1
|
Sang R, Nixdorf S, Hung T, Power C, Deng F, Bui TA, Engel A, Goldys EM, Deng W. Unlocking the in vivo therapeutic potential of radiation-activated photodynamic therapy for locally advanced rectal cancer with lymph node involvement. EBioMedicine 2025; 116:105724. [PMID: 40359628 DOI: 10.1016/j.ebiom.2025.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/14/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Rectal cancer is a leading cause of cancer-related mortality worldwide. The recurrence of locally advanced rectal cancer (LARC), particularly in cases involving lymph node-positive tumours, remains a critical challenge in rectal cancer management. In this study, a therapeutic strategy, radiation-activated photodynamic therapy (RA-PDT), for the treatment of LARC with lymph node-positive tumours was developed and evaluated. METHODS RA-PDT was achieved by using a lipid-polymer hybrid nanoplatform loaded with verteporfin (VP) and functionalised with folic acid (FA) as a targeting molecule. Upon receiving a single 4 Gy fraction of radiation, VP was effectively activated, generating sufficient reactive oxygen species (ROS) to induce cancer cell death-however surrounding tissue was less affected and was spared. The efficacy of this strategy was assessed through in vitro cytotoxicity studies in HCT116 cells, as well as in orthotopic and subcutaneous mouse models. In vivo lymph node tumour progression was also evaluated. FINDINGS RA-PDT effectively generated ROS following 4 Gy irradiation and exhibited significant cytotoxicity in HCT116 cells. In vivo, this strategy largely inhibited primary tumour growth in both orthotopic and subcutaneous mouse models while also suppressing lymph node tumour progression. Surrounding tissues were minimally affected, highlighting the precision and safety of this approach. INTERPRETATION RA-PDT demonstrates potential as a safe therapeutic strategy for LARC, paving the way for its clinical translation. FUNDING This study was supported by the Australian National Health and Medical Research Council (GNT1181889), fellowship award (2019/CDF1013) from Cancer Institute NSW, Australia, the Australian Research Council Centre of Excellence for Nanoscale Biophotonics (CE140100003), UNSW SHARP funding, project grant from National Foundation for Medical Research and Innovation, Australia, International Research Training Program Scholarship (IRTP) from Australian Government, PhD Research Scholar Award from Sydney Vital Translational Cancer Research, and Translational Cancer Research Network PhD Scholarship Top-up award.
Collapse
Affiliation(s)
- Rui Sang
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sheri Nixdorf
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Tzongtyng Hung
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Carl Power
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Fei Deng
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Thuy Anh Bui
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Alexander Engel
- Sydney Medical School, University of Sydney, Sydney, NSW, 2050, Australia; Department of Colorectal Surgery, Royal North Shore Hospital, St Leonards, Sydney, NSW, 2065, Australia
| | - Ewa M Goldys
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Wei Deng
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
2
|
Spring BQ, Watanabe K, Ichikawa M, Mallidi S, Matsudaira T, Timerman D, Swain JWR, Mai Z, Wakimoto H, Hasan T. Red light-activated depletion of drug-refractory glioblastoma stem cells and chemosensitization of an acquired-resistant mesenchymal phenotype. Photochem Photobiol 2025; 101:215-229. [PMID: 38922889 PMCID: PMC11664018 DOI: 10.1111/php.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Glioblastoma stem cells (GSCs) are potent tumor initiators resistant to radiochemotherapy, and this subpopulation is hypothesized to re-populate the tumor milieu due to selection following conventional therapies. Here, we show that 5-aminolevulinic acid (ALA) treatment-a pro-fluorophore used for fluorescence-guided cancer surgery-leads to elevated levels of fluorophore conversion in patient-derived GSC cultures, and subsequent red light-activation induces apoptosis in both intrinsically temozolomide chemotherapy-sensitive and -resistant GSC phenotypes. Red light irradiation of ALA-treated cultures also exhibits the ability to target mesenchymal GSCs (Mes-GSCs) with induced temozolomide resistance. Furthermore, sub-lethal light doses restore Mes-GSC sensitivity to temozolomide, abrogating GSC-acquired chemoresistance. These results suggest that ALA is not only useful for fluorescence-guided glioblastoma tumor resection, but that it also facilitates a GSC drug-resistance agnostic, red light-activated modality to mop up the surgical margins and prime subsequent chemotherapy.
Collapse
Affiliation(s)
- Bryan Q. Spring
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Kohei Watanabe
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Healthcare Optics Research Laboratory, Canon USA, Inc., Cambridge MA 02139, USA
| | - Megumi Ichikawa
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Tatsuyuki Matsudaira
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dmitriy Timerman
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Joseph W. R. Swain
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Zhiming Mai
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hiroaki Wakimoto
- Brain Tumor Research Center and Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Mishra S, Shelar SB, Rout S, Hassan PA, Barick KC, Agarwal N. Enhanced Singlet Oxygen Generation in Aggregates of Naphthalene-Fused BODIPY and Its Application in Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2024; 7:7207-7218. [PMID: 39445398 DOI: 10.1021/acsabm.4c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Several reports are available on aggregation-induced emission and its applications in biomedical imaging and other material sciences. However, enhancement of singlet oxygen generation in nanoaggregates is rarely reported. Here, we report the synthesis of Naph-BODIPY Br2, which absorbs at 661 nm (monomer) with a high molar absorption coefficient. The presence of bromine promotes intersystem crossing, thereby enhancing the singlet oxygen quantum yield (ΦΔ ∼ 0.50 in methanol). In order to increase hydrophilicity, we developed Naph-BODIPY Br2 nanoaggregates (∼100 nm), which demonstrated aggregation-induced properties and exhibited a bathochromic shift with an absorption maximum at 757 nm. The bathochromic shift in the UV-vis spectra due to aggregation is corroborated by TD-DFT analysis. The computational data also confirm the presence of a low-lying triplet state, which enhances the generation of singlet oxygen, making it effective for photodynamic therapy. These aggregates showed excellent singlet oxygen generation in aqueous media, compared to their monomeric form and standard methylene blue. Their hydrophilic nature and high singlet oxygen generation enabled significant phototoxicity against human carcinoma cells with IC50 values of 4.06 ± 0.01 and 4.09 ± 0.1 μM, respectively, for MCF-7 and A549 cells upon 5 min exposure to light. Moreover, their phototoxicity further increases with an increasing exposure time of light for both cell lines. Notably, Naph-BODIPY Br2 nanoaggregates exhibited nearly zero dark cell toxicity and effectively induced apoptosis in cancer cells upon light activation, highlighting their potential as powerful photosensitizers for photodynamic cancer therapy.
Collapse
Affiliation(s)
- Sneha Mishra
- School of Chemical Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098, India
| | | | - Saiprakash Rout
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, Khurda752050,India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Puthusserickal A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - K C Barick
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Neeraj Agarwal
- School of Chemical Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098, India
| |
Collapse
|
4
|
Zahid MU, Waguespack M, Harman RC, Kercher EM, Nath S, Hasan T, Rizvi I, Spring BQ, Enderling H. Fractionated photoimmunotherapy stimulates an anti-tumour immune response: an integrated mathematical and in vitro study. Br J Cancer 2024; 131:1378-1386. [PMID: 39261715 PMCID: PMC11473784 DOI: 10.1038/s41416-024-02844-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Advanced epithelial ovarian cancer (EOC) has high recurrence rates due to disseminated initial disease presentation. Cytotoxic phototherapies, such as photodynamic therapy (PDT) and photoimmunotherapy (PIT, cell-targeted PDT), have the potential to treat disseminated malignancies due to safe intraperitoneal delivery. METHODS We use in vitro measurements of EOC tumour cell and T cell responses to chemotherapy, PDT, and epidermal growth factor receptor targeted PIT as inputs to a mathematical model of non-linear tumour and immune effector cell interaction. The model outputs were used to calculate how photoimmunotherapy could be utilised for tumour control. RESULTS In vitro measurements of PIT dose responses revealed that although low light doses (<10 J/cm2) lead to limited tumour cell killing they also increased proliferation of anti-tumour immune effector cells. Model simulations demonstrated that breaking up a larger light dose into multiple lower dose fractions (vis-à-vis fractionated radiotherapy) could be utilised to effect tumour control via stimulation of an anti-tumour immune response. CONCLUSIONS There is promise for applying fractionated PIT in the setting of EOC. However, recommending specific fractionated PIT dosimetry and timing will require appropriate model calibration on tumour-immune interaction data in human patients and subsequent validation of model predictions in prospective clinical trials.
