8927813 DOI: 10.3389/fmed.2022.829349] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/09/2022] [Indexed: 12/16/2022] Open
Abstract
Gut dysbiosis is defined as disorders of gut microbiota and loss of barrier integrity, which are ubiquitous on pathological conditions and associated with the development of various diseases. Kidney diseases are accompanied with gut dysbiosis and metabolic disorders, which in turn contribute to the pathogenesis and progression of kidney diseases. Microbial alterations trigger production of harmful metabolites such as uremic toxins and a decrease in the number of beneficial ones such as SCFAs, which is the major mechanism of gut dysbiosis on kidney diseases according to current studies. In addition, the activation of immune responses and mitochondrial dysfunction by gut dysbiosis, also lead to the development of kidney diseases. Based on the molecular mechanisms, modification of gut dysbiosis via probiotics, prebiotics and synbiotics is a potential approach to slow kidney disease progression. Fecal microbiota transplantation (FMT) and genetic manipulation of the gut microbiota are also promising choices. However, the clinical use of probiotics in kidney disease is not supported by the current clinical evidence. Further studies are necessary to explore the causal relationships of gut dysbiosis and kidney diseases, the efficiency and safety of therapeutic strategies targeting gut-kidney axis.
Collapse
Affiliation(s)
- Chujin Cao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Division of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
He X, Sun J, Liu C, Yu X, Li H, Zhang W, Li Y, Geng Y, Wang Z. Compositional Alterations of Gut Microbiota in Patients with Diabetic Kidney Disease and Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2022; 15:755-765. [PMID: 35280499 PMCID: PMC8911313 DOI: 10.2147/dmso.s347805] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Emerging evidence has revealed that gut microbiota plays a pivotal role in the pathogenesis of type 2 diabetes mellitus (T2DM) and diabetic kidney disease (DKD). However, few studies have used metagenomic sequencing to analyze the alterations of gut microbiota community in patients with early-stage DKD. METHODS We carried out metagenomic sequencing in fecal samples of 10 DKD patients (DKD group) and 10 T2DM patients who appeared to be less prone to DKD (non-DKD group), aiming to compare the composition and function of gut microbiota between the DKD and non-DKD groups. RESULTS The gut microbial community of the DKD group was significantly different from that of the non-DKD group, characterized by a marked increase in phylum Proteobacteria, genus Selenomonadales, Neosynechococcus, Shigella, Bilophila, Acidaminococcus, species, Escherichia coli, Bacteroides plebeius, Megasphaera elsdenii, Acidaminococcus unclassified, and Bilophila wadsworthia. The amounts of species Citrobacter farmeri and Syntrophaceticus schinkii were significantly and positively correlated with the urinary albumin creatinine ratio in the DKD group. Furthermore, functional analysis based on dbCAN and KEGG databases showed aberrant lipopolysaccharide (LPS) biosynthesis and carbohydrate metabolism in the gut microbiome of the DKD group. CONCLUSION Our findings provided evidence for alterations in the composition and function of gut microbiota in patients with DKD versus the non-DKD group. These data may contribute to a more comprehensive understanding of the pathological mechanisms of DKD.
Collapse
Affiliation(s)
- Xin He
- Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Jiping Sun
- Department of Nephrology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Chao Liu
- Department of Nephrology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Xiaoyang Yu
- Department of Nephrology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Huixian Li
- Department of Nephrology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Wenjing Zhang
- Department of Nephrology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Yan Li
- Department of Nephrology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Yingzhou Geng
- Department of Nephrology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Zhigang Wang
- Department of Nephrology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
- Correspondence: Zhigang Wang, First Affiliated Hospital of Xi’an Jiaotong University, West Yanta Road 277, Xi’an, 710061, People’s Republic of China, Email
| |
Collapse
|
16
|
Zhang Z, Chen X, Cui B. Modulation of the fecal microbiome and metabolome by resistant dextrin ameliorates hepatic steatosis and mitochondrial abnormalities in mice. Food Funct 2021; 12:4504-4518. [PMID: 33885128 DOI: 10.1039/d1fo00249j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Targeting the gut-liver axis by manipulating the intestinal microbiome is a promising therapy for nonalcoholic fatty liver disease (NAFLD). This study modulated the intestinal microbiota to explore whether resistant dextrin, as a potential prebiotic, could ameliorate high-fat diet (HFD)-induced hepatic steatosis in C57BL/6J mice. After two months of feeding, significant hepatic steatosis with mitochondrial dysfunction was observed in the HFD-fed mice. However, the concentrations of triglycerides and malondialdehyde in liver tissue and the levels of alanine aminotransferase and aspartate aminotransferase in the serum of mice fed an HFD plus resistant dextrin diet (HFID) were significantly decreased compared to the HFD-fed mice. Additionally, hepatic mitochondrial integrity and reactive oxygen species accumulation were improved in HFID-fed mice, ameliorating hepatic steatosis. The fecal microbiome of HFD-fed mice was enriched in Bifidobacterium, Lactobacillus, and Globicatella, while resistant dextrin increased the abundance of Parabacteroides, Blautia, and Dubosiella. Major changes in fecal metabolites were confirmed for HFID-fed mice, including those related to entero-hepatic circulation (i.e., bile acids), tryptophan metabolism (e.g., indole derivatives), and lipid metabolism (e.g., lipoic acid), as well as increased antioxidants including isorhapontigenin. Furthermore, resistant dextrin decreased inflammatory cytokine levels and intestinal permeability and ameliorated intestinal damage. Together, these findings augmented current knowledge on prebiotic treatment for NAFLD.
