1
|
Gospodaryov DV. Alternative NADH dehydrogenase: A complex I backup, a drug target, and a tool for mitochondrial gene therapy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149529. [PMID: 39615731 DOI: 10.1016/j.bbabio.2024.149529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Alternative NADH dehydrogenase, also known as type II NADH dehydrogenase (NDH-2), catalyzes the same redox reaction as mitochondrial respiratory chain complex I. Specifically, it oxidizes reduced nicotinamide adenine dinucleotide (NADH) while simultaneously reducing ubiquinone to ubiquinol. However, unlike complex I, this enzyme is non-proton pumping, comprises of a single subunit, and is resistant to rotenone. Initially identified in bacteria, fungi and plants, NDH-2 was subsequently discovered in protists and certain animal taxa including sea squirts. The gene coding for NDH-2 is also present in the genomes of some annelids, tardigrades, and crustaceans. For over two decades, NDH-2 has been investigated as a potential substitute for defective complex I. In model organisms, NDH-2 has been shown to ameliorate a broad spectrum of conditions associated with complex I malfunction, including symptoms of Parkinson's disease. Recently, lifespan extension has been observed in animals expressing NDH-2 in a heterologous manner. A variety of mechanisms have been put forward by which NDH-2 may extend lifespan. Such mechanisms include the activation of pro-longevity pathways through modulation of the NAD+/NADH ratio, decreasing production of reactive oxygen species (ROS) in mitochondria, or then through moderate increases in ROS production followed by activation of defense pathways (mitohormesis). This review gives an overview of the latest research on NDH-2, including the structural peculiarities of NDH-2, its inhibitors, its role in the pathogenicity of mycobacteria and apicomplexan parasites, and its function in bacteria, fungi, and animals.
Collapse
Affiliation(s)
- Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka, 76018, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
2
|
Ma Y, López-Pujol J, Yan D, Deng Z, Zhou Z, Niu J. Complete mitochondrial genomes of the hemiparasitic genus Cymbaria (Orobanchaceae): insights into repeat-mediated recombination, phylogenetic relationships, and horizontal gene transfer. BMC Genomics 2025; 26:314. [PMID: 40165089 PMCID: PMC11956449 DOI: 10.1186/s12864-025-11474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND The Orobanchaceae family is widely recognized as an exemplary model system for examining the evolutionary dynamics of parasitic plants. However, reports on the mitochondrial genome (mitogenome) of the hemiparasitic tribe Cymbarieae are currently lacking. Here, we sequenced, assembled and characterized the complete mitogenome of the genus Cymbaria L. sensu stricto (C. mongolica and C. daurica). RESULTS A total of 51 unique mitochondrial genes, including 33 protein-coding genes, three rRNA genes, and 15 tRNA genes, are shared by the mitogenomes of the two hemiparasitic plants, exhibiting the gene content characteristic of autotrophic plants. The mitogenomes of C. mongolica and C. daurica are characterized by a pentacyclic chromosome structure (their major conformation), with lengths of 1,576,465 bp and 1,539,836 bp, respectively. Moreover, we identified and validated the presence of four minor conformations mediated by four pairs of large repeats (> 1000 bp in size) in C. mongolica and eight minor conformations mediated by six large repeats in C. daurica. We further explored codon usage, RNA editing sites, selective pressure, and nucleotide diversity in two Cymbaria mitogenomes. Phylogenetic analyses of 26 species of Lamiales revealed that the two Cymbaria species form a sister clade to the other lineages of Orobanchaceae. Extensive mitogenomic rearrangements are also observed between Cymbaria and five closely related species. Although we identified mitochondrial plastid sequences in the Cymbaria mitogenomes, The mitochondrial plastid sequences (MTPTs) in their mitogenomes represent only 2.37% and 1.74%, respectively. Additionally, there is minimal evidence of intracellular and horizontal gene transfer, with only a few genes (rpl22, rps3, and ycf2) showing low bootstrap support (BS ≤ 70%) for the relationships with the potential host plants Allium mongolicum, Leymus chinensis, and Saposhnikovia divaricata, respectively. CONCLUSIONS We reported the mitochondrial genome in hemiparasitic Cymbaria species for the first time, which are characterized by multiple repeat-mediated recombination and little to no intracellular and horizontal gene transfer. Our findings provide valuable genetic insights for further studies on the mitogenome evolution of hemiparasitic plants.
Collapse
Affiliation(s)
- Yang Ma
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010020, People's Republic of China
| | - Jordi López-Pujol
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Spain
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo (UEES), Samborondón, 091650, Ecuador
| | - Dongqing Yan
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010020, People's Republic of China
| | - Zekun Deng
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010020, People's Republic of China
| | - Zhen Zhou
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010020, People's Republic of China
| | - Jianming Niu
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010020, People's Republic of China.
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Hohhot, 010020, People's Republic of China.
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Hohhot, 010020, People's Republic of China.
| |
Collapse
|
3
|
Gatica-Soria LM, Roulet ME, Tulle WD, Sato HA, Barrandeguy ME, Sanchez-Puerta MV. Highly variable mitochondrial chromosome content in a holoparasitic plant due to recurrent gains of foreign circular DNA. PHYSIOLOGIA PLANTARUM 2025; 177:e70231. [PMID: 40259521 DOI: 10.1111/ppl.70231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/07/2025] [Accepted: 03/20/2025] [Indexed: 04/23/2025]
Abstract
Multichromosomal mitochondrial genomes (mtDNAs) in eukaryotes exhibit remarkable structural diversity, yet intraspecific variability and the origin of the individual chromosomes remain poorly understood. We focus on a holoparasitic angiosperm with an mtDNA consisting of 65 chromosomes largely composed of foreign DNA acquired by horizontal gene transfer (HGT) from its mimosoid hosts. The frequency, timing and population dynamics of these HGT events have not been examined. Here, we sampled different individuals of the holoparasite Lophophytum mirabile, along with their host plants, to assess mtDNA intraspecific variability and capture recent events that may bring insights into the HGT process. We also gathered mitochondrial data from 43 mimosoids to identify older and recent HGT events and assess precisely the proportion of foreign DNA. Through comparative genomic and evolutionary analyses, we uncovered great intraspecific variability in chromosome content and defined the mitochondrial pangenome of L. mirabile with 105 distinct chromosomes. The estimated foreign content reaches 93.5% of the mtDNA, including 73 fully foreign chromosomes that support the circle-mediated HGT model as a key mechanism for their acquisition. We inferred recurrent DNA transfers from the host plants, leading to new mitochondrial chromosomes that replicate autonomously. Our results emphasize the importance of adopting a pangenomic approach to fully capture the genetic diversity and evolution of multichromosomal mitochondrial genomes. This study shows that HGT can strongly influence the mtDNA content and generate enormous intraspecific variability even in geographically close individuals.
Collapse
Affiliation(s)
- Leonardo Martin Gatica-Soria
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Chacras de Coria, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Chacras de Coria, Argentina
| | - Walter D Tulle
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Chacras de Coria, Argentina
| | - Hector A Sato
- Facultad de Ciencias Agrarias (UNJu), Catedra de Botanica General-Herbario JUA, Jujuy, CP, Argentina
| | - M Eugenia Barrandeguy
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales. Laboratorio de Genética de Poblaciones y del Paisaje, Posadas, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Subtropical-Nodo Posadas (UNaM- CONICET), Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Chacras de Coria, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
4
|
Fischer K, Jordbræk SV, Olsen S, Bockwoldt M, Schwacke R, Usadel B, Krause K. Taken to extremes: Loss of plastid rpl32 in Streptophyta and Cuscuta's unconventional solution for its replacement. Mol Phylogenet Evol 2025; 204:108243. [PMID: 39581358 DOI: 10.1016/j.ympev.2024.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
The evolution of plant genomes is riddled with exchanges of genetic material within one plant (endosymbiotic gene transfer/EGT) and between unrelated plants (horizontal gene transfer/HGT). These exchanges have left their marks on plant genomes. Parasitic plants with their special evolutionary niche provide ample examples for these processes because they are under a reduced evolutionary pressure to maintain autotrophy and thus to conserve their plastid genomes. On the other hand, the close physical connections with different hosts enabled them to acquire genetic material from other plants. Based on an analysis of an extensive dataset including the parasite Cuscuta campestris and other parasitic plant species, we identified a unique evolutionary history of rpl32 genes coding for an essential plastid ribosomal subunit in Cuscuta. Our analysis suggests that the gene was most likely sequestered by HGT from a member of the Oxalidales order serving as host to an ancestor of the Cuscuta subgenus Grammica. Oxalidales had suffered an ancestral EGT of rpl32 predating the evolution of the genus Cuscuta. The HGT subsequently relieved the plastid rpl32 from its evolutionary constraint and led to its loss from the plastid genome. The HGT-based acquisition in Cuscuta is supported by a high sequence similarity of the mature L32 protein between species of the subgenus Grammica and representatives of the Oxalidales, and by a surprisingly conserved transit peptide, whose functionality in Cuscuta was experimentally verified. The findings are discussed in view of an overall pattern of EGT events for plastid ribosomal subunits in Streptophyta.