Collapse
Affiliation(s)
- Mohammad U Zahid
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Eric M Kercher
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Shubhankar Nath
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bryan Q Spring
- Department of Physics, Northeastern University, Boston, MA, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| | - Heiko Enderling
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Quinlan JA, Inglut CT, Srivastava P, Rahman I, Stabile J, Gaitan B, Arnau Del Valle C, Baumiller K, Gaur A, Chiou W, Karim B, Connolly N, Robey RW, Woodworth GF, Gottesman MM, Huang H. Carrier-Free, Amorphous Verteporfin Nanodrug for Enhanced Photodynamic Cancer Therapy and Brain Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302872. [PMID: 38445882 PMCID: PMC11077681 DOI: 10.1002/advs.202302872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 02/02/2024] [Indexed: 03/07/2024]
Abstract
Glioblastoma (GBM) is hard to treat due to cellular invasion into functioning brain tissues, limited drug delivery, and evolved treatment resistance. Recurrence is nearly universal even after surgery, chemotherapy, and radiation. Photodynamic therapy (PDT) involves photosensitizer administration followed by light activation to generate reactive oxygen species at tumor sites, thereby killing cells or inducing biological changes. PDT can ablate unresectable GBM and sensitize tumors to chemotherapy. Verteporfin (VP) is a promising photosensitizer that relies on liposomal carriers for clinical use. While lipids increase VP's solubility, they also reduce intracellular photosensitizer accumulation. Here, a pure-drug nanoformulation of VP, termed "NanoVP", eliminating the need for lipids, excipients, or stabilizers is reported. NanoVP has a tunable size (65-150 nm) and 1500-fold higher photosensitizer loading capacity than liposomal VP. NanoVP shows a 2-fold increase in photosensitizer uptake and superior PDT efficacy in GBM cells compared to liposomal VP. In mouse models, NanoVP-PDT improved tumor control and extended animal survival, outperforming liposomal VP and 5-aminolevulinic acid (5-ALA). Moreover, low-dose NanoVP-PDT can safely open the blood-brain barrier, increasing drug accumulation in rat brains by 5.5-fold compared to 5-ALA. NanoVP is a new photosensitizer formulation that has the potential to facilitate PDT for the treatment of GBM.
Collapse
Affiliation(s)
- John A. Quinlan
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
- Laboratory of Cell BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
| | - Collin T. Inglut
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
- Laboratory of Cell BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
| | - Payal Srivastava
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Idrisa Rahman
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
- Laboratory of Cell BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
| | - Jillian Stabile
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Brandon Gaitan
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | | | - Kaylin Baumiller
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Anandita Gaur
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Wen‐An Chiou
- Advanced Imaging and Microscopy LaboratoryMaryland Nano CenterUniversity of MarylandCollege ParkMD20742USA
| | - Baktiar Karim
- Molecular Histopathology LaboratoryLeidos Biomedical Research, Inc.Frederick National Laboratory for Cancer ResearchFrederickMD21701USA
| | - Nina Connolly
- Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Robert W. Robey
- Laboratory of Cell BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
| | - Graeme F. Woodworth
- Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Michael M. Gottesman
- Laboratory of Cell BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
| | - Huang‐Chiao Huang
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
- Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreMD21201USA
| |
Collapse
|
6
|
Massoud J, Pinon A, Gallardo-Villagrán M, Paulus L, Ouk C, Carrion C, Antoun S, Diab-Assaf M, Therrien B, Liagre B. A Combination of Ruthenium Complexes and Photosensitizers to Treat Colorectal Cancer. INORGANICS 2023; 11:451. [DOI: 10.3390/inorganics11120451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Treatment regimens are regularly evolving alongside novel therapies and drugs. Such evolution is necessary to circumvent resistance mechanisms and to give patients the best possible health care. When dealing with cancer, most regimens involve multiple treatments (surgery, radiation therapy, chemotherapy, immunotherapy, etc.). The purpose of this study was to associate in a single compound metal-based drugs and photosensitizers to combine chemotherapy and photodynamic therapy. Two arene–ruthenium tetrapyridylporphyrin compounds (2H-TPyP-arene-Ru and Zn-TPyP-arene-Ru) have been synthesized and evaluated on two colorectal cancer cell lines (HCT116 and HT-29). Their cytotoxicity and phototoxicity have been evaluated. In addition, the anticancer mechanism and the cell death process mediated by the two compounds were studied. The results showed that the two arene–ruthenium photosensitizer-containing complexes have a strong phototoxic effect after photoactivation. The 2H-TPyP-arene-Ru complex induced outstanding cytotoxicity when compared to the Zn-TPyP-arene-Ru analogue. Moreover, under light, these two arene–ruthenium photosensitizers induce an apoptotic process in human colorectal cancer cell lines.
Collapse
Affiliation(s)
- Jacquie Massoud
- Univ. Limoges, LABCiS, UR 22722, Faculté de Pharmacie, F-87000 Limoges, France
| | - Aline Pinon
- Univ. Limoges, LABCiS, UR 22722, Faculté de Pharmacie, F-87000 Limoges, France
| | - Manuel Gallardo-Villagrán
- Univ. Limoges, LABCiS, UR 22722, Faculté de Pharmacie, F-87000 Limoges, France
- Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland
| | - Lucie Paulus
- Univ. Limoges, LABCiS, UR 22722, Faculté de Pharmacie, F-87000 Limoges, France
| | - Catherine Ouk
- Université de Limoges, CNRS, Inserm, CHU Limoges, BISCEm, UAR 2015, US 42, F-87000 Limoges, France
| | - Claire Carrion
- Université de Limoges, CNRS, Inserm, CHU Limoges, BISCEm, UAR 2015, US 42, F-87000 Limoges, France
| | - Sayed Antoun
- Department of Chemistry and Biochemistry, Lebanese University, Beyrouth 21219, Lebanon
| | - Mona Diab-Assaf
- Doctoral School of Sciences and Technology, Lebanese University, Hadath El Jebbeh, Beyrouth 21219, Lebanon
| | - Bruno Therrien
- Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland
| | - Bertrand Liagre
- Univ. Limoges, LABCiS, UR 22722, Faculté de Pharmacie, F-87000 Limoges, France
| |
Collapse
|
7
|
Hanson S, Dharan A, P. V. J, Pal S, Nair BG, Kar R, Mishra N. Paraptosis: a unique cell death mode for targeting cancer. Front Pharmacol 2023; 14:1159409. [PMID: 37397502 PMCID: PMC10308048 DOI: 10.3389/fphar.2023.1159409] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Programmed cell death (PCD) is the universal process that maintains cellular homeostasis and regulates all living systems' development, health and disease. Out of all, apoptosis is one of the major PCDs that was found to play a crucial role in many disease conditions, including cancer. The cancer cells acquire the ability to escape apoptotic cell death, thereby increasing their resistance towards current therapies. This issue has led to the need to search for alternate forms of programmed cell death mechanisms. Paraptosis is an alternative cell death pathway characterized by vacuolation and damage to the endoplasmic reticulum and mitochondria. Many natural compounds and metallic complexes have been reported to induce paraptosis in cancer cell lines. Since the morphological and biochemical features of paraptosis are much different from apoptosis and other alternate PCDs, it is crucial to understand the different modulators governing it. In this review, we have highlighted the factors that trigger paraptosis and the role of specific modulators in mediating this alternative cell death pathway. Recent findings include the role of paraptosis in inducing anti-tumour T-cell immunity and other immunogenic responses against cancer. A significant role played by paraptosis in cancer has also scaled its importance in knowing its mechanism. The study of paraptosis in xenograft mice, zebrafish model, 3D cultures, and novel paraptosis-based prognostic model for low-grade glioma patients have led to the broad aspect and its potential involvement in the field of cancer therapy. The co-occurrence of different modes of cell death with photodynamic therapy and other combinatorial treatments in the tumour microenvironment are also summarized here. Finally, the growth, challenges, and future perspectives of paraptosis research in cancer are discussed in this review. Understanding this unique PCD pathway would help to develop potential therapy and combat chemo-resistance in various cancer.
Collapse
Affiliation(s)
- Sweata Hanson
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Aiswarya Dharan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Jinsha P. V.
