1
|
Bourke L, O’Brien C. Fibrosis and Src Signalling in Glaucoma: From Molecular Pathways to Therapeutic Prospects. Int J Mol Sci 2025; 26:1009. [PMID: 39940776 PMCID: PMC11817269 DOI: 10.3390/ijms26031009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Glaucoma, a leading cause of irreversible blindness, is characterised by progressive optic nerve damage, with elevated intraocular pressure (IOP) and extracellular matrix (ECM) remodelling in the lamina cribrosa (LC) contributing to its pathophysiology. While current treatments focus on IOP reduction, they fail to address the underlying fibrotic changes that perpetuate neurodegeneration. The Src proto-oncogene, a non-receptor tyrosine kinase, has emerged as a key regulator of cellular processes, including fibroblast activation, ECM deposition, and metabolism, making it a promising target for glaucoma therapy. Beyond its well-established roles in cancer and fibrosis, Src influences pathways critical to trabecular meshwork function, aqueous humour outflow, and neurodegeneration. However, the complexity of Src signalling networks remains a challenge, necessitating further investigation into the role of Src in glaucoma pathogenesis. This paper explores the therapeutic potential of Src inhibition to mitigate fibrotic remodelling and elevated IOP in glaucoma, offering a novel approach to halting disease progression.
Collapse
Affiliation(s)
- Liam Bourke
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | | |
Collapse
|
2
|
Pei L, Yao Z, Liang D, Yang K, Tao L. Mitochondria in skeletal system-related diseases. Biomed Pharmacother 2024; 181:117505. [PMID: 39499974 DOI: 10.1016/j.biopha.2024.117505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 12/21/2024] Open
Abstract
Skeletal system-related diseases, such as osteoporosis, arthritis, osteosarcoma and sarcopenia, are becoming major public health concerns. These diseases are characterized by insidious progression, which seriously threatens patients' health and quality of life. Early diagnosis and prevention in high-risk populations can effectively prevent the deterioration of these patients. Mitochondria are essential organelles for maintaining the physiological activity of the skeletal system. Mitochondrial functions include contributing to the energy supply, modulating the Ca2+ concentration, maintaining redox balance and resisting the inflammatory response. They participate in the regulation of cellular behaviors and the responses of osteoblasts, osteoclasts, chondrocytes and myocytes to external stimuli. In this review, we describe the pathogenesis of skeletal system diseases, focusing on mitochondrial function. In addition to osteosarcoma, a characteristic of which is active mitochondrial metabolism, mitochondrial damage occurs during the development of other diseases. Impairment of mitochondria leads to an imbalance in osteogenesis and osteoclastogenesis in osteoporosis, cartilage degeneration and inflammatory infiltration in arthritis, and muscle atrophy and excitationcontraction coupling blockade in sarcopenia. Overactive mitochondrial metabolism promotes the proliferation and migration of osteosarcoma cells. The copy number of mitochondrial DNA and mitochondria-derived peptides can be potential biomarkers for the diagnosis of these disorders. High-risk factor detection combined with mitochondrial component detection contributes to the early detection of these diseases. Targeted mitochondrial intervention is an effective method for treating these patients. We analyzed skeletal system-related diseases from the perspective of mitochondria and provided new insights for their diagnosis, prevention and treatment by demonstrating the relationship between mitochondria and the skeletal system.
Collapse
Affiliation(s)
- Liang Pei
- Department of Pediatrics, Shengjing Hospital of China Medical University, China
| | - Zhuo Yao
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Dong Liang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China..