Collapse
Affiliation(s)
- Karsten Fischer
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Stian Olsen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Mathias Bockwoldt
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Rainer Schwacke
- Institute for Bio- and Geosciences (IBG-4: Bioinformatics), CEPLAS, Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany
| | - Björn Usadel
- Institute for Bio- and Geosciences (IBG-4: Bioinformatics), CEPLAS, Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany; Faculty of Mathematics and Natural Sciences, Institute for Biological Data Science, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
5
|
Zhao J, Liang ZL, Fang SL, Li RJ, Huang CJ, Zhang LB, Robison T, Zhu ZM, Cai WJ, Yu H, He ZR, Zhou XM. Phylogenomics of Paragymnopteris (Cheilanthoideae, Pteridaceae): Insights from plastome, mitochondrial, and nuclear datasets. Mol Phylogenet Evol 2025; 204:108253. [PMID: 39617091 DOI: 10.1016/j.ympev.2024.108253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Previous studies have shown that at least six genera of the Cheilanthoideae, a subfamily of the fern family Pteridaceae, may not be monophyletic. In these non-monophyletic genera, the Old-World genus Paragymnopteris including approximately five species have long been controversial. In this study, with an extensive taxon sampling of Paragymnopteris, we assembled 19 complete plastomes of all recognized Paragymnopteris species, plastomes of Pellaea (3 species) and Argyrochosma (1 species), as well as transcriptomes from Paragymnopteris (6 species) and Argyrochosma (1 species). We conducted a comprehensive and systematic phylogenomic analysis focusing on the contentious relationships among the genus of Paragymnopteris through 9 plastid makers, the plastomes, mitochondria, nuclear ribosomal cistron genomes, and single-copy nuclear genes. Moreover, we further combined distribution, ploidy, and morphological features to investigate the evolution of Paragymnopteris. The backbone of Paragymnopteris was resolved consistently in the nuclear and plastid phylogenies. Our major results include: (1) Paragymnopteris is not monophyletic including two fully supported clades; (2) confirming that Paragymnopteris delavayi var. intermedia is a close relative of P. delavayi instead of P. marantae var. marantae; (3) the chromosome base number may not be a stable trait which has previously been used as an important character to divide Paragymnopteris into two groups; and (4) gene flow or introgression might be the main reason for the gene trees conflict of Paragymnopteris, but both gene flow and ILS might simultaneously and/or cumulatively act on the conflict of core pellaeids. The robust phylogeny of Paragymnopteris presented here will help us for the future studies of the arid to semi-arid ferns of Cheilanthoideae at the evolutionary, physiological, developmental, and omics-based levels.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Zhen-Long Liang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China
| | - Shao-Li Fang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Rong-Juan Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Li-Bing Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China; Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA
| | - Tanner Robison
- Department of Biology, Utah State University, Logan, UT, USA
| | - Zhang-Ming Zhu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Wen-Jing Cai
- Yunnan Institute of Forest Inventory and Planning, Kunming, Yunnan 650500, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China.
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming, Yunnan 650500, China.
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China.
| |
Collapse
|
6
|
Gui L, Zhang Z, Song L, Feng C, Yu H, Pan L, Fu J, Liang W, Huang Q, El-Sappah AH, Shi L, Wan L, Wei S. Mitogenome of Uncaria rhynchophylla: genome structure, characterization, and phylogenetic relationships. BMC Genomics 2025; 26:199. [PMID: 40012082 PMCID: PMC11866583 DOI: 10.1186/s12864-025-11372-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/16/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Uncaria rhynchophylla is listed in the Chinese pharmacopoeia as one of the five botanical sources of the traditional medicine Gou-Teng, which has been utilized for the treatment of mental and cardiovascular disorders. This particular species is well-known in China for its hook-like structures originating from the leaf axils. Despite available reports on its chloroplast genome, there persists a notable lack of understanding concerning the structural variations and evolution of its mitochondrial genome. This knowledge gap hinders our ability to fully comprehend its genetic attributes. RESULTS We successfully assembled the mitochondrial genome of U. rhynchophylla by seamlessly integrating Illumina short reads with Nanopore long reads, resulting in a non-circular genome comprising 1 circular contig and 2 linear contigs. The total length of this genome is 421,660 bp, encompassing 36 PCGs. The identification of 4 distinct pairs of repeats has unveiled their pivotal role in repeat-mediated recombination. Of the 28 homologous fragments derived from chloroplasts, the majority were observed to have been transferred from the inverted repeat (IR) regions of the chloroplast genome to the mitochondrial genome. The mitochondrial DNA provides a distinctive resolution for the positioning of several species within the Gentianales phylogenetic framework, which remains unresolved by chloroplast DNA. CONCLUSION By utilizing a newly assembled, high-quality mitochondrial genome of U. rhynchophylla, we have elucidated its intricate genomic structure, distinctive sequence characteristics, and potential for phylogenetic analysis. These findings mark significant strides in advancing our comprehension of the genetics of Uncaria.
Collapse
Affiliation(s)
- Lingjian Gui
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Zhanjiang Zhang
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Lisha Song
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | | | - Haixia Yu
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Limei Pan
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Jine Fu
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Wenjing Liang
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Qiulan Huang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China
| | - Ahmed H El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China
| | - Lijun Shi
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Lingyun Wan
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Shugen Wei
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| |
Collapse
|
7
|
Zhao J, Chen ZH, Huang PC, Chen LW, Zhang MX, Wang LH, Zhu YY, Wang JG, Zhao Y. Complete mitogenome characteristics and phylogenetic analysis of traditional Chinese medicinal plant Tinospora sagittata (Oliv.) Gagnep. from the Menispermaceae family. BMC PLANT BIOLOGY 2025; 25:165. [PMID: 39920585 PMCID: PMC11803991 DOI: 10.1186/s12870-025-06151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND Tinospora sagittata, a member belongs to the genus Tinospora of Menispermaceae family. Its tuberous roots have been used as traditional Chinese medicine (TCM) for pharmacological properties and are commonly known name as "Jin Guo Lan". Although its plastome and nuclear genome had been sequenced, its mitochondrial genome has not been explored, which significantly hampers conservation efforts and further research for this species. In addition, previous efforts based on multiple molecular markers providing profound insights into an intergeneric phylogenetic framework for Burasaieae and sampled species of T. sagittata are placed in a superclades, species delimitation of T. sagittata still need to be comprehensively evaluated. RESULTS Flow cytometry revealed that Tinospora sagittata has two cytotypes and a wide range in genome sizes. We further sequenced and assembled the organelle genomes of T. sagittata, including the mitogenome (513,210-513,215 bp) and plastome (163,621-164,006 bp). The plastomes were highly similar in gene content and exhibited a typical quadripartite structure, but a translocation as well as two inversions were detected in mitogenomes. The repeats patterns in both organelles are generally similar, but significant difference in the codon bias of the genes of Tinospora organelle genomes. Interesting, both organelle genomes had shown that inter-gene spacer regions could be used as effective molecular markers for further phylogenetic analyses and species identification. Comprehensive analysis of protein coding genes of organelle genomes showed that significant difference in Ka, Ks, and Ka/Ks values among the organelle genomes. Phylogenetic analysis identified a tree that was basically consistent with the phylogeny of Ranunculales described in the APG IV system. CONCLUSIONS We provided a high-quality and well-annotated organelle genome for Tinospora sagittata. The study present here advances our understanding of the intricate interplay between plastome and mitogenome. Moreover, our results also laid the foundation for further studying the course, tempo and mode of organelle genome evolution of Menispermaceae.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China
| | - Zi-Han Chen
- Department of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650504, China
| | - Peng-Cheng Huang
- Department of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650504, China
| | - Liu-Wei Chen
- Department of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650504, China
| | - Ming-Xian Zhang
- Department of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650504, China
| | - Li-Hua Wang
- Department of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650504, China
| | - You-Yong Zhu
- Department of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650504, China
| | - Jia-Guan Wang
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming, Yunnan, 650500, China.
| | - Yu Zhao
- Department of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650504, China.
| |
Collapse
|
8
|
Chen R, Rao R, Wang C, Zhu D, Yuan F, Yue L. Features and evolutionary adaptations of the mitochondrial genome of Garuga forrestii W. W. Sm. FRONTIERS IN PLANT SCIENCE 2025; 15:1509669. [PMID: 39902196 PMCID: PMC11788303 DOI: 10.3389/fpls.2024.1509669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/18/2024] [Indexed: 02/05/2025]
Abstract
Introduction Garuga forrestii W. W. Sm. is a tree species of the Burseraceae family, endemic to China, found in hot/warm-dry valleys. This species plays a crucial role in maintaining biodiversity in these ecosystems. Methods We performed de novo assembly of the Garuga forrestii mitochondrial genome using PMAT (v.1.5.4), resulting in a typical circular molecule of 606,853 bp. The genome consists of 31 tRNA genes, 3 rRNA genes, 35 protein-coding genes, and 1 pseudogene. The study also investigates RNA editing sites and evolutionary patterns. Results The mitochondrial genome exhibits a low proportion of repetitive sequences (3.30%), suggesting a highly conserved structure. A high copy number of the trnM-CAT gene (4 copies) is noted, which may contribute to genomic rearrangement and adaptive evolution. Among the 476 RNA editing sites, hydrophilic-hydrophobic and hydrophobic-hydrophobic editing events are most common, accounting for 77.10%. Negative selection predominates among most genes (Ka/Ks < 1), while a few genes (e.g., matR, nad3, rps1, rps12, and rps4) show signs of positive selection (Ka/Ks > 1), potentially conferring evolutionary advantages. Additionally, a significant A/T bias is observed at the third codon position. Phylogenomic analysis supports the APG IV classification, with no evidence of horizontal gene transfer. Discussion This mitochondrial genome offers valuable insights into the adaptive mechanisms and evolutionary processes of Garuga forrestii. It enhances our understanding of the species' biogeography in tropical Southeast Asia and Southwest China, providing key information on the evolutionary history of this genus.