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Sanjay Pal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Rekha Kar
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, United States
| | - Nandita Mishra
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| |
Collapse
|
8
|
Gu B, Wang B, Li X, Feng Z, Ma C, Gao L, Yu Y, Zhang J, Zheng P, Wang Y, Li H, Zhang T, Chen H. Photodynamic therapy improves the clinical efficacy of advanced colorectal cancer and recruits immune cells into the tumor immune microenvironment. Front Immunol 2022; 13:1050421. [PMID: 36466825 PMCID: PMC9716470 DOI: 10.3389/fimmu.2022.1050421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/02/2022] [Indexed: 10/03/2023] Open
Abstract
OBJECTIVE Although photodynamic therapy (PDT) has been proven effective in various tumors, it has not been widely used as a routine treatment for colorectal cancer (CRC), and the characteristics of changes in the tumor microenvironment (TME) after PDT have not been fully elucidated. This study evaluated the efficacy of PDT in patients with advanced CRC and the changes in systemic and local immune function after PDT. METHODS Patients with stage III-IV CRC diagnosed in our hospital from November 2020 to July 2021 were retrospectively analyzed to compare the survival outcomes among each group. Subsequently, short-term efficacy, systemic and local immune function changes, and adverse reactions were assessed in CRC patients treated with PDT. RESULTS A total of 52 CRC patients were enrolled in this retrospective study from November 2020 to July 2021, and the follow-up period ended in March 2022. The overall survival (OS) of the PDT group was significantly longer than that of the non-PDT group (p=0.006). The objective response rate (ORR) and disease control rate two months after PDT were 44.4% and 88.9%, respectively. Differentiation degree (p=0.020) and necrosis (p=0.039) are two crucial factors affecting the short-term efficacy of PDT. The systemic immune function of stage III patients after PDT decreased, whereas that of stage IV patients increased. Local infiltration of various immune cells such as CD3+ T cells, CD4+ T cells, CD8+ T cells, CD20+ B cells and macrophages in the tumor tissue were significantly increased. No severe adverse reactions associated with PDT were observed. CONCLUSION PDT is effective for CRC without significant side effects according to the available data. It alters the TME by recruiting immune cells into tumor tissues.
Collapse
Affiliation(s)
- Baohong Gu
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Bofang Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Xuemei Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Zedong Feng
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Chenhui Ma
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Lei Gao
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yang Yu
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Zhang
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Peng Zheng
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yunpeng Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Haiyuan Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Tao Zhang
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hao Chen
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, Gansu, China
- Department of Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
9
|
Rostovtsev N, Polyakov V, Kuzmina N. Photodynamic Therapy in Complex Therapy of Retroperitoneal Tumors in Children. Radiat Oncol 2022. [DOI: 10.5772/intechopen.101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
During the period from 2009 to 2021, 93 patients aged 0–11 years (48 boys and 45 girls) with retroperitoneal tumors were treated. There were 66 patients with nephroblastoma and 27 patients with adrenal neuroblastoma among them. As per treatment strategies, the patients were separated into two groups: the control group and the study group. The control group (comparison) received therapy according to the protocols, whereas the study group consisted of patients who received photodynamic therapy (PDT) in addition to the standard treatment. The control group consists of 47 patients with retroperitoneal tumors, including 35 patients with nephroblastoma and 12 patients with adrenal neuroblastoma. The study group included 46 children: 31 patients with nephroblastoma and 15 patients with adrenal neuroblastoma. The 5-year survival rate in the control group was 74.5%, and it was 91.3% in the study group (p = 0.030). Recurrent tumors developed in 14.9% of the patients in the control group, while in the study group, relapse occurred in 8.7% of the patients (p = 0.357). The PDT used in this study for treatment of retroperitoneal tumors improves the results of surgical treatment. It also appreciably increases the survival rate of patients with retroperitoneal tumors. Overall, PDT is a hopeful antitumor approach and can be effectively used in the complex therapy of retroperitoneal tumors in children.
Collapse
|
10
|
Robeldo T, Ribeiro LS, Manrique L, Kubo AM, Longo E, Camargo ER, Borra RC. Modified Titanium Dioxide as a Potential Visible-Light-Activated Photosensitizer for Bladder Cancer Treatment. ACS OMEGA 2022; 7:17563-17574. [PMID: 35664588 PMCID: PMC9161409 DOI: 10.1021/acsomega.1c07046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/09/2022] [Indexed: 06/15/2023]
Abstract
Low oxygen concentration inside the tumor microenvironment represents a major barrier for photodynamic therapy of many malignant tumors, especially urothelial bladder cancer. In this context, titanium dioxide, which has a low cost and can generate high ROS levels regardless of local O2 concentrations, could be a potential type of photosensitizer for treating this type of cancer. However, the use of UV can be a major disadvantage, since it promotes breakage of the chemical bonds of the DNA molecule on normal tissues. In the present study, we focused on the cytotoxic activities of a new material (Ti(OH)4) capable of absorbing visible light and producing high amounts of ROS. We used the malignant bladder cell line MB49 to evaluate the effects of multiple concentrations of Ti(OH)4 on the cytotoxicity, proliferation, migration, and production of ROS. In addition, the mechanisms of cell death were investigated using FACS, accumulation of lysosomal acid vacuoles, caspase-3 activity, and mitochondrial electrical potential assays. The results showed that exposure of Ti(OH)4 to visible light stimulates the production of ROS and causes dose-dependent necrosis in tumor cells. Also, Ti(OH)4 was capable of inhibiting the proliferation and migration of MB49 in low concentrations. An increase in the mitochondrial membrane potential associated with the accumulation of acid lysosomes and low caspase-3 activity suggests that type II cell death could be initiated by autophagic dysfunction mechanisms associated with high ROS production. In conclusion, the characteristics of Ti(OH)4 make it a potential photosensitizer against bladder cancer.
Collapse
Affiliation(s)
| | - Lucas S. Ribeiro
- CDMF,
LIEC, Chemistry Department of the Federal
University of São Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Lida Manrique
- Laboratory
of Applied Immunology, Federal University
of São Carlos (UFSCar), São Carlos, São Paulo 13565-905,Brazil
| | - Andressa Mayumi Kubo
- CDMF,
LIEC, Chemistry Department of the Federal
University of São Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Elson Longo
- CDMF,
LIEC, Chemistry Department of the Federal
University of São Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Emerson Rodrigues Camargo
- CDMF,
LIEC, Chemistry Department of the Federal
University of São Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Ricardo Carneiro Borra
- Laboratory
of Applied Immunology, Federal University
of São Carlos (UFSCar), São Carlos, São Paulo 13565-905,Brazil
| |
Collapse
|
11
|
Koncošová M, Rumlová M, Mikyšková R, Reiniš M, Zelenka J, Ruml T, Kirakci K, Lang K. Avenue to X-ray-induced photodynamic therapy of prostatic carcinoma with octahedral molybdenum cluster nanoparticles. J Mater Chem B 2022; 10:3303-3310. [PMID: 35380154 DOI: 10.1039/d2tb00141a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
X-Ray-induced photodynamic therapy represents a suitable modality for the treatment of various malignancies. It is based on the production of reactive oxygen species by radiosensitizing nanoparticles activated by X-rays. Hence, it allows overcoming the depth-penetration limitations of conventional photodynamic therapy and, at the same time, reducing the dose needed to eradicate cancer in the frame of radiotherapy treatment. The direct production of singlet oxygen by octahedral molybdenum cluster complexes upon X-ray irradiation is a promising avenue in order to simplify the architecture of radiosensitizing systems. One such complex was utilized to prepare water-stable nanoparticles using the solvent displacement method. The nanoparticles displayed intense red luminescence in aqueous media, efficiently quenched by oxygen to produce singlet oxygen, resulting in a substantial photodynamic effect under blue light irradiation. A robust radiosensitizing effect of the nanoparticles was demonstrated in vitro against TRAMP-C2 murine prostatic carcinoma cells at typical therapeutic X-ray doses. Injection of a suspension of the nanoparticles to a mouse model revealed the absence of acute toxicity as evidenced by the invariance of key physiological parameters. This study paves the way for the application of octahedral molybdenum cluster-based radiosensitizers in X-ray-induced photodynamic therapy and its translation to in vivo experiments.
Collapse
Affiliation(s)
- Martina Koncošová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic.