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China..
| |
Collapse
|
3
|
Ge Y, Janson V, Liu H. Comprehensive review on leucine-rich pentatricopeptide repeat-containing protein (LRPPRC, PPR protein): A burgeoning target for cancer therapy. Int J Biol Macromol 2024; 282:136820. [PMID: 39476900 DOI: 10.1016/j.ijbiomac.2024.136820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Leucine-rich pentatricopeptide repeat-containing (LRPPRC), known as the gene mutations that cause Leigh Syndrome French Canadian, encodes a high molecular weight PPR protein (157,905 Da), LRPPRC. LRPPRC binds to DNA, RNA, and proteins to regulate transcription and translation, leading to changes in cell fate. Increasing evidence indicates that LRPPRC plays a pivotal role in various human diseases, particularly cancer in recent years. Here, we review the structure, function, molecular mechanism, as well as inhibitors of LRPPRC. LRPPRC expression elevates in most cancer types and high expression of LRPPRC predicts the poor prognosis of cancer patients. Targeting LRPPRC suppresses tumor progression by affecting several cancer hallmarks, including signal transduction, cancer metabolism, and immune regulation. LRPPRC is a promising target in cancer research, serving as both a biomarker and therapeutic target. Further studies are required to extend the understanding of LRPPRC function and molecular mechanism, as well as to refine novel therapeutic strategies targeting LRPPRC in cancer therapy.
Collapse
Affiliation(s)
- Yunxiao Ge
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China
| | - Victor Janson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China.
| |
Collapse
|
4
|
Liu N, Pang B, Kang L, Li D, Jiang X, Zhou CM. TUFM in health and disease: exploring its multifaceted roles. Front Immunol 2024; 15:1424385. [PMID: 38868764 PMCID: PMC11167084 DOI: 10.3389/fimmu.2024.1424385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
The nuclear-encoded mitochondrial protein Tu translation elongation factor, mitochondrial (TUFM) is well-known for its role in mitochondrial protein translation. Originally discovered in yeast, TUFM demonstrates significant evolutionary conservation from prokaryotes to eukaryotes. Dysregulation of TUFM has been associated with mitochondrial disorders. Although early hypothesis suggests that TUFM is localized within mitochondria, recent studies identify its presence in the cytoplasm, with this subcellular distribution being linked to distinct functions of TUFM. Significantly, in addition to its established function in mitochondrial protein quality control, recent research indicates a broader involvement of TUFM in the regulation of programmed cell death processes (e.g., autophagy, apoptosis, necroptosis, and pyroptosis) and its diverse roles in viral infection, cancer, and other disease conditions. This review seeks to offer a current summary of TUFM's biological functions and its complex regulatory mechanisms in human health and disease. Insight into these intricate pathways controlled by TUFM may lead to the potential development of targeted therapies for a range of human diseases.
Collapse
Affiliation(s)
- Ning Liu
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bo Pang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Longfei Kang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dongyun Li
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xia Jiang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chuan-min Zhou
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Boengler K, Eickelmann C, Kleinbongard P. Mitochondrial Kinase Signaling for Cardioprotection. Int J Mol Sci 2024; 25:4491. [PMID: 38674076 PMCID: PMC11049936 DOI: 10.3390/ijms25084491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Myocardial ischemia/reperfusion injury is reduced by cardioprotective adaptations such as local or remote ischemic conditioning. The cardioprotective stimuli activate signaling cascades, which converge on mitochondria and maintain the function of the organelles, which is critical for cell survival. The signaling cascades include not only extracellular molecules that activate sarcolemmal receptor-dependent or -independent protein kinases that signal at the plasma membrane or in the cytosol, but also involve kinases, which are located to or within mitochondria, phosphorylate mitochondrial target proteins, and thereby modify, e.g., respiration, the generation of reactive oxygen species, calcium handling, mitochondrial dynamics, mitophagy, or apoptosis. In the present review, we give a personal and opinionated overview of selected protein kinases, localized to/within myocardial mitochondria, and summarize the available data on their role in myocardial ischemia/reperfusion injury and protection from it. We highlight the regulation of mitochondrial function by these mitochondrial protein kinases.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig University, 35392 Giessen, Germany
| | - Chantal Eickelmann
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, 45147 Essen, Germany; (C.E.); (P.K.)