Collapse
Affiliation(s)
- Rong Chen
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, China
- National Plateau Wetlands Research Center, Southwest Forestry University, Kunming, China
- National Wetland Ecosystem Fixed Research Station of Yunnan Dianchi, Southwest Forestry University, Kunming, China
- Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming, China
| | - Rui Rao
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, China
- National Plateau Wetlands Research Center, Southwest Forestry University, Kunming, China
- National Wetland Ecosystem Fixed Research Station of Yunnan Dianchi, Southwest Forestry University, Kunming, China
- Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming, China
| | - Chun Wang
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, China
- National Plateau Wetlands Research Center, Southwest Forestry University, Kunming, China
- National Wetland Ecosystem Fixed Research Station of Yunnan Dianchi, Southwest Forestry University, Kunming, China
- Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming, China
| | - Dongbo Zhu
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, China
- National Plateau Wetlands Research Center, Southwest Forestry University, Kunming, China
- National Wetland Ecosystem Fixed Research Station of Yunnan Dianchi, Southwest Forestry University, Kunming, China
- Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming, China
| | - Fen Yuan
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, China
- National Plateau Wetlands Research Center, Southwest Forestry University, Kunming, China
- National Wetland Ecosystem Fixed Research Station of Yunnan Dianchi, Southwest Forestry University, Kunming, China
- Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming, China
| | - Liangliang Yue
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, China
- National Plateau Wetlands Research Center, Southwest Forestry University, Kunming, China
- National Wetland Ecosystem Fixed Research Station of Yunnan Dianchi, Southwest Forestry University, Kunming, China
- Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming, China
| |
Collapse
|
9
|
Zhang K, Qu G, Zhang Y, Liu J. Assembly and comparative analysis of the first complete mitochondrial genome of Astragalus membranaceus (Fisch.) Bunge: an invaluable traditional Chinese medicine. BMC PLANT BIOLOGY 2024; 24:1055. [PMID: 39511474 PMCID: PMC11546474 DOI: 10.1186/s12870-024-05780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Astragalus membranaceus (Fisch.) Bunge is one of the most well-known tonic herbs in traditional Chinese medicine, renowned for its remarkable medicinal value in various clinical contexts. The corresponding chloroplast (cp) and nuclear genomes have since been accordingly sequenced, providing valuable information for breeding and phylogeny studies. However, the mitochondrial genome (mitogenome) of A. membranaceus remains unexplored, which hinders comprehensively understanding the evolution of its genome. RESULTS For this study, we de novo assembled the mitogenome of A. membranaceus (Fisch.) Bunge var. mongholicus (Bunge) P. K. Hsiao using a strategy integrating Illumina and Nanopore sequencing technology and subsequently performed comparative analysis with its close relatives. The mitogenome has a multi-chromosome structure, consisting of two circular chromosomes with a total length of 398,048 bp and an overall GC content of 45.3%. It encodes 54 annotated functional genes, comprising 33 protein-coding genes (PCGs), 18 tRNA genes, and 3 rRNA genes. An investigation of codon usage in the PCGs revealed an obvious preference for codons ending in A or U (T) bases, given their high frequency. RNA editing identified 500 sites in the coding regions of mt PCGs that exhibit a perfect conversion of the base C to U, a process that tends to lead to the conversion of hydrophilic amino acids into hydrophobic amino acids. From the mitogenome analysis, a total of 399 SSRs, 4 tandem repeats, and 77 dispersed repeats were found, indicating that A. membranaceus possesses fewer repeats compared to its close relatives with similarly sized mitogenomes. Selection pressure analysis indicated that most mt PCGs were purifying selection genes, while only five PCGs (ccmB, ccmFc, ccmFn, nad3, and nad9) were positive selection genes. Notably, positive selection emerged as a critical factor in the evolution of ccmB and nad9 in all the pairwise species comparisons, suggesting the extremely critical role of these genes in the evolution of A. membranaceus. Moreover, we inferred that 22 homologous fragments have been transferred from cp to mitochondria (mt), in which 5 cp-derived tRNA genes remain intact in the mitogenome. Further comparative analysis revealed that the syntenic region and mt gene organization are relatively conserved within the provided legumes. The comparison of gene content indicated that the gene composition of Fabaceae mitogenomes differed. Finally, the phylogenetic tree established from analysis is largely congruent with the taxonomic relationships of Fabaceae species and highlights the close relationship between Astragalus and Oxytropis. CONCLUSIONS We provide the first report of the assembled and annotated A. membranaceus mitogenome, which enriches the genetic resources available for the Astragalus genus and lays the foundation for comprehensive exploration of this invaluable medicinal plant.
Collapse
Affiliation(s)
- Kun Zhang
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China.
- Key Laboratory of Organic Dry Farming for Special Crops in Datong City, Datong, Shanxi, China.
| | - Gaoyang Qu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yue Zhang
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China
| | - Jianxia Liu
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China
- Key Laboratory of Organic Dry Farming for Special Crops in Datong City, Datong, Shanxi, China
| |
Collapse
|
10
|
Qiao H, Chen Y, Wang R, Zhang W, Zhang Z, Yu F, Yang H, Liu G, Zhang J. Assembly and comparative analysis of the first complete mitochondrial genome of Salix psammophila, a good windbreak and sand fixation shrub. FRONTIERS IN PLANT SCIENCE 2024; 15:1411289. [PMID: 39416477 PMCID: PMC11479937 DOI: 10.3389/fpls.2024.1411289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024]
Abstract
Salix psammophila, commonly known as the sandlive willow, is a vital shrub species within the Salicaceae family, particularly significant for its ecological role in regions susceptible to desertification and sandy soils. In this study, we assembled the complete S. psammophila mitochondrial genome using Pacbio HiFi third-generation sequencing data. The genome was found to be a typical single circular structure, with a total length of 715,555 bp and a GC content of 44.89%. We annotated 33 unique protein-coding genes (PCGs), which included 24 core mitochondrial genes and 9 variable genes, as well as 18 tRNA genes (5 of which were multicopy genes) and 3 rRNA genes. Comparative analysis of the PCGs from the mitochondrial genomes of S. psammophila, Populus deltoides, Populus simonii, Salix wilsonii, and Salix suchowensis revealed that these genes are relatively conserved within the Salicaceae family, with variability primarily occurring in the ribosomal protein genes. The absence of the rps14, which encodes a ribosomal protein, may have played a role in the evolution of stress tolerance in Salicaceae plants. Additionally, we identified 232 SSRs, 19 tandem repeat sequences, and 236 dispersed repeat sequences in the S. psammophila mitochondrial genome, with palindromic and forward repeats being the most abundant. The longest palindromic repeat measured 260 bp, while the longest forward repeat was 86,068 bp. Furthermore, 324 potential RNA editing sites were discovered, all involving C-to-U edits, with the nad4 having the highest number of edits. These findings provide valuable insights into the phylogenetic and genetic research of Salicaceae plants.
Collapse
Affiliation(s)
- Hongxia Qiao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, China
| | - Yajuan Chen
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
| | - Ruiping Wang
- Ordos Forestry and Grassland Development Center, Ordos, China
| | - Wei Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhang Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
| | - Fengqiang Yu
- Ordos Forestry and Grassland Development Center, Ordos, China
| | - Haifeng Yang
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, China
| | - Guiming Liu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
| | - Jiewei Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
| |
Collapse
|
11
|
Štorchová H, Krüger M. Methods for assembling complex mitochondrial genomes in land plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5169-5174. [PMID: 38302086 DOI: 10.1093/jxb/erae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The large size and complex structural rearrangements inherent in the mitochondrial genomes of land plants pose challenges for their sequencing. Originally, the assembly of these genomes required the cloning of mitochondrial DNA fragments followed by Sanger sequencing. Subsequently, the advent of next-generation sequencing significantly expedited the process. This review highlights examples of plant mitochondrial genome assembly employing various technologies, including 454 sequencing, Illumina short sequencing reads, and Pacific Biosciences or Oxford Nanopore Technology long sequencing reads. The combination of short and long reads in hybrid assembly has proven to be the most efficient approach for achieving reliable assemblies of land plant mitochondrial genomes.
Collapse
Affiliation(s)
- Helena Štorchová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 313, CZ-16502 Prague, Czech Republic
| | - Manuela Krüger
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 313, CZ-16502 Prague, Czech Republic
| |
Collapse
|
12
|
Li L, Li X, Liu Y, Li J, Zhen X, Huang Y, Ye J, Fan L. Comparative analysis of the complete mitogenomes of Camellia sinensis var. sinensis and C. sinensis var. assamica provide insights into evolution and phylogeny relationship. FRONTIERS IN PLANT SCIENCE 2024; 15:1396389. [PMID: 39239196 PMCID: PMC11374768 DOI: 10.3389/fpls.2024.1396389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Introduction Among cultivated tea plants (Camellia sinensis), only four mitogenomes for C. sinensis var. assamica (CSA) have been reported so far but none for C. sinensis var. sinensis (CSS). Here, two mitogenomes of CSS (CSSDHP and CSSRG) have been sequenced and assembled. Methods Using a combination of Illumina and Nanopore data for the first time. Comparison between CSS and CSA mitogenomes revealed a huge heterogeneity. Results The number of the repetitive sequences was proportional to the mitogenome size and the repetitive sequences dominated the intracellular gene transfer segments (accounting for 88.7%- 92.8% of the total length). Predictive RNA editing analysis revealed that there might be significant editing in NADH dehydrogenase subunit transcripts. Codon preference analysis showed a tendency to favor A/T bases and T was used more frequently at the third base of the codon. ENc plots analysis showed that the natural selection play an important role in shaping the codon usage bias, and Ka/Ks ratios analysis indicated Nad1 and Sdh3 genes may have undergone positive selection. Further, phylogenetic analysis shows that six C. sinensis clustered together, with the CSA and CSS forming two distinct branches, suggesting two different evolutionary pathway. Discussion Altogether, this investigation provided an insight into evolution and phylogeny relationship of C. sinensis mitogenome, thereby enhancing comprehension of the evolutionary patterns within C. sinensis species.
Collapse
Affiliation(s)
- Li Li
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Xiangru Li
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Yun Liu
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Junda Li
- College of Tea and Food Science, Wuyi University, Wuyishan, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyun Zhen
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Yu Huang
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Jianghua Ye
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Li Fan
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| |
Collapse
|
13
|
Luo X, Gu C, Gao S, Li M, Zhang H, Zhu S. Complete mitochondrial genome assembly of Zizania latifolia and comparative genome analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1381089. [PMID: 39184575 PMCID: PMC11341417 DOI: 10.3389/fpls.2024.1381089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/26/2024] [Indexed: 08/27/2024]
Abstract
Zizania latifolia (Griseb.) Turcz. ex Stapf has been cultivated as a popular aquatic vegetable in China due to its important nutritional, medicinal, ecological, and economic values. The complete mitochondrial genome (mitogenome) of Z. latifolia has not been previously studied and reported, which has hindered its molecular systematics and understanding of evolutionary processes. Here, we assembled the complete mitogenome of Z. latifolia and performed a comprehensive analysis including genome organization, repetitive sequences, RNA editing event, intercellular gene transfer, phylogenetic analysis, and comparative mitogenome analysis. The mitogenome of Z. latifolia was estimated to have a circular molecule of 392,219 bp and 58 genes consisting of three rRNA genes, 20 tRNA genes, and 35 protein-coding genes (PCGs). There were 46 and 20 simple sequence repeats (SSRs) with different motifs identified from the mitogenome and chloroplast genome of Z. latifolia, respectively. Furthermore, 49 homologous fragments were observed to transfer from the chloroplast genome to the mitogenome of Z. latifolia, accounting for 47,500 bp, presenting 12.1% of the whole mitogenome. In addition, there were 11 gene-containing homologous regions between the mitogenome and chloroplast genome of Z. latifolia. Also, approximately 85% of fragments from the mitogenome were duplicated in the Z. latifolia nuclear genome. Selection pressure analysis revealed that most of the mitochondrial genes were highly conserved except for ccmFc, ccmFn, matR, rps1, and rps3. A total of 93 RNA editing sites were found in the PCGs of the mitogenome. Z. latifolia and Oryza minuta are the most closely related, as shown by collinear analysis and the phylogenetic analysis. We found that repeat sequences and foreign sequences in the mitogenomes of Oryzoideae plants were associated with genome rearrangements. In general, the availability of the Z. latifolia mitogenome will contribute valuable information to our understanding of the molecular and genomic aspects of Zizania.