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic
| | - Romana Mikyšková
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1084, 142 20 Praha, Czech Republic
| | - Milan Reiniš
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1084, 142 20 Praha, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic.
| | - Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic.
| | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic.
| |
Collapse
|
12
|
Kirakci K, Kubáňová M, Přibyl T, Rumlová M, Zelenka J, Ruml T, Lang K. A Cell Membrane Targeting Molybdenum-Iodine Nanocluster: Rational Ligand Design toward Enhanced Photodynamic Activity. Inorg Chem 2022; 61:5076-5083. [PMID: 35293732 DOI: 10.1021/acs.inorgchem.2c00040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of singlet oxygen photosensitizers, which target specific cellular organelles, constitutes a pertinent endeavor to optimize the efficiency of photodynamic therapy. Targeting of the cell membrane eliminates the need for endocytosis of drugs that can lead to toxicity, intracellular degradation, or drug resistance. In this context, we utilized copper-free click chemistry to prepare a singlet oxygen photosensitizing complex, made of a molybdenum-iodine nanocluster stabilized by triazolate apical ligands. In phosphate-buffered saline, the complex formed nanoaggregates with a positive surface charge due to the protonatable amine function of the apical ligands. These nanoaggregates targeted cell membranes and caused an eminent blue-light phototoxic effect against HeLa cells at nanomolar concentrations, inducing apoptotic cell death, while having no dark toxicity at physiologically relevant concentrations. The properties of this complex were compared to those of a negatively charged parent complex to highlight the dominant effect of the nature of apical ligands on biological properties of the nanocluster. These two complexes also exerted (photo)antibacterial effects on several pathogenic strains in the form of planktonic cultures and biofilms. Overall, we demonstrated that the rational design of apical ligands toward cell membrane targeting leads to enhanced photodynamic efficiency.
Collapse
Affiliation(s)
- Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic
| | - Michaela Kubáňová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Praha 6, Czech Republic
| | - Tomáš Přibyl
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Praha 6, Czech Republic
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology Prague, 166 28 Praha, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Praha 6, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Praha 6, Czech Republic
| | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic
| |
Collapse
|
13
|
Kercher EM, Spring BQ. Photodynamic Treatments for Disseminated Cancer Metastases Using Fiber-Optic Technologies. Methods Mol Biol 2022; 2451:185-201. [PMID: 35505019 DOI: 10.1007/978-1-0716-2099-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor-targeted and -activatable photosensitizer delivery platforms are creating new opportunities to develop photodynamic therapy (PDT) of metastatic disease. This is possible by confining the activity of the photosensitizing chemical (i.e., the PDT agent) to the tumor in combination with diffuse near-infrared light irradiation for wide-field treatment. This chapter outlines protocols and research tools for preclinical development of light-activated therapies of cancer metastases using advanced-stage ovarian cancer as a model system. We also describe an in vivo molecular imaging approach that uniquely enables tracking intraperitoneal micrometastatic burden and responses to treatment using fluorescence microendoscopy.
Collapse
Affiliation(s)
- Eric M Kercher
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, USA
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Bryan Q Spring
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, USA.
- Department of Physics, Northeastern University, Boston, MA, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
14
|
Carobeli LR, Meirelles LEDF, Damke GMZF, Damke E, de Souza MVF, Mari NL, Mashiba KH, Shinobu-Mesquita CS, Souza RP, da Silva VRS, Gonçalves RS, Caetano W, Consolaro MEL. Phthalocyanine and Its Formulations: A Promising Photosensitizer for Cervical Cancer Phototherapy. Pharmaceutics 2021; 13:pharmaceutics13122057. [PMID: 34959339 PMCID: PMC8705941 DOI: 10.3390/pharmaceutics13122057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer is one of the most common causes of cancer-related deaths in women worldwide. Despite advances in current therapies, women with advanced or recurrent disease present poor prognosis. Photodynamic therapy (PDT) has emerged as an effective therapeutic alternative to treat oncological diseases such as cervical cancer. Phthalocyanines (Pcs) are considered good photosensitizers (PS) for PDT, although most of them present high levels of aggregation and are lipophilic. Despite many investigations and encouraging results, Pcs have not been approved as PS for PDT of invasive cervical cancer yet. This review presents an overview on the pathophysiology of cervical cancer and summarizes the most recent developments on the physicochemical properties of Pcs and biological results obtained both in vitro in tumor-bearing mice and in clinical tests reported in the last five years. Current evidence indicates that Pcs have potential as pharmaceutical agents for anti-cervical cancer therapy. The authors firmly believe that Pc-based formulations could emerge as a privileged scaffold for the establishment of lead compounds for PDT against different types of cervical cancer.
Collapse
Affiliation(s)
- Lucimara R. Carobeli
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Lyvia E. de F. Meirelles
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Gabrielle M. Z. F. Damke
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Edilson Damke
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Maria V. F. de Souza
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Natália L. Mari
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Kayane H. Mashiba
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Cristiane S. Shinobu-Mesquita
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Raquel P. Souza
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Vânia R. S. da Silva
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Renato S. Gonçalves
- Department of Chemistry, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (R.S.G.); (W.C.)
| | - Wilker Caetano
- Department of Chemistry, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (R.S.G.); (W.C.)
| | - Márcia E. L. Consolaro
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
- Correspondence: ; Tel.: +55-44-3011-5455
| |
Collapse
|
15
|
Copper-Containing Nanoparticles and Organic Complexes: Metal Reduction Triggers Rapid Cell Death via Oxidative Burst. Int J Mol Sci 2021; 22:ijms222011065. [PMID: 34681725 PMCID: PMC8539714 DOI: 10.3390/ijms222011065] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/21/2022] Open
Abstract
Copper-containing agents are promising antitumor pharmaceuticals due to the ability of the metal ion to react with biomolecules. In the current study, we demonstrate that inorganic Cu2+ in the form of oxide nanoparticles (NPs) or salts, as well as Cu ions in the context of organic complexes (oxidation states +1, +1.5 and +2), acquire significant cytotoxic potency (2–3 orders of magnitude determined by IC50 values) in combinations with N-acetylcysteine (NAC), cysteine, or ascorbate. In contrast, other divalent cations (Zn, Fe, Mo, and Co) evoked no cytotoxicity with these combinations. CuO NPs (0.1–1 µg/mL) together with 1 mM NAC triggered the formation of reactive oxygen species (ROS) within 2–6 h concomitantly with perturbation of the plasma membrane and caspase-independent cell death. Furthermore, NAC potently sensitized HCT116 colon carcinoma cells to Cu–organic complexes in which the metal ion coordinated with 5-(2-pyridylmethylene)-2-methylthio-imidazol-4-one or was present in the coordination sphere of the porphyrin macrocycle. The sensitization effect was detectable in a panel of mammalian tumor cell lines including the sublines with the determinants of chemotherapeutic drug resistance. The components of the combination were non-toxic if added separately. Electrochemical studies revealed that Cu cations underwent a stepwise reduction in the presence of NAC or ascorbate. This mechanism explains differential efficacy of individual Cu–organic compounds in cell sensitization depending on the availability of Cu ions for reduction. In the presence of oxygen, Cu+1 complexes can generate a superoxide anion in a Fenton-like reaction Cu+1L + O2 → O2−. + Cu+2L, where L is the organic ligand. Studies on artificial lipid membranes showed that NAC interacted with negatively charged phospholipids, an effect that can facilitate the penetration of CuO NPs across the membranes. Thus, electrochemical modification of Cu ions and subsequent ROS generation, as well as direct interaction with membranes, represent the mechanisms of irreversible membrane damage and cell death in response to metal reduction in inorganic and organic Cu-containing compounds.
Collapse
|
16
|
Role of Bcl-2 Family Proteins in Photodynamic Therapy Mediated Cell Survival and Regulation. Molecules 2020; 25:molecules25225308. [PMID: 33203053 PMCID: PMC7696921 DOI: 10.3390/molecules25225308] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy (PDT) is a treatment modality that involves three components: combination of a photosensitizer, light and molecular oxygen that leads to localized formation of reactive oxygen species (ROS). The ROS generated from this promising therapeutic modality can be lethal to the cell and leads to consequential destruction of tumor cells. However, sometimes the ROS trigger a stress response survival mechanism that helps the cells to cope with PDT-induced damage, resulting in resistance to the treatment. One preferred mechanism of cell death induced by PDT is apoptosis, and B-cell lymphoma 2 (Bcl-2) family proteins have been described as a major determinant of life or death decision of the death pathways. Apoptosis is a cellular self-destruction mechanism to remove old cells through the biological event of tissue homeostasis. The Bcl-2 family proteins act as a critical mediator of a life–death decision of cells in maintaining tissue homeostasis. There are several reports that show cancer cells developing resistance due to the increased interaction of the pro-survival Bcl-2 family proteins. However, the key mechanisms leading to apoptosis evasion and drug resistance have not been adequately understood. Therefore, it is critical to understand the mechanisms of PDT resistance, as well as the Bcl-2 family proteins, to give more insight into the treatment outcomes. In this review, we describe the role of Bcl-2 gene family proteins’ interaction in response to disease progression and PDT-induced resistance mechanisms.