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, 45147 Essen, Germany; (C.E.); (P.K.)
| |
Collapse
|
6
|
Gatti P, Mukherjee P, Talukdar PD, Freppel W, Kanou J, Chatel-chaix L, Chatterji U, Germain M. Extracellular matrix signals promotes actin-dependent mitochondrial elongation and activity.. [DOI: 10.1101/2024.01.22.576703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
AbstractMitochondria are crucial metabolic organelles that are regulated by both intracellular and extracellular cues. The extracellular matrix (ECM) is a key component of the cellular environment that controls cellular behavior and metabolic activity. Here, we determined how ECM signalling regulates mitochondrial structure and activity. To distinguish mitochondrial regulation from the general survival cues generated by the ECM, we used breast cancer-derived spheres (mammospheres) because of their ability to grow in suspension culture in the absence of ECM. Using this system, we demonstrate that the association of mammospheres with the ECM results in dramatic mitochondrial elongation, along with enhanced mitochondrial respiration and ATP production. This remodeling occurs independently of DRP1 activity, but relies on integrin signaling and actin polymerization. Therefore, our findings demonstrate that ECM-driven actin polymerization plays a crucial role in remodeling mitochondrial networks to promote OXPHOS, which represents a vital step for migrating cells to enhance cellular adhesion and facilitate cell growth.
Collapse
|
7
|
Caron C, Bertolin G. Cristae shaping and dynamics in mitochondrial function. J Cell Sci 2024; 137:jcs260986. [PMID: 38197774 DOI: 10.1242/jcs.260986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Mitochondria are multifunctional organelles of key importance for cell homeostasis. The outer mitochondrial membrane (OMM) envelops the organelle, and the inner mitochondrial membrane (IMM) is folded into invaginations called cristae. As cristae composition and functions depend on the cell type and stress conditions, they recently started to be considered as a dynamic compartment. A number of proteins are known to play a role in cristae architecture, such as OPA1, MIC60, LETM1, the prohibitin (PHB) complex and the F1FO ATP synthase. Furthermore, phospholipids are involved in the maintenance of cristae ultrastructure and dynamics. The use of new technologies, including super-resolution microscopy to visualize cristae dynamics with superior spatiotemporal resolution, as well as high-content techniques and datasets have not only allowed the identification of new cristae proteins but also helped to explore cristae plasticity. However, a number of open questions remain in the field, such as whether cristae-resident proteins are capable of changing localization within mitochondria, or whether mitochondrial proteins can exit mitochondria through export. In this Review, we present the current view on cristae morphology, stability and composition, and address important outstanding issues that might pave the way to future discoveries.
Collapse
Affiliation(s)
- Claire Caron
- Univ. Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, F-35000 Rennes, France
| | - Giulia Bertolin
- Univ. Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, F-35000 Rennes, France
| |
Collapse
|
8
|
Bastola T, Perkins GA, Kim KY, Choi S, Kwon JW, Shen Z, Strack S, Ju WK. Role of A-Kinase Anchoring Protein 1 in Retinal Ganglion Cells: Neurodegeneration and Neuroprotection. Cells 2023; 12:1539. [PMID: 37296658 PMCID: PMC10252895 DOI: 10.3390/cells12111539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
A-Kinase anchoring protein 1 (AKAP1) is a multifunctional mitochondrial scaffold protein that regulates mitochondrial dynamics, bioenergetics, and calcium homeostasis by anchoring several proteins, including protein kinase A, to the outer mitochondrial membrane. Glaucoma is a complex, multifactorial disease characterized by a slow and progressive degeneration of the optic nerve and retinal ganglion cells (RGCs), ultimately resulting in vision loss. Impairment of the mitochondrial network and function is linked to glaucomatous neurodegeneration. Loss of AKAP1 induces dynamin-related protein 1 dephosphorylation-mediated mitochondrial fragmentation and loss of RGCs. Elevated intraocular pressure triggers a significant reduction in AKAP1 protein expression in the glaucomatous retina. Amplification of AKAP1 expression protects RGCs from oxidative stress. Hence, modulation of AKAP1 could be considered a potential therapeutic target for neuroprotective intervention in glaucoma and other mitochondria-associated optic neuropathies. This review covers the current research on the role of AKAP1 in the maintenance of mitochondrial dynamics, bioenergetics, and mitophagy in RGCs and provides a scientific basis to identify and develop new therapeutic strategies that could protect RGCs and their axons in glaucoma.