Collapse
Affiliation(s)
| | | | | | | | | | - Shidong Zhu
- College of Horticulture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
14
|
Xie P, Wu J, Lu M, Tian T, Wang D, Luo Z, Yang D, Li L, Yang X, Liu D, Cheng H, Tan J, Yang H, Zhu D. Assembly and comparative analysis of the complete mitochondrial genome of Fritillaria ussuriensis Maxim. (Liliales: Liliaceae), an endangered medicinal plant. BMC Genomics 2024; 25:773. [PMID: 39118028 PMCID: PMC11312713 DOI: 10.1186/s12864-024-10680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Fritillaria ussuriensis is an endangered medicinal plant known for its notable therapeutic properties. Unfortunately, its population has drastically declined due to the destruction of forest habitats. Thus, effectively protecting F. ussuriensis from extinction poses a significant challenge. A profound understanding of its genetic foundation is crucial. To date, research on the complete mitochondrial genome of F. ussuriensis has not yet been reported. RESULTS The complete mitochondrial genome of F. ussuriensis was sequenced and assembled by integrating PacBio and Illumina sequencing technologies, revealing 13 circular chromosomes totaling 737,569 bp with an average GC content of 45.41%. A total of 55 genes were annotated in this mitogenome, including 2 rRNA genes, 12 tRNA genes, and 41 PCGs. The mitochondrial genome of F. ussuriensis contained 192 SSRs and 4,027 dispersed repeats. In the PCGs of F. ussuriensis mitogenome, 90.00% of the RSCU values exceeding 1 exhibited a preference for A-ended or U-ended codons. In addition, 505 RNA editing sites were predicted across these PCGs. Selective pressure analysis suggested negative selection on most PCGs to preserve mitochondrial functionality, as the notable exception of the gene nad3 showed positive selection. Comparison between the mitochondrial and chloroplast genomes of F. ussuriensis revealed 20 homologous fragments totaling 8,954 bp. Nucleotide diversity analysis revealed the variation among genes, and gene atp9 was the most notable. Despite the conservation of GC content, mitogenome sizes varied significantly among six closely related species, and colinear analysis confirmed the lack of conservation in their genomic structures. Phylogenetic analysis indicated a close relationship between F. ussuriensis and Lilium tsingtauense. CONCLUSIONS In this study, we sequenced and annotated the mitogenome of F. ussuriensis and compared it with the mitogenomes of other closely related species. In addition to genomic features and evolutionary position, this study also provides valuable genomic resources to further understand and utilize this medicinal plant.
Collapse
Affiliation(s)
- Ping Xie
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Jingru Wu
- Affiliated Stomatological Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Mengyue Lu
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Tongxin Tian
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Dongmei Wang
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Zhiwen Luo
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Donghong Yang
- Affiliated Stomatological Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Lili Li
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Xuewen Yang
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Decai Liu
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Haitao Cheng
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Jiaxin Tan
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Hongsheng Yang
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China.
| | - Dequan Zhu
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
15
|
Wang L, Liu X, Wang Y, Ming X, Qi J, Zhou Y. Comparative analysis of the mitochondrial genomes of four Dendrobium species (Orchidaceae) reveals heterogeneity in structure, synteny, intercellular gene transfer, and RNA editing. FRONTIERS IN PLANT SCIENCE 2024; 15:1429545. [PMID: 39139720 PMCID: PMC11319272 DOI: 10.3389/fpls.2024.1429545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
The genus Dendrobium, part of the Orchidaceae family, encompasses species of significant medicinal, nutritional, and economic value. However, many Dendrobium species are threatened by environmental stresses, low seed germination rates, and overharvesting. Mitochondria generate the energy necessary for various plant life activities. Despite their importance, research on the mitochondrial genomes of Dendrobium species is currently limited. To address this gap, we performed a comprehensive genetic analysis of four Dendrobium species-D. flexicaule, D. nobile, D. officinale, and D. huoshanense-focusing on their mitochondrial and chloroplast genomes to elucidate their genetic architecture and support conservation efforts. We utilized advanced sequencing technologies, including Illumina for high-throughput sequencing and Nanopore for long-read sequencing capabilities. Our findings revealed the multichromosomal mitochondrial genome structures, with total lengths ranging from 596,506 bp to 772,523 bp. The mitochondrial genomes contained 265 functional genes, including 64-69 protein-coding genes, 23-28 tRNA genes, and 3 rRNA genes. We identified 647 simple sequence repeats (SSRs) and 352 tandem repeats, along with 440 instances of plastid-to-mitochondrial gene transfer. Additionally, we predicted 2,023 RNA editing sites within the mitochondrial protein-coding genes, predominantly characterized by cytosine-to-thymine transitions. Comparative analysis of mitochondrial DNA across the species highlighted 25 conserved genes, with evidence of positive selection in five genes: ccmFC, matR, mttB, rps2, and rps10. Phylogenetic assessments suggested a close sister relationship between D. nobile and D. huoshanense, and a similar proximity between D. officinale and D. flexicaule. This comprehensive genomic study provides a critical foundation for further exploration into the genetic mechanisms and biodiversity of Dendrobium species, contributing valuable insights for their conservation and sustainable utilization.
Collapse
Affiliation(s)
- Le Wang
- Chongqing Key Laboratory of Special Chinese Materia Medica Resources Utilization and Evaluation, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- College of Life Science and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Xue Liu
- Chongqing Key Laboratory of Special Chinese Materia Medica Resources Utilization and Evaluation, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yongde Wang
- Chongqing Key Laboratory of Special Chinese Materia Medica Resources Utilization and Evaluation, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xingjia Ming
- Chongqing Key Laboratory of Special Chinese Materia Medica Resources Utilization and Evaluation, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Junsheng Qi
- College of Life Science and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yiquan Zhou
- Chongqing Key Laboratory of Special Chinese Materia Medica Resources Utilization and Evaluation, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Daba Mountain Medical Animals and Plants of Chongqing Observation and Research Station, Chongqing Academy of Chinese Materia Medicinal, Chongqing, China
| |
Collapse
|
16
|
Wu CS, Wang RJ, Chaw SM. Integration of large and diverse angiosperm DNA fragments into Asian Gnetum mitogenomes. BMC Biol 2024; 22:140. [PMID: 38915079 PMCID: PMC11197197 DOI: 10.1186/s12915-024-01924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Horizontal gene transfer (HGT) events have rarely been reported in gymnosperms. Gnetum is a gymnosperm genus comprising 25‒35 species sympatric with angiosperms in West African, South American, and Southeast Asian rainforests. Only a single acquisition of an angiosperm mitochondrial intron has been documented to date in Asian Gnetum mitogenomes. We wanted to develop a more comprehensive understanding of frequency and fragment length distribution of such events as well as their evolutionary history in this genus. RESULTS We sequenced and assembled mitogenomes from five Asian Gnetum species. These genomes vary remarkably in size and foreign DNA content. We identified 15 mitochondrion-derived and five plastid-derived (MTPT) foreign genes. Our phylogenetic analyses strongly indicate that these foreign genes were transferred from diverse eudicots-mostly from the Rubiaceae genus Coptosapelta and ten genera of Malpighiales. This indicates that Asian Gnetum has experienced multiple independent HGT events. Patterns of sequence evolution strongly suggest DNA-mediated transfer between mitochondria as the primary mechanism giving rise to these HGT events. Most Asian Gnetum species are lianas and often entwined with sympatric angiosperms. We therefore propose that close apposition of Gnetum and angiosperm stems presents opportunities for interspecific cell-to-cell contact through friction and wounding, leading to HGT. CONCLUSIONS Our study reveals that multiple HGT events have resulted in massive amounts of angiosperm mitochondrial DNA integrated into Asian Gnetum mitogenomes. Gnetum and its neighboring angiosperms are often entwined with each other, possibly accounting for frequent HGT between these two phylogenetically remote lineages.
Collapse
Affiliation(s)
- Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Rui-Jiang Wang
- South China Botanical Garden, Chinese Academy of Science, Guangzhou, China
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
17
|
Li Z, Liu J, Liang M, Guo Y, Chen X, Wu H, Jin S. De novo assembly of the complete mitochondrial genome of pepino (Solanum muricatum) using PacBio HiFi sequencing: insights into structure, phylogenetic implications, and RNA editing. BMC PLANT BIOLOGY 2024; 24:361. [PMID: 38702620 PMCID: PMC11069145 DOI: 10.1186/s12870-024-04978-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/02/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Solanum muricatum is an emerging horticultural fruit crop with rich nutritional and antioxidant properties. Although the chromosome-scale genome of this species has been sequenced, its mitochondrial genome sequence has not been reported to date. RESULTS PacBio HiFi sequencing was used to assemble the circular mitogenome of S. muricatum, which was 433,466 bp in length. In total, 38 protein-coding, 19 tRNA, and 3 rRNA genes were annotated. The reticulate mitochondrial conformations with multiple junctions were verified by polymerase chain reaction, and codon usage, sequence repeats, and gene migration from chloroplast to mitochondrial genome were determined. A collinearity analysis of eight Solanum mitogenomes revealed high structural variability. Overall, 585 RNA editing sites in protein coding genes were identified based on RNA-seq data. Among them, mttB was the most frequently edited (52 times), followed by ccmB (46 times). A phylogenetic analysis based on the S. muricatum mitogenome and those of 39 other taxa (including 25 Solanaceae species) revealed the evolutionary and taxonomic status of S. muricatum. CONCLUSIONS We provide the first report of the assembled and annotated S. muricatum mitogenome. This information will help to lay the groundwork for future research on the evolutionary biology of Solanaceae species. Furthermore, the results will assist the development of molecular breeding strategies for S. muricatum based on the most beneficial agronomic traits of this species.