Collapse
|
17
|
De Silva P, Saad MA, Thomsen HC, Bano S, Ashraf S, Hasan T. Photodynamic therapy, priming and optical imaging: Potential co-conspirators in treatment design and optimization - a Thomas Dougherty Award for Excellence in PDT paper. J PORPHYR PHTHALOCYA 2020; 24:1320-1360. [PMID: 37425217 PMCID: PMC10327884 DOI: 10.1142/s1088424620300098] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Photodynamic therapy is a photochemistry-based approach, approved for the treatment of several malignant and non-malignant pathologies. It relies on the use of a non-toxic, light activatable chemical, photosensitizer, which preferentially accumulates in tissues/cells and, upon irradiation with the appropriate wavelength of light, confers cytotoxicity by generation of reactive molecular species. The preferential accumulation however is not universal and, depending on the anatomical site, the ratio of tumor to normal tissue may be reversed in favor of normal tissue. Under such circumstances, control of the volume of light illumination provides a second handle of selectivity. Singlet oxygen is the putative favorite reactive molecular species although other entities such as nitric oxide have been credibly implicated. Typically, most photosensitizers in current clinical use have a finite quantum yield of fluorescence which is exploited for surgery guidance and can also be incorporated for monitoring and treatment design. In addition, the photodynamic process alters the cellular, stromal, and/or vascular microenvironment transiently in a process termed photodynamic priming, making it more receptive to subsequent additional therapies including chemo- and immunotherapy. Thus, photodynamic priming may be considered as an enabling technology for the more commonly used frontline treatments. Recently, there has been an increase in the exploitation of the theranostic potential of photodynamic therapy in different preclinical and clinical settings with the use of new photosensitizer formulations and combinatorial therapeutic options. The emergence of nanomedicine has further added to the repertoire of photodynamic therapy's potential and the convergence and co-evolution of these two exciting tools is expected to push the barriers of smart therapies, where such optical approaches might have a special niche. This review provides a perspective on current status of photodynamic therapy in anti-cancer and anti-microbial therapies and it suggests how evolving technologies combined with photochemically-initiated molecular processes may be exploited to become co-conspirators in optimization of treatment outcomes. We also project, at least for the short term, the direction that this modality may be taking in the near future.
Collapse
Affiliation(s)
- Pushpamali De Silva
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mohammad A. Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hanna C. Thomsen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
18
|
Kirakci K, Zelenka J, Křížová I, Ruml T, Lang K. Octahedral Molybdenum Cluster Complexes with Optimized Properties for Photodynamic Applications. Inorg Chem 2020; 59:9287-9293. [PMID: 32516524 DOI: 10.1021/acs.inorgchem.0c01173] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two new octahedral molybdenum cluster complexes act as an efficient singlet oxygen supplier in the context of the photodynamic therapy of cancer cells under blue-light irradiation. These complexes integrate the {Mo6I8}4+ core with 4'-carboxybenzo-15-crown-5 or cholate apical ligands and were characterized by 1H NMR, HR ESI-MS, and CHN elemental analysis. Both complexes display high quantum yields of luminescence and singlet oxygen formation in aqueous media associated with a suitable stability against hydrolysis. They are internalized into lysosomes of HeLa cells with no dark toxicity at pharmacologically relevant concentrations and have a strong phototoxic effect under blue-light irradiation, even in the presence of fetal bovine serum. The last feature is essential for further translation to in vivo experiments. Overall, these complexes are attractive molecular photosensitizers toward photodynamic applications.
Collapse
Affiliation(s)
- Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic
| | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic
| |
Collapse
|
19
|
New planar light source for the induction and monitoring of photodynamic processes in vitro. J Biol Phys 2020; 46:121-131. [PMID: 32170534 DOI: 10.1007/s10867-020-09544-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 01/22/2023] Open
Abstract
We recently developed a new light source that allows for the continuous monitoring of light-induced changes using common spectrophotometric devices adapted for microplate analyses. This source was designed primarily to induce photodynamic processes in cell models. Modern light components, such as LED chips, were used to improve the irradiance homogeneity. In addition, this source forms a small hermetic chamber and thus allows for the regulation of the surrounding atmosphere, which plays a significant role in these light-dependent reactions. The efficacy of the new light source was proven via kinetic measurements of reactive oxygen species generated during the photodynamic reaction of chloroaluminium phthalocyanine disulfonate (ClAlPcS2) in three cell lines: human melanoma cells (G361), human breast adenocarcinoma cells (MCF7), and human fibroblasts (BJ).
Collapse
|
20
|
Kirakci K, Demel J, Hynek J, Zelenka J, Rumlová M, Ruml T, Lang K. Phosphinate Apical Ligands: A Route to a Water-Stable Octahedral Molybdenum Cluster Complex. Inorg Chem 2019; 58:16546-16552. [PMID: 31794199 DOI: 10.1021/acs.inorgchem.9b02569] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent studies have unraveled the potential of octahedral molybdenum cluster complexes (Mo6) as relevant red phosphors and photosensitizers of singlet oxygen, O2(1Δg), for photobiological applications. However, these complexes tend to hydrolyze in an aqueous environment, which deteriorates their properties and limits their applications. To address this issue, we show that phenylphosphinates are extraordinary apical ligands for the construction of Mo6 complexes. These new complexes display unmatched luminescence quantum yields and singlet oxygen production in aqueous solutions. More importantly, the complex with diphenylphosphinate ligands is the only stable complex of these types in aqueous media. These complexes internalize in lysosomes of HeLa cells, have no dark toxicity, and yet are phototoxic in the submicromolar concentration range. The superior hydrolytic stability of the diphenylphosphinate complex allows for conservation of its photophysical properties and biological activity over a long period, making it a promising compound for photobiological applications.
Collapse
Affiliation(s)
- Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , Řež 1001 , 250 68 Husinec-Řež , Czech Republic
| | - Jan Demel
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , Řež 1001 , 250 68 Husinec-Řež , Czech Republic
| | - Jan Hynek
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , Řež 1001 , 250 68 Husinec-Řež , Czech Republic
| | | | | | | | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , Řež 1001 , 250 68 Husinec-Řež , Czech Republic
| |
Collapse
|
21
|
Nath S, Obaid G, Hasan T. The Course of Immune Stimulation by Photodynamic Therapy: Bridging Fundamentals of Photochemically Induced Immunogenic Cell Death to the Enrichment of T-Cell Repertoire. Photochem Photobiol 2019; 95:1288-1305. [PMID: 31602649 PMCID: PMC6878142 DOI: 10.1111/php.13173] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Photodynamic therapy (PDT) is a potentially immunogenic and FDA-approved antitumor treatment modality that utilizes the spatiotemporal combination of a photosensitizer, light and oftentimes oxygen, to generate therapeutic cytotoxic molecules. Certain photosensitizers under specific conditions, including ones in clinical practice, have been shown to elicit an immune response following photoillumination. When localized within tumor tissue, photogenerated cytotoxic molecules can lead to immunogenic cell death (ICD) of tumor cells, which release damage-associated molecular patterns and tumor-specific antigens. Subsequently, the T-lymphocyte (T cell)-mediated adaptive immune system can become activated. Activated T cells then disseminate into systemic circulation and can eliminate primary and metastatic tumors. In this review, we will detail the multistage cascade of events following PDT of solid tumors that ultimately lead to the activation of an antitumor immune response. More specifically, we connect the fundamentals of photochemically induced ICD with a proposition on potential mechanisms for PDT enhancement of the adaptive antitumor response. We postulate a hypothesis that during the course of the immune stimulation process, PDT also enriches the T-cell repertoire with tumor-reactive activated T cells, diversifying their tumor-specific targets and eliciting a more expansive and rigorous antitumor response. The implications of such a process are likely to impact the outcomes of rational combinations with immune checkpoint blockade, warranting investigations into T-cell diversity as a previously understudied and potentially transformative paradigm in antitumor photodynamic immunotherapy.