Collapse
Affiliation(s)
- Tonking Bastola
- Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (T.B.); (S.C.); (J.-W.K.); (Z.S.)
| | - Guy A. Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; (G.A.P.); (K.-Y.K.)
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; (G.A.P.); (K.-Y.K.)
| | - Seunghwan Choi
- Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (T.B.); (S.C.); (J.-W.K.); (Z.S.)
| | - Jin-Woo Kwon
- Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (T.B.); (S.C.); (J.-W.K.); (Z.S.)
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Ophthalmology and Visual Science, St. Vincent’s Hospital, Jungbu-daero 93, Paldal-gu, Suwon 16247, Republic of Korea
| | - Ziyao Shen
- Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (T.B.); (S.C.); (J.-W.K.); (Z.S.)
| | - Stefan Strack
- Department of Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA;
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (T.B.); (S.C.); (J.-W.K.); (Z.S.)
| |
Collapse
|
9
|
Amadori L, Calcagno C, Fernandez DM, Koplev S, Fernandez N, Kaur R, Mury P, Khan NS, Sajja S, Shamailova R, Cyr Y, Jeon M, Hill CA, Chong PS, Naidu S, Sakurai K, Ghotbi AA, Soler R, Eberhardt N, Rahman A, Faries P, Moore KJ, Fayad ZA, Ma’ayan A, Giannarelli C. Systems immunology-based drug repurposing framework to target inflammation in atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2023; 2:550-571. [PMID: 37771373 PMCID: PMC10538622 DOI: 10.1038/s44161-023-00278-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/28/2023] [Indexed: 09/30/2023]
Abstract
The development of new immunotherapies to treat the inflammatory mechanisms that sustain atherosclerotic cardiovascular disease (ASCVD) is urgently needed. Herein, we present a path to drug repurposing to identify immunotherapies for ASCVD. The integration of time-of-flight mass cytometry and RNA sequencing identified unique inflammatory signatures in peripheral blood mononuclear cells stimulated with ASCVD plasma. By comparing these inflammatory signatures to large-scale gene expression data from the LINCS L1000 dataset, we identified drugs that could reverse this inflammatory response. Ex vivo screens, using human samples, showed that saracatinib-a phase 2a-ready SRC and ABL inhibitor-reversed the inflammatory responses induced by ASCVD plasma. In Apoe-/- mice, saracatinib reduced atherosclerosis progression by reprogramming reparative macrophages. In a rabbit model of advanced atherosclerosis, saracatinib reduced plaque inflammation measured by [18F] fluorodeoxyglucose positron emission tomography-magnetic resonance imaging. Here we show a systems immunology-driven drug repurposing with a preclinical validation strategy to aid the development of cardiovascular immunotherapies.