Collapse
Affiliation(s)
- Ziwei Li
- Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Jiaxun Liu
- Horticultural Research Institute Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Mingtai Liang
- Horticultural Research Institute Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Yanbing Guo
- Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xia Chen
- Horticultural Research Institute Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Hongzhi Wu
- Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| | - Shoulin Jin
- Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| |
Collapse
|
18
|
Liu J, Hu JY, Li DZ. Remarkable mitochondrial genome heterogeneity in Meniocus linifolius (Brassicaceae). PLANT CELL REPORTS 2024; 43:36. [PMID: 38200362 DOI: 10.1007/s00299-023-03102-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/06/2023] [Indexed: 01/12/2024]
Abstract
KEY MESSAGE Detailed analyses of 16 genomes identified a remarkable acceleration of mutation rate, hence mitochondrial sequence and structural heterogeneity, in Meniocus linifolius (Brassicaceae). The powerhouse, mitochondria, in plants feature high levels of structural variation, while the encoded genes are normally conserved. However, the substitution rates and spectra of mitochondria DNA within the Brassicaceae, a family with substantial scientific and economic importance, have not been adequately deciphered. Here, by analyzing three newly assembled and 13 known mitochondrial genomes (mitogenomes), we report the highly variable genome structure and mutation rates in Brassicaceae. The genome sizes and GC contents are 196,604 bp and 46.83%, 288,122 bp and 44.79%, and 287,054 bp and 44.93%, for Meniocus linifolius (Mli), Crucihimalaya lasiocarpa (Cla), and Lepidium sativum (Lsa), respectively. In total, 29, 33, and 34 protein-coding genes (PCGs) and 14, 18, and 18 tRNAs are annotated for Mli, Cla, and Lsa, respectively, while all mitogenomes contain one complete circular molecule with three rRNAs and abundant RNA editing sites. The Mli mitogenome features four conformations likely mediated by the two pairs of long repeats, while at the same time seems to have an unusual evolutionary history due to higher GC content, loss of more genes and sequences, but having more repeats and plastid DNA insertions. Corroborating with these, an ambiguous phylogenetic position with long branch length and elevated synonymous substitution rate in nearly all PCGs are observed for Mli. Taken together, our results reveal a high level of mitogenome heterogeneity at the family level and provide valuable resources for further understanding the evolutionary pattern of organelle genomes in Brassicaceae.
Collapse
Affiliation(s)
- Jie Liu
- CAS Key Laboratory for Plant Diversity, Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity, Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
19
|
Sanchez-Puerta MV, Ceriotti LF, Gatica-Soria LM, Roulet ME, Garcia LE, Sato HA. Invited Review Beyond parasitic convergence: unravelling the evolution of the organellar genomes in holoparasites. ANNALS OF BOTANY 2023; 132:909-928. [PMID: 37503831 PMCID: PMC10808021 DOI: 10.1093/aob/mcad108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND The molecular evolution of organellar genomes in angiosperms has been studied extensively, with some lineages, such as parasitic ones, displaying unique characteristics. Parasitism has emerged 12 times independently in angiosperm evolution. Holoparasitism is the most severe form of parasitism, and is found in ~10 % of parasitic angiosperms. Although a few holoparasitic species have been examined at the molecular level, most reports involve plastomes instead of mitogenomes. Parasitic plants establish vascular connections with their hosts through haustoria to obtain water and nutrients, which facilitates the exchange of genetic information, making them more susceptible to horizontal gene transfer (HGT). HGT is more prevalent in the mitochondria than in the chloroplast or nuclear compartments. SCOPE This review summarizes current knowledge on the plastid and mitochondrial genomes of holoparasitic angiosperms, compares the genomic features across the different lineages, and discusses their convergent evolutionary trajectories and distinctive features. We focused on Balanophoraceae (Santalales), which exhibits extraordinary traits in both their organelles. CONCLUSIONS Apart from morphological similarities, plastid genomes of holoparasitic plants also display other convergent features, such as rampant gene loss, biased nucleotide composition and accelerated evolutionary rates. In addition, the plastomes of Balanophoraceae have extremely low GC and gene content, and two unexpected changes in the genetic code. Limited data on the mitochondrial genomes of holoparasitic plants preclude thorough comparisons. Nonetheless, no obvious genomic features distinguish them from the mitochondria of free-living angiosperms, except for a higher incidence of HGT. HGT appears to be predominant in holoparasitic angiosperms with a long-lasting endophytic stage. Among the Balanophoraceae, mitochondrial genomes exhibit disparate evolutionary paths with notable levels of heteroplasmy in Rhopalocnemis and unprecedented levels of HGT in Lophophytum. Despite their differences, these Balanophoraceae share a multichromosomal mitogenome, a feature also found in a few free-living angiosperms.
Collapse
Affiliation(s)
- M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Luis F Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Leonardo M Gatica-Soria
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
| | - Laura E Garcia
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Hector A Sato
- Facultad de Ciencias Agrarias, Cátedra de Botánica General–Herbario JUA, Alberdi 47, Universidad Nacional de Jujuy, 4600 Jujuy, Argentina
| |
Collapse
|
20
|
Zhang F, Kang H, Gao L. Complete Mitochondrial Genome Assembly of an Upland Wild Rice Species, Oryza granulata and Comparative Mitochondrial Genomic Analyses of the Genus Oryza. Life (Basel) 2023; 13:2114. [PMID: 38004254 PMCID: PMC10672236 DOI: 10.3390/life13112114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] Open
Abstract
Wild upland rice species, including Oryza granulata, possess unique characteristics that distinguish them from other Oryza species. For instance, O. granulata characteristically has a GG genome and is accordingly classified as a basal lineage of the genus Oryza. Here, we deployed a versatile hybrid approach by integrating Illumina and PacBio sequencing data to generate a high-quality mitochondrial genome (mitogenome) assembly for O. granulata. The mitogenome of O. granulata was 509,311 base pairs (bp) with sixty-seven genes comprising two circular chromosomes, five ribosomal RNA (rRNA) coding genes, twenty-five transfer RNA (tRNA) coding genes, and thirty-seven genes coding for proteins. We identified a total of 378 simple sequence repeats (SSRs). The genome also contained 643 pairs of dispersed repeats comprising 340 palindromic and 303 forward. In the O. granulata mitogenome, the length of 57 homologous fragments in the chloroplast genome occupied 5.96% of the mitogenome length. Collinearity analysis of three Oryza mitogenomes revealed high structural variability and frequent rearrangements. Phylogenetic analysis showed that, compared to other related genera, O. granulata had the closest genetic relationship with mitogenomes reported for all members of Oryza, and occupies a position at the base of the Oryza phylogeny. Comparative analysis of complete mitochondrial genome assemblies for Oryza species revealed high levels of mitogenomic diversity, providing a foundation for future conservation and utilization of wild rice biodiversity.
Collapse
Affiliation(s)
- Fen Zhang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| | - Haiqi Kang
- Tropical Biodiversity and Genomics Research Center, Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education, Hainan University, Haikou 570228, China;
| | - Lizhi Gao
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
- Tropical Biodiversity and Genomics Research Center, Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education, Hainan University, Haikou 570228, China;
| |
Collapse
|
21
|
Zhou S, Zhi X, Yu R, Liu Y, Zhou R. Factors contributing to mitogenome size variation and a recurrent intracellular DNA transfer in Melastoma. BMC Genomics 2023; 24:370. [PMID: 37393222 DOI: 10.1186/s12864-023-09488-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Mitogenome sizes of seed plants vary substantially even among closely related species, which are often related to horizontal or intracellular DNA transfer (HDT or IDT) events. However, the mechanisms of this size variation have not been well characterized. RESULTS Here we assembled and characterized the mitogenomes of three species of Melastoma, a tropical shrub genus experiencing rapid speciation. The mitogenomes of M. candidum (Mc), M. sanguineum (Ms) and M. dodecandrum (Md) were assembled to a circular mapping chromosome of 391,595 bp, 395,542 bp and 412,026 bp, respectively. While the mitogenomes of Mc and Ms showed good collinearity except for a large inversion of ~ 150 kb, there were many rearrangements in the mitogenomes between Md and either Mc or Ms. Most non-alignable sequences (> 80%) between Mc and Ms are from gain or loss of mitochondrial sequences. Whereas, between Md and either Mc or Ms, non-alignable sequences in Md are mainly chloroplast derived sequences (> 30%) and from putative horizontal DNA transfers (> 30%), and those in both Mc and Ms are from gain or loss of mitochondrial sequences (> 80%). We also identified a recurrent IDT event in another congeneric species, M. penicillatum, which has not been fixed as it is only found in one of the three examined populations. CONCLUSIONS By characterizing mitochondrial genome sequences of Melastoma, our study not only helps understand mitogenome size evolution in closely related species, but also cautions different evolutionary histories of mitochondrial regions due to potential recurrent IDT events in some populations or species.