Collapse
Affiliation(s)
- Shubhankar Nath
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Girgis Obaid
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
22
|
Kercher EM, Nath S, Rizvi I, Spring BQ. Cancer Cell-targeted and Activatable Photoimmunotherapy Spares T Cells in a 3D Coculture Model. Photochem Photobiol 2019; 96:295-300. [PMID: 31424560 DOI: 10.1111/php.13153] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022]
Abstract
Photodynamic therapy (PDT) is an established therapeutic modality that uses nonionizing near-infrared light to activate photocytotoxicity of endogenous or exogenous photosensitizers (PSs). An ongoing avenue of cancer research involves leveraging PDT to stimulate antitumor immune responses; however, these effects appear to be best elicited in low-dose regimens that do not provide significant tumor reduction using conventional, nonspecific PSs. The loss of immune enhancement at higher PDT doses may arise in part from indiscriminate damage to local immune cell populations, including tumor-infiltrating T cells. We previously introduced "tumor-targeted, activatable photoimmunotherapy" (taPIT) using molecular-targeted and cell-activatable antibody-PS conjugates to realize precision tumor photodamage with microscale fidelity. Here, we investigate the immune cell sparing effect provided by taPIT in a 3D model of the tumor immune microenvironment. We report that high-dose taPIT spares 25% of the local immune cell population, five times more than the conventional PDT regimen, in a 3D coculture model incorporating epithelial ovarian cancer cells and T cells. These findings suggest that the enhanced selectivity of taPIT may be utilized to achieve local tumor reduction with sparing of intratumor effector immune cells that would otherwise be lost if treated with conventional PDT.
Collapse
Affiliation(s)
- Eric M Kercher
- Translational Biophotonics Cluster, Northeastern University, Boston, MA.,Department of Physics, Northeastern University, Boston, MA
| | - Shubhankar Nath
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Bryan Q Spring
- Translational Biophotonics Cluster, Northeastern University, Boston, MA.,Department of Physics, Northeastern University, Boston, MA.,Department of Bioengineering, Northeastern University, Boston, MA
| |
Collapse
|
23
|
Rapozzi V, D’Este F, Xodo LE. Molecular pathways in cancer response to photodynamic therapy. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619300064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This minireview describes the complexity of the molecular mechanisms involved in the tumor response to photodynamic treatment (PDT). Different aspects of reactive oxygen (ROS) and nitrogen species (RNS) induced by PDT will be examined. In particular, we will discuss the effect of ROS and RNS on cell compartments and the main mechanisms of cell death induced by the treatment. Moreover, we will also examine host defense mechanisms as well as resistance to PDT.
Collapse
Affiliation(s)
- Valentina Rapozzi
- Department of Medicine, University of Udine, P.le Kolbe 4, Udine, 33100, Italy
| | - Francesca D’Este
- Department of Medicine, University of Udine, P.le Kolbe 4, Udine, 33100, Italy
| | - Luigi E. Xodo
- Department of Medicine, University of Udine, P.le Kolbe 4, Udine, 33100, Italy
| |
Collapse
|
24
|
Spring BQ, Lang RT, Kercher EM, Rizvi I, Wenham RM, Conejo-Garcia JR, Hasan T, Gatenby RA, Enderling H. Illuminating the Numbers: Integrating Mathematical Models to Optimize Photomedicine Dosimetry and Combination Therapies. FRONTIERS IN PHYSICS 2019; 7:46. [PMID: 31123672 PMCID: PMC6529192 DOI: 10.3389/fphy.2019.00046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cancer photomedicine offers unique mechanisms for inducing local tumor damage with the potential to stimulate local and systemic anti-tumor immunity. Optically-active nanomedicine offers these features as well as spatiotemporal control of tumor-focused drug release to realize synergistic combination therapies. Achieving quantitative dosimetry is a major challenge, and dosimetry is fundamental to photomedicine for personalizing and tailoring therapeutic regimens to specific patients and anatomical locations. The challenge of dosimetry is perhaps greater for photomedicine than many standard therapies given the complexity of light delivery and light-tissue interactions as well as the resulting photochemistry responsible for tumor damage and drug-release, in addition to the usual intricacies of therapeutic agent delivery. An emerging multidisciplinary approach in oncology utilizes mathematical and computational models to iteratively and quantitively analyze complex dosimetry, and biological response parameters. These models are parameterized by preclinical and clinical observations and then tested against previously unseen data. Such calibrated and validated models can be deployed to simulate treatment doses, protocols, and combinations that have not yet been experimentally or clinically evaluated and can provide testable optimal treatment outcomes in a practical workflow. Here, we foresee the utility of these computational approaches to guide adaptive therapy, and how mathematical models might be further developed and integrated as a novel methodology to guide precision photomedicine.
Collapse
Affiliation(s)
- Bryan Q. Spring
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, United States
- Department of Physics, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Ryan T. Lang
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, United States
- Department of Physics, Northeastern University, Boston, MA, United States
| | - Eric M. Kercher
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, United States
- Department of Physics, Northeastern University, Boston, MA, United States
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Robert M. Wenham
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - José R. Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Robert A. Gatenby
- Department of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
25
|
Spring BQ, Kessel D. 3D Culture Models of Malignant Mesothelioma Reveal a Powerful Interplay Between Photodynamic Therapy and Kinase Suppression Offering Hope to Reduce Tumor Recurrence. Photochem Photobiol 2018; 95:462-463. [PMID: 30485439 DOI: 10.1111/php.13059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/19/2018] [Indexed: 11/28/2022]
Abstract
In this issue, Cramer et al. introduce 3D culture models of metastatic mesothelioma to investigate basic cancer biology and new combination therapies for combating this complex and lethal disease. The results suggest that erlotinib-enhanced photodynamic therapy could further improve the efficacy of intraoperative light-activation to mop up residual tumor deposits in the clinic following surgical removal of macroscopic mesothelioma metastases.
Collapse
Affiliation(s)
- Bryan Q Spring
- Translational Biophotonics Cluster, Northeastern University, Boston, MA.,Department of Physics, Northeastern University, Boston, MA.,Department of Bioengineering, Northeastern University, Boston, MA
| | - David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
26
|
Korbelik M. Role of cell stress signaling networks in cancer cell death and antitumor immune response following proteotoxic injury inflicted by photodynamic therapy. Lasers Surg Med 2018; 50:491-498. [DOI: 10.1002/lsm.22810] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Mladen Korbelik
- Department of Integrative OncologyBritish Columbia Cancer Agency VancouverBritish ColumbiaCanada
| |
Collapse
|
27
|
Kishimoto S, Oshima N, Yamamoto K, Munasinghe J, Ardenkjaer-Larsen JH, Mitchell JB, Choyke PL, Krishna MC. Molecular imaging of tumor photoimmunotherapy: Evidence of photosensitized tumor necrosis and hemodynamic changes. Free Radic Biol Med 2018; 116:1-10. [PMID: 29289705 PMCID: PMC5963721 DOI: 10.1016/j.freeradbiomed.2017.12.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/18/2017] [Accepted: 12/27/2017] [Indexed: 01/01/2023]
Abstract
Near-infrared photoimmunotherapy (NIR PIT) employs the photoabsorbing dye IR700 conjugated to antibodies specific for cell surface epidermal growth factor receptor (EGFR). NIR PIT has shown highly selective cytotoxicity in vitro and in vivo. Cell necrosis is thought to be the main mode of cytotoxicity based mainly on in vitro studies. To better understand the acute effects of NIR PIT, molecular imaging studies were performed to assess its cellular and vascular effects. In addition to in vitro studies for cytotoxicity of NIR PIT, the in vivo tumoricidal effects and hemodynamic changes induced by NIR PIT were evaluated by 13C MRI using hyperpolarized [1,4-13C2] fumarate, R2* mapping from T2*-weighted MRI, and photoacoustic imaging. In vitro studies confirmed that NIR PIT resulted in rapid cell death via membrane damage, with evidence for rapid cell expansion followed by membrane rupture. Following NIR PIT, metabolic MRI using hyperpolarized fumarate showed the production of malate in EGFR-expressing A431 tumor xenografts, providing direct evidence for photosensitized tumor necrosis induced by NIR PIT. R2* mapping studies showed temporal changes in oxygenation, with an accompanying increase of deoxyhemoglobin at the start of light exposure followed by a sustained decrease after cessation of light exposure. This result suggests a rapid decrease of blood flow in EGFR-expressing A431 tumor xenografts, which is supported by the results of the photoacoustic imaging experiments. Our findings suggest NIR PIT mediates necrosis and hemodynamic changes in tumors by photosensitized oxidation pathways and that these imaging modalities, once translated, may be useful in monitoring clinical treatment response.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Nobu Oshima
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Jeeva Munasinghe
- Mouse Imaging Facility, National Institute of Neurological Disease and Stroke, NIH, Bethesda, MD 20892, United States
| | | | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
28
|
Wang Y, Xia C, Lun Z, Lv Y, Chen W, Li T. Crosstalk between p38 MAPK and caspase-9 regulates mitochondria-mediated apoptosis induced by tetra-α-(4-carboxyphenoxy) phthalocyanine zinc photodynamic therapy in LoVo cells. Oncol Rep 2017; 39:61-70. [PMID: 29115534 PMCID: PMC5783605 DOI: 10.3892/or.2017.6071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/11/2017] [Indexed: 01/16/2023] Open
Abstract
Photodynamic therapy (PDT) is considered to be an advancing antitumor technology. PDT using hydrophilic/lipophilic tetra-α-(4-carboxyphenoxy) phthalocyanine zinc (TαPcZn-PDT) has exhibited antitumor activity in Bel-7402 hepatocellular cancer cells. However, the manner in which p38 MAPK and caspase-9 are involved in the regulation of mitochondria-mediated apoptosis in the TαPcZn-PDT-treated LoVo human colon carcinoma cells remains unclear. Therefore, in the present study, a siRNA targeting p38 MAPK (siRNA-p38 MAPK) and the caspase-9 specific inhibitor z-LEHD-fmk were used to examine the crosstalk between p38 MAPK and caspase-9 during mitochondria-mediated apoptosis in the TαPcZn-PDT-treated LoVo cells. The findings revealed that the TαPcZn-PDT treatment of LoVo cells resulted in the induction of apoptosis, the formation of p38 MAPK/caspase-9 complexes, the activation of p38 MAPK, caspase-9, caspase-3 and Bid, the downregulation of Bcl-2, the reduction of mitochondrial membrane potential (ΔΨm), the upregulation of Bax and the release of apoptosis-inducing factor (AIF) and cytochrome c (Cyto c). By contrast, siRNA-p38 MAPK or z-LEHD-fmk both attenuated the effects of TαPcZn-PDT in the LoVo cells. Furthermore, the results revealed that siRNA-p38 MAPK had more significant inhibitory effects on apoptosis and mitochondria compared with the effects of z-LEHD-fmk in TαPcZn-PDT-treated LoVo cells. These findings indicated that p38 MAPK plays the major regulatory role in the crosstalk between p38 MAPK and caspase-9 and that direct interaction between p38 MAPK and caspase-9 may regulate mitochondria-mediated apoptosis in the TαPcZn-PDT-treated LoVo cells.