Collapse
Affiliation(s)
- Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | | | | |
Collapse
|
17
|
Bioactive peptides and gut microbiota: Candidates for a novel strategy for reduction and control of neurodegenerative diseases. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Cardozo LFMF, Alvarenga LA, Ribeiro M, Dai L, Shiels PG, Stenvinkel P, Lindholm B, Mafra D. Cruciferous vegetables: rationale for exploring potential salutary effects of sulforaphane-rich foods in patients with chronic kidney disease. Nutr Rev 2020; 79:1204-1224. [DOI: 10.1093/nutrit/nuaa129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Sulforaphane (SFN) is a sulfur-containing isothiocyanate found in cruciferous vegetables (Brassicaceae) and a well-known activator of nuclear factor-erythroid 2-related factor 2 (Nrf2), considered a master regulator of cellular antioxidant responses. Patients with chronic diseases, such as diabetes, cardiovascular disease, cancer, and chronic kidney disease (CKD) present with high levels of oxidative stress and a massive inflammatory burden associated with diminished Nrf2 and elevated nuclear transcription factor-κB-κB expression. Because it is a common constituent of dietary vegetables, the salutogenic properties of sulforaphane, especially it’s antioxidative and anti-inflammatory properties, have been explored as a nutritional intervention in a range of diseases of ageing, though data on CKD remain scarce. In this brief review, the effects of SFN as a senotherapeutic agent are described and a rationale is provided for studies that aim to explore the potential benefits of SFN-rich foods in patients with CKD.
Collapse
Affiliation(s)
- Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Livia A Alvarenga
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Lu Dai
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Impact of curcumin supplementation on expression of inflammatory transcription factors in hemodialysis patients: A pilot randomized, double-blind, controlled study. Clin Nutr 2020; 39:3594-3600. [DOI: 10.1016/j.clnu.2020.03.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022]
|
20
|
Food as medicine: targeting the uraemic phenotype in chronic kidney disease. Nat Rev Nephrol 2020; 17:153-171. [PMID: 32963366 DOI: 10.1038/s41581-020-00345-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
The observation that unhealthy diets (those that are low in whole grains, fruits and vegetables, and high in sugar, salt, saturated fat and ultra-processed foods) are a major risk factor for poor health outcomes has boosted interest in the concept of 'food as medicine'. This concept is especially relevant to metabolic diseases, such as chronic kidney disease (CKD), in which dietary approaches are already used to ameliorate metabolic and nutritional complications. Increased awareness that toxic uraemic metabolites originate not only from intermediary metabolism but also from gut microbial metabolism, which is directly influenced by diet, has fuelled interest in the potential of 'food as medicine' approaches in CKD beyond the current strategies of protein, sodium and phosphate restriction. Bioactive nutrients can alter the composition and metabolism of the microbiota, act as modulators of transcription factors involved in inflammation and oxidative stress, mitigate mitochondrial dysfunction, act as senolytics and impact the epigenome by altering one-carbon metabolism. As gut dysbiosis, inflammation, oxidative stress, mitochondrial dysfunction, premature ageing and epigenetic changes are common features of CKD, these findings suggest that tailored, healthy diets that include bioactive nutrients as part of the foodome could potentially be used to prevent and treat CKD and its complications.
Collapse
|
21
|
Chen X, Zhang Z, Cui B, Jiang A, Tao H, Cheng S, Liu Y. Combination of Chronic Alcohol Consumption and High-Salt Intake Elicits Gut Microbial Alterations and Liver Steatosis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1750-1759. [PMID: 31971384 DOI: 10.1021/acs.jafc.9b07368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alcohol is a globally well-established cause of fatty liver disease (FLD). Increased salt consumption is associated with an increased prevalence of adipocyte hypertrophy and liver injury. In this study, high dietary salt potentiated chronic alcohol-induced hepatic damage. We explored the physiological mechanism of alcoholic FLD in the gastrointestinal tract. Male C57BL/6J mice (8-week-old) were fed a high-salt diet (HSD; 4% NaCl) with or without chronic ethanol (CE) for 1 month. The fecal microbiota, serum biochemical indices, intestinal permeability, level of liver damage, and liver mitochondria were evaluated. The HSD, CE, and their combination (HSDE) significantly changed the gut microbiota's structure, and the HSDE mice contained more probiotic species (e.g., Bifidobacterium and Lactobacillus). The serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase levels were increased, and the lipid was accumulated in the liver tissues in the CE, HSD, and HSDE groups, which indicated liver damage, especially in the HSDE group. The increased intestinal permeability and mitochondrial dysfunction in the liver cells caused greater injury in the HSDE group than in the other groups. Thus, consuming HSD with alcohol contributes to FLD development and progression.
Collapse
Affiliation(s)
- Xiao Chen
- College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| | - Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking , Qilu University of Technology, Shandong Academy of Sciences , Jinan 250000 , China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking , Qilu University of Technology, Shandong Academy of Sciences , Jinan 250000 , China
| | - Aimin Jiang
- College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking , Qilu University of Technology, Shandong Academy of Sciences , Jinan 250000 , China
| | | | - Yong Liu
- Yucheng Maternal and Child Health Hospital , Dezhou 251200 , China
| |
Collapse
|