Collapse
Affiliation(s)
- Shuaixi Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xueke Zhi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Runxian Yu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
22
|
Lu G, Zhang K, Que Y, Li Y. Assembly and analysis of the first complete mitochondrial genome of Punica granatum and the gene transfer from chloroplast genome. FRONTIERS IN PLANT SCIENCE 2023; 14:1132551. [PMID: 37416882 PMCID: PMC10320729 DOI: 10.3389/fpls.2023.1132551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/31/2023] [Indexed: 07/08/2023]
Abstract
Pomegranate (Punica granatum L.) is one of the oldest fruits with edible, medicinal and ornamental values. However, there is no report on the mitochondrial genome of pomegranate. In this study, the mitochondrial genome of P. granatum was sequenced, assembled and analyzed in detail, while the chloroplast genome was assembled using the same set of data. The results showed that the P. granatum mitogenome had a multi branched structure, using BGI + Nanopore mixed assembly strategy. The total genome length was 404,807 bp, with the GC content of 46.09%, and there were 37 protein coding genes, 20 tRNA genes and three rRNA genes. In the whole genome, 146 SSRs were identified. Besides, 400 pairs of dispersed repeats were detected, including 179 palindromic, 220 forward and one reverse. In the P. granatum mitochondrial genome, 14 homologous fragments of chloroplast genome were found, accounting for 0.54% of the total length. Phylogenetic analysis showed that among the published mitochondrial genomes of related genera, P. granatum had the closest genetic relationship with Lagerstroemia indica of Lythraceae. The 580 and 432 RNA editing sites were predicted on 37 protein coding genes of mitochondrial genome using BEDTools software and online website PREPACT respectively, but all were from C to U, of which ccmB and nad4 gene were most frequently edited, with 47 sites. This study provides a theoretical basis for understanding the evolution of higher plants, species classification and identification, and will also be useful for further utilization of pomegranate germplasm resources.
Collapse
Affiliation(s)
- Guilong Lu
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Kai Zhang
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanfeng Li
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
23
|
Zhang J, Zhang C, Zan T, Nan P, Li L, Song Z, Zhang W, Yang J, Wang Y. Host shift promotes divergent evolution between closely related holoparasitic species. Mol Phylogenet Evol 2023:107842. [PMID: 37321361 DOI: 10.1016/j.ympev.2023.107842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Distinct hosts have been hypothesized to possess the potential for affecting species differentiation and genome evolution of parasitic organisms. However, what host shift history is experienced by the closely related parasites and whether disparate evolution of their genomes occur remain largely unknown. Here, we screened horizontal gene transfer (HGT) events in a pair of sister species of holoparasitic Boschniakia (Orobanchaceae) having obligate hosts from distinct families to recall the former host-parasite associations and performed a comparative analysis to investigate the difference of their organelle genomes. Except those from the current hosts (Ericaceae and Betulaceae), we identified a number of HGTs from Rosaceae supporting the occurrence of unexpected ancient host shifts. Different hosts transfer functional genes which changed nuclear genomes of this sister species. Likewise, different donors transferred sequences to their mitogenomes, which vary in size due to foreign and repetitive elements rather than other factors found in other parasites. The plastomes are both severely reduced, and the degree of difference in reduction syndrome reaches the intergeneric level. Our findings provide new insights into the genome evolution of parasites adapting to different hosts and extend the mechanism of host shift promoting species differentiation to parasitic plant lineages.
Collapse
Affiliation(s)
- Jiayin Zhang
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Chi Zhang
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Ting Zan
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Peng Nan
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Linfeng Li
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Zhiping Song
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Wenju Zhang
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Ji Yang
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Yuguo Wang
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
24
|
Darshetkar AM, Pable AA, Nadaf AB, Barvkar VT. Understanding parasitism in Loranthaceae: Insights from plastome and mitogenome of Helicanthes elastica. Gene 2023; 861:147238. [PMID: 36736502 DOI: 10.1016/j.gene.2023.147238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
Loranthaceae is the largest family of the order Santalales and includes root and stem hemiparasites. The parasites are known to exhibit reductions in the genomic features as well as relaxed or intensified selection shifts. In this study, we report plastome and mitogenome sequence of Helicanthes elastica (subtribe Amyeminae, tribe Lorantheae), an endemic, monotypic genus of Western Ghats, India growing on remarkably diverse host range. The length of plastome sequence was 1,28,805 bp while that of mitogenome was 1,65,273 bp. This is the smallest mitogenome from Loranthaceae reported till date. The plastome of Helicanthes exhibited loss of ndh genes (ψndhB), ψinfA, rps15, rps16, rpl32, trnK-UUU, trnG-UCC, trnV-UAC and trnA-UGC while mitogenome exhibited pseudogenized cox2, nad1 and nad4 genes. The comparative study of Loranthaceae plastomes revealed that the pseudogenization or loss of genes was not specific to any genus or tribe and variation was noted in the number of introns of clpP gene in the family. Several photosynthetic genes have undergone relaxed selection supporting lower photosynthetic rates in parasitic plants while some respiratory genes exhibited intensified selection supporting the idea of host-parasite arm race in Loranthaceae. The plastome gene content was found conserved in root hemiparasites compared to stem hemiparasites. The atp1 gene of mitogenome was chimeric and part of it exhibited similarities with Lamiales members. The phylogenetic analysis based on plastid genes placed Helicanthes sister to the members of subtribe Dendrophthoinae.
Collapse
Affiliation(s)
| | - Anupama A Pable
- Department of Microbiology, Savitribai Phule Pune University, Pune 411007, India.
| | | | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
25
|
Silva SR, Miranda VFO, Michael TP, Płachno BJ, Matos RG, Adamec L, Pond SLK, Lucaci AG, Pinheiro DG, Varani AM. The phylogenomics and evolutionary dynamics of the organellar genomes in carnivorous Utricularia and Genlisea species (Lentibulariaceae). Mol Phylogenet Evol 2023; 181:107711. [PMID: 36693533 DOI: 10.1016/j.ympev.2023.107711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Utricularia and Genlisea are highly specialized carnivorous plants whose phylogenetic history has been poorly explored using phylogenomic methods. Additional sampling and genomic data are needed to advance our phylogenetic and taxonomic knowledge of this group of plants. Within a comparative framework, we present a characterization of plastome (PT) and mitochondrial (MT) genes of 26 Utricularia and six Genlisea species, with representatives of all subgenera and growth habits. All PT genomes maintain similar gene content, showing minor variation across the genes located between the PT junctions. One exception is a major variation related to different patterns in the presence and absence of ndh genes in the small single copy region, which appears to follow the phylogenetic history of the species rather than their lifestyle. All MT genomes exhibit similar gene content, with most differences related to a lineage-specific pseudogenes. We find evidence for episodic positive diversifying selection in PT and for most of the Utricularia MT genes that may be related to the current hypothesis that bladderworts' nuclear DNA is under constant ROS oxidative DNA damage and unusual DNA repair mechanisms, or even low fidelity polymerase that bypass lesions which could also be affecting the organellar genomes. Finally, both PT and MT phylogenetic trees were well resolved and highly supported, providing a congruent phylogenomic hypothesis for Utricularia and Genlisea clade given the study sampling.
Collapse
Affiliation(s)
- Saura R Silva
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Agricultural and Environmental Biotechnology, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Vitor F O Miranda
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Biology, Laboratory of Plant Systematics, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9 St., 30-387 Cracow, Poland.
| | - Ramon G Matos
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Biology, Laboratory of Plant Systematics, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Lubomir Adamec
- Department of Experimental and Functional Morphology, Institute of Botany CAS, Dukelská 135, CZ-379 01 Třeboň, Czech Republic.
| | - Sergei L K Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA.
| | - Alexander G Lucaci
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA.
| | - Daniel G Pinheiro
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Agricultural and Environmental Biotechnology, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Alessandro M Varani
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Agricultural and Environmental Biotechnology, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| |
Collapse
|
26
|
Sheng W, Deng J, Wang C, Kuang Q. The garden asparagus ( Asparagus officinalis L.) mitochondrial genome revealed rich sequence variation throughout whole sequencing data. FRONTIERS IN PLANT SCIENCE 2023; 14:1140043. [PMID: 37051082 PMCID: PMC10084930 DOI: 10.3389/fpls.2023.1140043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Garden asparagus (Asparagus officinalis L.) is a horticultural crop with high nutritional and medical value, considered an ideal plant for sex determination research among many dioecious plants, whose genomic information can support genetic analysis and breeding programs. In this research, the entire mitochondrial genome of A. officinalis was sequenced, annotated and assembled using a mixed Illumina and PacBio data. The garden asparagus circular mitochondrial genome measures 492,062 bp with a GC value of 45.9%. Thirty-six protein-coding genes, 17 tRNA and 6 rRNA genes were annotated, among which 8 protein-coding genes contained 16 introns. In addition, 254 SSRs with 10 complete tandem repeats and 293 non-tandem repeats were identified. It was found that the codons of edited sites located in the amino acids showed a leucine-formation trend, and RNA editing sites mainly caused the mutual transformation of amino acids with the same properties. Furthermore, 72 sequence fragments accounting for 20,240 bp, presentating 4.11% of the whole mitochondrial genome, were observed to migrate from chloroplast to mitochondrial genome of A. officinalis. The phylogenetic analysis showed that the closest genetic relationship between A. officinalis with onion (Allium cepa) inside the Liliaceae family. Our results demonstrated that high percentage of protein-coding genes had evolutionary conservative properties, with Ka/Ks values less than 1. Therefore, this study provides a high-quality garden asparagus mitochondrial genome, useful to promote better understanding of gene exchange between organelle genomes.
Collapse
Affiliation(s)
- Wentao Sheng
- Department of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, China
| | - Jianlan Deng
- School of Foreign Language, Nanchang Normal University, Nanchang, Jiangxi, China
| | - Chao Wang
- Department of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, China
| | - Quan Kuang
- Department of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
27
|
Comparative Analyses of Chloroplast Genomes for Parasitic Species of Santalales in the Light of Two Newly Sequenced Species, Taxillus nigrans and Scurrula parasitica. Genes (Basel) 2023; 14:genes14030560. [PMID: 36980832 PMCID: PMC10048710 DOI: 10.3390/genes14030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023] Open
Abstract
When a flowering plant species changes its life history from self-supply to parasite, its chloroplast genomes may have experienced functional physical reduction, and gene loss. Most species of Santalales are hemiparasitic and few studies focus on comparing the chloroplast genomes of the species from this order. In this study, we collected and compared chloroplast genomes of 12 species of Santalales and sequenced the chloroplast genomes of Taxillus nigrans and Scurrula parasitica for the first time. The chloroplast genomes for these species showed typical quadripartite structural organization. Phylogenetic analysis suggested that these 12 species of Santalales clustered into three clades: Viscum (4 spp.) and Osyris (1 sp.) in the Santalaceae and Champereia (1 sp.) in the Opiliaceae formed one clade, while Taxillus (3 spp.) and Scurrula (1 sp.) in the Loranthaceae and Schoepfia (1 sp.) in the Schoepfiaceae formed another clade. Erythropalum (1 sp.), in the Erythropalaceae, appeared as a third, most distant, clade within the Santalales. In addition, both Viscum and Taxillus are monophyletic, and Scurrula is sister to Taxillus. A comparative analysis of the chloroplast genome showed differences in genome size and the loss of genes, such as the ndh genes, infA genes, partial ribosomal genes, and tRNA genes. The 12 species were classified into six categories by the loss, order, and structure of genes in the chloroplast genome. Each of the five genera (Viscum, Osyris, Champereia, Schoepfia, and Erythropalum) represented an independent category, while the three Taxillus species and Scurrula were classified into a sixth category. Although we found that different genes were lost in various categories, most genes related to photosynthesis were retained in the 12 species. Hence, the genetic information accorded with observations that they are hemiparasitic species. Our comparative genomic analyses can provide a new case for the chloroplast genome evolution of parasitic species.