Collapse
Affiliation(s)
- Yu Wang
- Department of Basic Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Chunhui Xia
- Department of Basic Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Zhiqiang Lun
- Department of Basic Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Yanxin Lv
- Department of Basic Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Wei Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Tao Li
- Department of Basic Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
29
|
Antimicrobial and anticancer photodynamic activity of a phthalocyanine photosensitizer with N -methyl morpholiniumethoxy substituents in non-peripheral positions. J Inorg Biochem 2017; 172:67-79. [DOI: 10.1016/j.jinorgbio.2017.04.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/06/2017] [Accepted: 04/08/2017] [Indexed: 12/29/2022]
|
30
|
Horne TK, Cronjé MJ. Mechanistics and photo-energetics of macrocycles and photodynamic therapy: An overview of aspects to consider for research. Chem Biol Drug Des 2017; 89:221-242. [DOI: 10.1111/cbdd.12761] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/24/2016] [Accepted: 04/05/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Tamarisk K. Horne
- Department of Biochemistry; Faculty of Science; University of Johannesburg; Auckland Park South Africa
| | - Marianne J. Cronjé
- Department of Biochemistry; Faculty of Science; University of Johannesburg; Auckland Park South Africa
| |
Collapse
|
31
|
M.Garcia A, de Alwis Weerasekera H, Pitre SP, McNeill B, Lissi E, Edwards AM, Alarcon EI. Photodynamic performance of zinc phthalocyanine in HeLa cells: A comparison between DPCC liposomes and BSA as delivery systems. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:385-90. [DOI: 10.1016/j.jphotobiol.2016.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 01/22/2023]
|
32
|
Synthesis and photodynamic activity of unsymmetrical A3B tetraarylporphyrins functionalized with l-glutamate and their Zn(II) and Cu(II) metal complex derivatives. Biomed Pharmacother 2016; 82:327-36. [PMID: 27470370 DOI: 10.1016/j.biopha.2016.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 05/07/2016] [Accepted: 05/09/2016] [Indexed: 12/27/2022] Open
Abstract
Four novel unsymmetrical A3B porphyrins 1, 2, 3 and 4 were synthesized following Lindsey procedure. Porphyrins 3 and 4 include one and three l-glutamate groups, respectively, and all porphyrins were metallated with Zn(II) (1a-4a) or Cu(II) (1b-4b). Porphyrins and metalloporphyrins presented values of singlet oxygen quantum yields (ΦD) ranging from 0.21 to 0.67. The tetraaryl derivatives in this study showed phototoxicity in SiHa cells with IC50 values ranging from <0.01 to 6.56±0.11μM, the metalloporphyrin 4a showed the lowest IC50 value. Comparing the phototoxic activity between all porphyrins, functionalization of porphyrins with glutamate increased 100 times phototoxic activity (1 (IC50 4.81±0.34μM) vs. 3 (IC50 0.04±0.02μM) and 2 (IC50 5.19±0.42μM) vs. 4 (IC50 0.05±0.01μM)). This increased activity could be attributed to reduced hydrophobicity and increased ΦΔ, given by functionalization with l-glutamate. Metalloporphyrins 3a (IC50 0.04±0.01μM) and 4a (IC50<0.01μM) presented the best values of phototoxic activity. Therefore, functionalization and zinc metalation increased the phototoxic activity. SiHa cells treated with porphyrins 3, 4, 3a and 4a at a final concentration of 10μM, showed increased activity of caspase-3 enzyme compared to the negative control; indicating the induction of apoptosis. Differential gene expression pattern in SiHa cells was determined; treatments with metalloporphyrins 4a and 4b were performed, respectively, comparing the expression with untreated control. Treatments in both cases showed similar gene expression pattern in upregulated genes, since they share about 25 biological pathways and a large number of genes. According to the new photophysical properties related to the structural improvement and phototoxic activity, these molecules may have the potential application as photosensitizers in the photodynamic therapy.
Collapse
|
33
|
Baldassarre F, Foglietta F, Vergaro V, Barbero N, Capodilupo AL, Serpe L, Visentin S, Tepore A, Ciccarella G. Photodynamic activity of thiophene-derived lysosome-specific dyes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 158:16-22. [DOI: 10.1016/j.jphotobiol.2016.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 11/30/2022]
|
34
|
Spring BQ, Sears RB, Zheng LZ, Mai Z, Watanabe R, Sherwood ME, Schoenfeld DA, Pogue BW, Pereira SP, Villa E, Hasan T. A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways. NATURE NANOTECHNOLOGY 2016; 11:378-87. [PMID: 26780659 PMCID: PMC4821671 DOI: 10.1038/nnano.2015.311] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 11/27/2015] [Indexed: 05/18/2023]
Abstract
Nanoscale drug delivery vehicles can facilitate multimodal therapies of cancer by promoting tumour-selective drug release. However, few are effective because cancer cells develop ways to resist and evade treatment. Here, we introduce a photoactivable multi-inhibitor nanoliposome (PMIL) that imparts light-induced cytotoxicity in synchrony with a photoinitiated and sustained release of inhibitors that suppress tumour regrowth and treatment escape signalling pathways. The PMIL consists of a nanoliposome doped with a photoactivable chromophore (benzoporphyrin derivative, BPD) in the lipid bilayer, and a nanoparticle containing cabozantinib (XL184)--a multikinase inhibitor--encapsulated inside. Near-infrared tumour irradiation, following intravenous PMIL administration, triggers photodynamic damage of tumour cells and microvessels, and simultaneously initiates release of XL184 inside the tumour. A single PMIL treatment achieves prolonged tumour reduction in two mouse models and suppresses metastatic escape in an orthotopic pancreatic tumour model. The PMIL offers new prospects for cancer therapy by enabling spatiotemporal control of drug release while reducing systemic drug exposure and associated toxicities.