Collapse
Affiliation(s)
- Letizia Amadori
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York, NY USA
- The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Dawn M. Fernandez
- Department of Medicine, Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Simon Koplev
- Mount Sinai Center for Bioinformatics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Nicolas Fernandez
- Mount Sinai Center for Bioinformatics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Ravneet Kaur
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York, NY USA
| | - Pauline Mury
- Department of Medicine, Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Nayaab S Khan
- Department of Medicine, Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Swathy Sajja
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York, NY USA
| | - Roza Shamailova
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York, NY USA
| | - Yannick Cyr
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York, NY USA
| | - Minji Jeon
- Mount Sinai Center for Bioinformatics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Christopher A. Hill
- Department of Medicine, Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Peik Sean Chong
- The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Sonum Naidu
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Ken Sakurai
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Adam Ali Ghotbi
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Raphael Soler
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Natalia Eberhardt
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York, NY USA
| | - Adeeb Rahman
- The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Peter Faries
- Department of Surgery, Vascular Division, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Kathryn J. Moore
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York, NY USA
| | - Zahi A. Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Avi Ma’ayan
- Mount Sinai Center for Bioinformatics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Chiara Giannarelli
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York, NY USA
- Department of Medicine, Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Pathology; NYU Grossman School of Medicine, NYU Langone Health, New York, NY USA
| |
Collapse
|
10
|
Franco R, Serrano-Marín J. The unbroken Krebs cycle. Hormonal-like regulation and mitochondrial signaling to control mitophagy and prevent cell death. Bioessays 2023; 45:e2200194. [PMID: 36549872 DOI: 10.1002/bies.202200194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
The tricarboxylic acid (TCA) or Krebs cycle, which takes place in prokaryotic cells and in the mitochondria of eukaryotic cells, is central to life on Earth and participates in key events such as energy production and anabolic processes. Despite its relevance, it is not perceived as tightly regulated compared to other key metabolisms such as glycolysis/gluconeogenesis. A better understanding of the functioning of the TCA cycle is crucial due to mitochondrial function impairment in several diseases, especially those that occur with neurodegeneration. This article revisits what is known about the regulation of the Krebs cycle and hypothesizes the need for large-scale, rapid regulation of TCA cycle enzyme activity. Evidence of mitochondrial enzyme activity regulation by activation/deactivation of protein kinases and phosphatases exists in the literature. Apart from indirect regulation via G protein-coupled receptors (GPCRs) at the cell surface, signaling upon activation of GPCRs in mitochondrial membranes may lead to a direct regulation of the enzymes of the Krebs cycle. Hormonal-like regulation by posttranscriptional events mediated by activable kinases and phosphatases deserve proper assessment using isolated mitochondria. Also see the video abstract here: https://youtu.be/aBpDSWiMQyI.
Collapse
Affiliation(s)
- Rafael Franco
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain.,Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.,School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Joan Serrano-Marín
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Koc EC, Hunter CA, Koc H. Phosphorylation of mammalian mitochondrial EF-Tu by Fyn and c-Src kinases. Cell Signal 2023; 101:110524. [PMID: 36379377 DOI: 10.1016/j.cellsig.2022.110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
Src Family Kinases (SFKs) are tyrosine kinases known to regulate glucose and fatty acid metabolism as well as oxidative phosphorylation (OXPHOS) in mammalian mitochondria. We and others discovered the association of the SFK kinases Fyn and c-Src with mitochondrial translation components. This translational system is responsible for the synthesis of 13 mitochondrial (mt)-encoded subunits of the OXPHOS complexes and is, thus, essential for energy generation. Mitochondrial ribosomal proteins and various translation elongation factors including Tu (EF-Tumt) have been identified as possible Fyn and c-Src kinase targets. However, the phosphorylation of specific residues in EF-Tumt by these kinases and their roles in the regulation of protein synthesis are yet to be explored. In this study, we report the association of EF-Tumt with cSrc kinase and mapping of phosphorylated Tyr (pTyr) residues by these kinases. We determined that a specific Tyr residue in EF-Tumt at position 266 (EF-Tumt-Y266), located in a highly conserved c-Src consensus motif is one of the major phosphorylation sites. The potential role of EF-Tumt-Y266 phosphorylation in regulation of mitochondrial translation investigated by site-directed mutagenesis. Its phosphomimetic to Glu residue (EF-Tumt-E266) inhibited ternary complex (EF-Tumt•GTP•aatRNA) formation and translation in vitro. Our findings along with data mining analysis of the c-Src knock out (KO) mice proteome suggest that the SFKs have possible roles for regulation of mitochondrial protein synthesis and oxidative energy metabolism in animals.