Collapse
|
28
|
Shimpi GG, Bentlage B. Ancient endosymbiont-mediated transmission of a selfish gene provides a model for overcoming barriers to gene transfer into animal mitochondrial genomes. Bioessays 2023; 45:e2200190. [PMID: 36412071 DOI: 10.1002/bies.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022]
Abstract
In contrast to bilaterian animals, non-bilaterian mitochondrial genomes contain atypical genes, often attributed to horizontal gene transfer (HGT) as an ad hoc explanation. Although prevalent in plants, HGT into animal mitochondrial genomes is rare, lacking suitable explanatory models for their occurrence. HGT of the mismatch DNA repair gene (mtMutS) from giant viruses to octocoral (soft corals and their kin) mitochondrial genomes provides a model for how barriers to HGT to animal mitochondria may be overcome. A review of the available literature suggests that this HGT was mediated by an alveolate endosymbiont infected with a lysogenic phycodnavirus that enabled insertion of the homing endonuclease containing mtMutS into octocoral mitochondrial genomes. We posit that homing endonuclease domains and similar selfish elements play a crucial role in such inter-domain gene transfers. Understanding the role of selfish genetic elements in HGT has the potential to aid development of tools for manipulating animal mitochondrial DNA.
Collapse
|
29
|
Maclean AE, Hayward JA, Huet D, van Dooren GG, Sheiner L. The mystery of massive mitochondrial complexes: the apicomplexan respiratory chain. Trends Parasitol 2022; 38:1041-1052. [PMID: 36302692 PMCID: PMC10434753 DOI: 10.1016/j.pt.2022.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
The mitochondrial respiratory chain is an essential pathway in most studied eukaryotes due to its roles in respiration and other pathways that depend on mitochondrial membrane potential. Apicomplexans are unicellular eukaryotes whose members have an impact on global health. The respiratory chain is a drug target for some members of this group, notably the malaria-causing Plasmodium spp. This has motivated studies of the respiratory chain in apicomplexan parasites, primarily Toxoplasma gondii and Plasmodium spp. for which experimental tools are most advanced. Studies of the respiratory complexes in these organisms revealed numerous novel features, including expansion of complex size. The divergence of apicomplexan mitochondria from commonly studied models highlights the diversity of mitochondrial form and function across eukaryotic life.
Collapse
Affiliation(s)
- Andrew E Maclean
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Jenni A Hayward
- Research School of Biology, Australian National University, Canberra, Australia
| | - Diego Huet
- Center for Tropical & Emerging Diseases, University of Georgia, Athens, GA, USA; Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, Australia
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK.
| |
Collapse
|
30
|
Schröder L, Hegermann J, Pille P, Braun HP. The photosynthesis apparatus of European mistletoe (Viscum album). PLANT PHYSIOLOGY 2022; 190:1896-1914. [PMID: 35976139 PMCID: PMC9614478 DOI: 10.1093/plphys/kiac377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
European mistletoe (Viscum album) is known for its special mode of cellular respiration. It lacks the mitochondrial NADH dehydrogenase complex (Complex I of the respiratory chain) and has restricted capacities to generate mitochondrial adenosine triphosphate (ATP). Here, we present an investigation of the V. album energy metabolism taking place in chloroplasts. Thylakoids were purified from young V. album leaves, and membrane-bound protein complexes were characterized by Blue native polyacrylamide gel electrophoresis as well as by the complexome profiling approach. Proteins were systematically identified by label-free quantitative shotgun proteomics. We identified >1,800 distinct proteins (accessible at https://complexomemap.de/va_leaves), including nearly 100 proteins forming part of the protein complexes involved in the light-dependent part of photosynthesis. The photosynthesis apparatus of V. album has distinct features: (1) comparatively low amounts of Photosystem I; (2) absence of the NDH complex (the chloroplast pendant of mitochondrial Complex I involved in cyclic electron transport (CET) around Photosystem I); (3) reduced levels of the proton gradient regulation 5 (PGR5) and proton gradient regulation 5-like 1 (PGRL1) proteins, which offer an alternative route for CET around Photosystem I; (4) comparable amounts of Photosystem II and the chloroplast ATP synthase complex to other seed plants. Our data suggest a restricted capacity for chloroplast ATP biosynthesis by the photophosphorylation process. This is in addition to the limited ATP supply by the mitochondria. We propose a view on mistletoe's mode of life, according to which its metabolism relies to a greater extent on energy-rich compounds provided by the host trees.
Collapse
Affiliation(s)
- Lucie Schröder
- Institut für Pflanzgenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Jan Hegermann
- Institut für Funktionelle und Angewandte Anatomie, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Patrick Pille
- Institut für Pflanzgenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | | |
Collapse
|
31
|
Zhong Y, Yu R, Chen J, Liu Y, Zhou R. Highly active repeat-mediated recombination in the mitogenome of the holoparasitic plant Aeginetia indica. FRONTIERS IN PLANT SCIENCE 2022; 13:988368. [PMID: 36212306 PMCID: PMC9532969 DOI: 10.3389/fpls.2022.988368] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Mitogenomes of most flowering plants evolve slowly in sequence, but rapidly in structure. The rearrangements in structure are mainly caused by repeat-mediated recombination. However, patterns of repeat-mediated recombination vary substantially among plants, and to provide a comprehensive picture, characterization of repeat-mediated recombination should extend to more plant species, including parasitic plants with a distinct heterotrophic lifestyle. Here we assembled the mitogenome of the holoparasitic plant Aeginetia indica (Orobanchaceae) using Illumina sequencing reads. The mitogenome was assembled into a circular chromosome of 420,362 bp, 18,734 bp longer than that of another individual of A. indica which was assembled before as a linear molecule. Synteny analysis between the two mitogenomes revealed numerous rearrangements, unique regions of each individual and 0.2% sequence divergence in their syntenic regions. The A. indica mitogenome contains a gene content typical of flowering plants (33 protein-coding, 3 rRNA, and 17 tRNA genes). Repetitive sequences >30 bp in size totals 57,060 bp, representing 13.6% of the mitogenome. We examined recombination mediated by repeats >100 bp in size and found highly active recombination for all the repeats, including a very large repeat of ~16 kb. Recombination between these repeats can form much smaller subgenomic circular chromosomes, which may lead to rapid replication of mitochondrial DNA and thus be advantageous for A. indica with a parasitic lifestyle. In addition, unlike some other parasitic plants, A. indica shows no evidence for horizontal gene transfer of protein-coding genes in its mitogenome.
Collapse
Affiliation(s)
- Yan Zhong
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Runxian Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jingfang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Bi C, Qu Y, Hou J, Wu K, Ye N, Yin T. Deciphering the Multi-Chromosomal Mitochondrial Genome of Populus simonii. FRONTIERS IN PLANT SCIENCE 2022; 13:914635. [PMID: 35783945 PMCID: PMC9240471 DOI: 10.3389/fpls.2022.914635] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/29/2022] [Indexed: 06/01/2023]
Abstract
Mitochondria, inherited maternally, are energy metabolism organelles that generate most of the chemical energy needed to power cellular various biochemical reactions. Deciphering mitochondrial genome (mitogenome) is important for elucidating vital activities of species. The complete chloroplast (cp) and nuclear genome sequences of Populus simonii (P. simonii) have been reported, but there has been little progress in its mitogenome. Here, we assemble the complete P. simonii mitogenome into three circular-mapping molecules (lengths 312.5, 283, and 186 kb) with the total length of 781.5 kb. All three molecules of the P. simonii mitogenome had protein-coding capability. Whole-genome alignment analyses of four Populus species revealed the fission of poplar mitogenome in P. simonii. Comparative repeat analyses of four Populus mitogenomes showed that there were no repeats longer than 350 bp in Populus mitogenomes, contributing to the stability of genome sizes and gene contents in the genus Populus. As the first reported multi-circular mitogenome in Populus, this study of P. simonii mitogenome are imperative for better elucidating their biological functions, replication and recombination mechanisms, and their unique evolutionary trajectories in Populus.
Collapse
Affiliation(s)
- Changwei Bi
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Yanshu Qu
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jing Hou
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Kai Wu
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Ning Ye
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Tongming Yin
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
33
|
Lin Q, Banerjee A, Stefanović S. Mitochondrial phylogenomics of Cuscuta (Convolvulaceae) reveals a potentially functional horizontal gene transfer from the host. Genome Biol Evol 2022; 14:evac091. [PMID: 35700229 PMCID: PMC9234195 DOI: 10.1093/gbe/evac091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/14/2022] Open
Abstract
Horizontal gene transfers (HGTs) from host or other organisms have been reported in mitochondrial genomes of parasitic plants. Genes transferred in this fashion have usually been found non-functional. Several examples of HGT from the mitochondrial genome of parasitic Cuscuta (Convolvulaceae) to its hosts have been reported, but not vice versa. Here we used 31 protein-coding mitochondrial genes to infer the phylogeny of Cuscuta, and compared it with previous nuclear and plastid phylogenetic estimates. We also investigated the presence of HGTs within these lineages. Unlike in plastid genomes, we did not find extensive gene loss in their mitochondrial counterparts. Our results reveal the first example of organellar HGT from host to Cuscuta. Mitochondrial atp1 genes of South African subgenus Pachystigma were inferred to be transferred from Lamiales, with high support. Moreover, the horizontally transferred atp1 gene has functionally replaced the native, vertically transmitted copy, has an intact open reading frame, and is under strong purifying selection, all of which suggests that this xenolog remains functional. The mitochondrial phylogeny of Cuscuta is generally consistent with previous plastid and nuclear phylogenies, except for the misplacement of Pachystigma when atp1 is included. This incongruence may be caused by the HGT mentioned above. No example of HGT was found within mitochondrial genes of three other, independently evolved parasitic lineages we sampled: Cassytha/Laurales, Krameria/Zygophyllales, and Lennooideae/Boraginales.
Collapse
Affiliation(s)
- Qianshi Lin
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 2Z9, Canada
| | - Arjan Banerjee
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 2Z9, Canada
| | - Saša Stefanović
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
34
|
Mitochondrial genomes of two parasitic Cuscuta species lack clear evidence of horizontal gene transfer and retain unusually fragmented ccmF C genes. BMC Genomics 2021; 22:816. [PMID: 34772334 PMCID: PMC8588681 DOI: 10.1186/s12864-021-08105-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/19/2021] [Indexed: 01/30/2023] Open
Abstract
Background The intimate association between parasitic plants and their hosts favours the exchange of genetic material, potentially leading to horizontal gene transfer (HGT) between plants. With the recent publication of several parasitic plant nuclear genomes, there has been considerable focus on such non-sexual exchange of genes. To enhance the picture on HGT events in a widely distributed parasitic genus, Cuscuta (dodders), we assembled and analyzed the organellar genomes of two recently sequenced species, C. australis and C. campestris, making this the first account of complete mitochondrial genomes (mitogenomes) for this genus. Results The mitogenomes are 265,696 and 275,898 bp in length and contain a typical set of mitochondrial genes, with 10 missing or pseudogenized genes often lost from angiosperm mitogenomes. Each mitogenome also possesses a structurally unusual ccmFC gene, which exhibits splitting of one exon and a shift to trans-splicing of its intron. Based on phylogenetic analysis of mitochondrial genes from across angiosperms and similarity-based searches, there is little to no indication of HGT into the Cuscuta mitogenomes. A few candidate regions for plastome-to-mitogenome transfer were identified, with one suggestive of possible HGT. Conclusions The lack of HGT is surprising given examples from the nuclear genomes, and may be due in part to the relatively small size of the Cuscuta mitogenomes, limiting the capacity to integrate foreign sequences. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08105-z.
Collapse
|
35
|
Petersen G, Shyama Prasad Rao R, Anderson B, Zervas A, Seberg O, Rasmusson AG, Max Møller I. Genes from oxidative phosphorylation complexes II-V and two dual-function subunits of complex I are transcribed in Viscum album despite absence of the entire mitochondrial holo-complex I. Mitochondrion 2021; 62:1-12. [PMID: 34740863 DOI: 10.1016/j.mito.2021.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/09/2021] [Accepted: 10/28/2021] [Indexed: 11/30/2022]
Abstract
Mistletoes (Viscum) and close relatives are unique among flowering plants in having a drastically altered electron transport chain. Lack of complex I genes has previously been reported for the mitochondrial genome, and here we report an almost complete absence of nuclear-encoded complex I genes in the transcriptome of Viscum album. Compared to Arabidopsis with approximately 40 nuclear complex I genes, we recover only transcripts of two dual-function genes: gamma carbonic anhydrase and L-galactono-1,4-lactone dehydrogenase. The complement of genes belonging to complexes II-V of the oxidative phosphorylation pathway appears to be in accordance with other vascular plants. Additionally, transcripts encoding alternative NAD(P)H dehydrogenases and alternative oxidase were found. Despite sequence divergence, structural modeling suggests that the encoded proteins are structurally conserved. Complex I loss is a special feature in Viscum species and relatives, as all other parasitic flowering plants investigated to date seem to have a complete OXPHOS system. Hence, Viscum offers a unique system for specifically investigating molecular consequences of complex I absence, such as the role of complex I subunits involved in secondary functions.
Collapse
Affiliation(s)
- Gitte Petersen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - R Shyama Prasad Rao
- Biostatistics and Bioinformatics Division, Yenepoya Research Center, Yenepoya University, Mangaluru 575018, Karnataka, India
| | - Benjamin Anderson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, DK-4000 Roskilde, Denmark
| | - Ole Seberg
- Natural History Museum of Denmark, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | | | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, DK-4200 Slagelse, Denmark
| |
Collapse
|
36
|
Møller IM, Rasmusson AG, Van Aken O. Plant mitochondria - past, present and future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:912-959. [PMID: 34528296 DOI: 10.1111/tpj.15495] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The study of plant mitochondria started in earnest around 1950 with the first isolations of mitochondria from animal and plant tissues. The first 35 years were spent establishing the basic properties of plant mitochondria and plant respiration using biochemical and physiological approaches. A number of unique properties (compared to mammalian mitochondria) were observed: (i) the ability to oxidize malate, glycine and cytosolic NAD(P)H at high rates; (ii) the partial insensitivity to rotenone, which turned out to be due to the presence of a second NADH dehydrogenase on the inner surface of the inner mitochondrial membrane in addition to the classical Complex I NADH dehydrogenase; and (iii) the partial insensitivity to cyanide, which turned out to be due to an alternative oxidase, which is also located on the inner surface of the inner mitochondrial membrane, in addition to the classical Complex IV, cytochrome oxidase. With the appearance of molecular biology methods around 1985, followed by genomics, further unique properties were discovered: (iv) plant mitochondrial DNA (mtDNA) is 10-600 times larger than the mammalian mtDNA, yet it only contains approximately 50% more genes; (v) plant mtDNA has kept the standard genetic code, and it has a low divergence rate with respect to point mutations, but a high recombinatorial activity; (vi) mitochondrial mRNA maturation includes a uniquely complex set of activities for processing, splicing and editing (at hundreds of sites); (vii) recombination in mtDNA creates novel reading frames that can produce male sterility; and (viii) plant mitochondria have a large proteome with 2000-3000 different proteins containing many unique proteins such as 200-300 pentatricopeptide repeat proteins. We describe the present and fairly detailed picture of the structure and function of plant mitochondria and how the unique properties make their metabolism more flexible allowing them to be involved in many diverse processes in the plant cell, such as photosynthesis, photorespiration, CAM and C4 metabolism, heat production, temperature control, stress resistance mechanisms, programmed cell death and genomic evolution. However, it is still a challenge to understand how the regulation of metabolism and mtDNA expression works at the cellular level and how retrograde signaling from the mitochondria coordinates all those processes.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | | | | |
Collapse
|
37
|
Lyko P, Wicke S. Genomic reconfiguration in parasitic plants involves considerable gene losses alongside global genome size inflation and gene births. PLANT PHYSIOLOGY 2021; 186:1412-1423. [PMID: 33909907 PMCID: PMC8260112 DOI: 10.1093/plphys/kiab192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/13/2021] [Indexed: 05/02/2023]
Abstract
Parasitic plant genomes and transcriptomes reveal numerous genetic innovations, the functional-evolutionary relevance and roles of which open unprecedented research avenues.
Collapse
Affiliation(s)
- Peter Lyko
- Institute for Biology, Humboldt-University of Berlin, Germany
| | - Susann Wicke
- Institute for Biology, Humboldt-University of Berlin, Germany
- Author for communication:
| |
Collapse
|
38
|
Zancani M, Møller IM. Preface. Mitochondrion 2020; 54:133-135. [PMID: 32569844 DOI: 10.1016/j.mito.2020.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Marco Zancani
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 91, 33100 Udine, Italy.
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark.
| |
Collapse
|
39
|
Mower JP. Variation in protein gene and intron content among land plant mitogenomes. Mitochondrion 2020; 53:203-213. [PMID: 32535166 DOI: 10.1016/j.mito.2020.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/24/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
Abstract
The functional content of the mitochondrial genome (mitogenome) is highly diverse across eukaryotes. Among land plants, our understanding of the variation in mitochondrial gene and intron content is improving from concerted efforts to densely sample mitogenomes from diverse land plants. Here I review the current state of knowledge regarding the diversity in content of protein genes and introns in the mitogenomes of all major land plant lineages. Mitochondrial protein gene content is largely conserved among mosses and liverworts, but it varies substantially among and within other land plant lineages due to convergent losses of genes encoding ribosomal proteins and, to a lesser extent, genes for proteins involved in cytochrome c maturation and oxidative phosphorylation. Mitochondrial intron content is fairly stable within each major land plant lineage, but highly variable among lineages, resulting from occasional gains and many convergent losses over time. Trans-splicing has evolved dozens of times in various vascular plant lineages, particularly those with relatively higher rates of mitogenomic rearrangement. Across eukaryotes, mitochondrial protein gene and intron content has been shaped massive convergent evolution.
Collapse
Affiliation(s)
- Jeffrey P Mower
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE.
| |
Collapse
|
40
|
Braun HP. The Oxidative Phosphorylation system of the mitochondria in plants. Mitochondrion 2020; 53:66-75. [PMID: 32334143 DOI: 10.1016/j.mito.2020.04.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/26/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
Mitochondrial Oxidative Phosphorylation (OXPHOS) provides ATP for driving cellular functions. In plants, OXPHOS takes place in the context of photosynthesis. Indeed, metabolism of mitochondria and chloroplasts is tightly linked. OXPHOS has several extra functions in plants. This review takes a view on the OXPHOS system of plants, the electron transfer chain (ETC), the ATP synthase complex and the numerous supplementary enzymes involved. Electron transport pathways are especially branched in plants. Furthermore, the "classical" OXPHOS complexes include extra subunits, some of which introduce side activities into these complexes. Consequently, and to a remarkable degree, OXPHOS is a multi-functional system in plants that needs to be efficiently regulated with respect to all its physiological tasks in the mitochondria, the chloroplasts, and beyond. Regulatory mechanisms based on posttranslational protein modifications and formation of supramolecular protein assemblies are summarized and discussed.
Collapse
Affiliation(s)
- Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.
| |
Collapse
|