Collapse
Affiliation(s)
- Emine C Koc
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States of America.
| | - Caroline A Hunter
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States of America
| | - Hasan Koc
- Department of Pharmacological Science, School of Pharmacy, Marshall University, Huntington, WV 25755, United States of America.
| |
Collapse
|
12
|
Pelaz SG, Tabernero A. Src: coordinating metabolism in cancer. Oncogene 2022; 41:4917-4928. [PMID: 36217026 PMCID: PMC9630107 DOI: 10.1038/s41388-022-02487-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/08/2022]
Abstract
Metabolism must be tightly regulated to fulfil the dynamic requirements of cancer cells during proliferation, migration, stemness and differentiation. Src is a node of several signals involved in many of these biological processes, and it is also an important regulator of cell metabolism. Glucose uptake, glycolysis, the pentose-phosphate pathway and oxidative phosphorylation are among the metabolic pathways that can be regulated by Src. Therefore, this oncoprotein is in an excellent position to coordinate and finely tune cell metabolism to fuel the different cancer cell activities. Here, we provide an up-to-date summary of recent progress made in determining the role of Src in glucose metabolism as well as the link of this role with cancer cell metabolic plasticity and tumour progression. We also discuss the opportunities and challenges facing this field.
Collapse
Affiliation(s)
- Sara G Pelaz
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Arantxa Tabernero
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain.
| |
Collapse
|
13
|
Lurette O, Guedouari H, Morris JL, Martín-Jiménez R, Robichaud JP, Hamel-Côté G, Khan M, Dauphinee N, Pichaud N, Prudent J, Hebert-Chatelain E. Mitochondrial matrix-localized Src kinase regulates mitochondrial morphology. Cell Mol Life Sci 2022; 79:327. [PMID: 35637383 PMCID: PMC9151517 DOI: 10.1007/s00018-022-04325-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/02/2023]
Abstract
The architecture of mitochondria adapts to physiological contexts: while mitochondrial fragmentation is usually associated to quality control and cell death, mitochondrial elongation often enhances cell survival during stress. Understanding how these events are regulated is important to elucidate how mitochondrial dynamics control cell fate. Here, we show that the tyrosine kinase Src regulates mitochondrial morphology. Deletion of Src increased mitochondrial size and reduced cellular respiration independently of mitochondrial mass, mitochondrial membrane potential or ATP levels. Re-expression of Src targeted to the mitochondrial matrix, but not of Src targeted to the plasma membrane, rescued mitochondrial morphology in a kinase activity-dependent manner. These findings highlight a novel function for Src in the control of mitochondrial dynamics.
Collapse
Affiliation(s)
- Olivier Lurette
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB Canada ,Department of Biology, University of Moncton, Moncton, NB Canada
| | - Hala Guedouari
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB Canada ,Department of Biology, University of Moncton, Moncton, NB Canada
| | - Jordan L. Morris
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY UK
| | - Rebeca Martín-Jiménez
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB Canada ,Department of Biology, University of Moncton, Moncton, NB Canada
| | - Julie-Pier Robichaud
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB Canada ,Department of Biology, University of Moncton, Moncton, NB Canada
| | - Geneviève Hamel-Côté
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB Canada ,Department of Biology, University of Moncton, Moncton, NB Canada
| | - Mehtab Khan
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB Canada ,Department of Biology, University of Moncton, Moncton, NB Canada
| | - Nicholas Dauphinee
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB Canada ,Department of Biology, University of Moncton, Moncton, NB Canada
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, University of Moncton, Moncton, NB Canada
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY UK
| | - Etienne Hebert-Chatelain
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB Canada ,Department of Biology, University of Moncton, Moncton, NB Canada
| |
Collapse
|