Collapse
Affiliation(s)
- Bryan Q. Spring
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Department of Physics, Northeastern University, Boston, MA 02115
| | - R. Bryan Sears
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Department of Chemistry, Emmanuel College, Boston, MA 02115
| | - Lei Zak Zheng
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Zhiming Mai
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Reika Watanabe
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla CA 92093
| | - Margaret E. Sherwood
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - David A. Schoenfeld
- Massachusetts General Hospital and Harvard University, Biostatistics Unit, Boston MA 02114
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | - Stephen P. Pereira
- UCL Institute for Liver and Digestive Health, University College London, Royal Free Hospital Campus, London NW3 2QG, UK
| | - Elizabeth Villa
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla CA 92093
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139
- Correspondence and requests for materials should be addressed to T.H.,
| |
Collapse
|
35
|
Korbelik M. Impact of cell death manipulation on the efficacy of photodynamic therapy-generated cancer vaccines. World J Immunol 2015; 5:95-98. [DOI: 10.5411/wji.v5.i3.95] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/09/2015] [Accepted: 08/03/2015] [Indexed: 02/05/2023] Open
Abstract
The main task of cancer vaccines is to deliver tumor-specific antigens to antigen-presenting cells for immune recognition that can lead to potent and durable immune response against treated tumor. Using photodynamic therapy (PDT)-generated vaccines as an example of autologous whole-cell cancer vaccines, the importance is discussed of the expression of death-associated molecules on cancer vaccine cells. This aspect appears critical for the optimal capture of vaccine cells by host’s sentinel phagocytes in order that the tumor antigenic material is processed and presented for immune recognition and elimination of targeted malignancy. It is shown that changing death pattern of vaccine cells by agents modulating apoptosis, autophagy or necrosis can significantly alter the therapeutic impact of PDT-generated vaccines. Improved therapeutic effect was observed with inhibitors of necrosis/necroptosis using IM-54, necrostatin-1 or necrostatin-7, as well as with lethal autophagy inducer STF62247. In contrast, reduced vaccine potency was found in case of treating vaccine cells with apoptosis inhibitors or lethal autophagy inhibitor spautin-1. Therefore, PDT-generated cancer vaccine cells undergoing apoptosis or lethal autophagy are much more likely to produce therapeutic benefit than vaccine cells that are necrotic. These findings warrant further detailed examination of the strategy using cell death modulating agents for the enhancement of the efficacy of cancer vaccines.
Collapse
|
36
|
Spring BQ, Rizvi I, Xu N, Hasan T. The role of photodynamic therapy in overcoming cancer drug resistance. Photochem Photobiol Sci 2015; 14:1476-91. [PMID: 25856800 PMCID: PMC4520758 DOI: 10.1039/c4pp00495g] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/10/2015] [Indexed: 12/19/2022]
Abstract
Many modalities of cancer therapy induce mechanisms of treatment resistance and escape pathways during chronic treatments, including photodynamic therapy (PDT). It is conceivable that resistance induced by one treatment might be overcome by another treatment. Emerging evidence suggests that the unique mechanisms of tumor cell and microenvironment damage produced by PDT could be utilized to overcome cancer drug resistance, to mitigate the compensatory induction of survival pathways and even to re-sensitize resistant cells to standard therapies. Approaches that capture the unique features of PDT, therefore, offer promising factors for increasing the efficacy of a broad range of therapeutic modalities. Here, we highlight key preclinical findings utilizing PDT to overcome classical drug resistance or escape pathways and thus enhance the efficacy of many pharmaceuticals, possibly explaining the clinical observations of the PDT response to otherwise treatment-resistant diseases. With the development of nanotechnology, it is possible that light activation may be used not only to damage and sensitize tumors but also to enable controlled drug release to inhibit escape pathways that may lead to resistance or cell proliferation.
Collapse
Affiliation(s)
- Bryan Q Spring
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
37
|
Kishimoto S, Bernardo M, Saito K, Koyasu S, Mitchell JB, Choyke PL, Krishna MC. Evaluation of oxygen dependence on in vitro and in vivo cytotoxicity of photoimmunotherapy using IR-700-antibody conjugates. Free Radic Biol Med 2015; 85:24-32. [PMID: 25862414 PMCID: PMC4508222 DOI: 10.1016/j.freeradbiomed.2015.03.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/19/2015] [Accepted: 03/30/2015] [Indexed: 11/29/2022]
Abstract
Photoimmunotherapy (PIT) using the near-infrared-absorbing photosensitizing phthalocyanine dye, IRDye 700DX (IR-700), conjugated with a tumor-targeting antibody such as panitumumab (Pan) has shown efficacy in in vitro studies and several preclinical models in mice with promise for clinical translation. PIT results in rapid necrotic cell death in vitro and tumor shrinkage in vivo. Photochemical studies with the Pan-IR-700 conjugate showed that this agent can support generation of singlet oxygen and also generate reactive oxygen species after exposure to near-infrared (NIR) light. Moreover, in vitro studies using A431 cells, singlet oxygen scavengers abrogated the efficacy of PIT with Pan-IR-700, while oxygen depletion to undetectable levels in the exposure chamber almost completely inhibited the cellular cytotoxicity of PIT. Survival of tumor bearing mice was prolonged in PIT-treated animals but mice whose tumors were made transiently hypoxic prior to PIT had no benefit from the treatment. The results from this study support a central role for molecular oxygen-derived species in cell death caused by PIT.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcelino Bernardo
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keita Saito
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sho Koyasu
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Building 10, Room B3B69, NIH, 10 Center Drive, Bethesda, MD 20892-1002, USA.
| |
Collapse
|
38
|
Avci P, Erdem SS, Hamblin MR. Photodynamic therapy: one step ahead with self-assembled nanoparticles. J Biomed Nanotechnol 2015; 10:1937-52. [PMID: 25580097 DOI: 10.1166/jbn.2014.1953] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy (PDT) is a promising treatment modality for cancer with possible advantages over current treatment alternatives. It involves combination of light and a photosensitizer (PS), which is activated by absorption of specific wavelength light and creates local tissue damage through generation of reactive oxygen species (ROS) that induce a cascade of cellular and molecular events. However, as of today, PDT is still in need of improvement and nanotechnology may play a role. PDT frequently employs PS with molecular structures that are highly hydrophobic, water insoluble and prone to aggregation. Aggregation of PS leads to reduced ROS generation and thus lowers the PDT activity. Some PS such as 5-aminolevulinic acid (ALA) cannot penetrate through the stratum corneum of the skin and systemic administration is not an option due to frequently encountered side effects. Therefore PS are often encapsulated or conjugated in/on nano-drug delivery vehicles to allow them to be better taken up by cells and to more selectively deliver them to tumors or other target tissues. Several nano-drug delivery vehicles including liposomes, fullerosomes and nanocells have been tested and reviewed. Here we cover non-liposomal self-assembled nanoparticles consisting of polymeric micelles including block co-polymers, polymeric micelles, dendrimers and porphysomes.
Collapse
|
39
|
Jin H, Dai XH, Wu C, Pan JM, Wang XH, Yan YS, Liu DM, Sun L. Rational design of shear-thinning supramolecular hydrogels with porphyrin for controlled chemotherapeutics release and photodynamic therapy. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.01.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Kucinska M, Skupin-Mrugalska P, Szczolko W, Sobotta L, Sciepura M, Tykarska E, Wierzchowski M, Teubert A, Fedoruk-Wyszomirska A, Wyszko E, Gdaniec M, Kaczmarek M, Goslinski T, Mielcarek J, Murias M. Phthalocyanine derivatives possessing 2-(morpholin-4-yl)ethoxy groups as potential agents for photodynamic therapy. J Med Chem 2015; 58:2240-55. [PMID: 25700089 DOI: 10.1021/acs.jmedchem.5b00052] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Three 2-(morpholin-4-yl)ethoxy substituted phthalocyanines were synthesized and characterized. Phthalocyanine derivatives revealed moderate to high quantum yields of singlet oxygen production depending on the solvent applied (e.g., in DMF ranging from 0.25 to 0.53). Their photosensitizing potential for photodynamic therapy was investigated in an in vitro model using cancer cell lines. Biological test results were found particularly encouraging for the zinc(II) phthalocyanine derivative possessing two 2-(morpholin-4-yl)ethoxy substituents in nonperipheral positions. Cells irradiated for 20 min at 2 mW/cm(2) revealed the lowest IC50 value at 0.25 μM for prostate cell line (PC3), whereas 1.47 μM was observed for human malignant melanoma (A375) cells. The cytotoxic activity in nonirradiated cells of novel phthalocyanine was found to be very low. Moreover, the cellular uptake, localization, cell cycle, apoptosis through an ELISA assay, and immunochemistry method were investigated in LNCaP cells. Our results showed that the tested photosensitizer possesses very interesting biological activity, depending on experimental conditions.
Collapse
Affiliation(s)
- Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences , Dojazd 30, 60-631 Poznan, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Synthesis and characterization of thermosensitive, star-shaped poly(ε-caprolactone)-block-Poly(N-isopropylacrylamide) with porphyrin-core for photodynamic therapy. JOURNAL OF POLYMER RESEARCH 2014. [DOI: 10.1007/s10965-014-0412-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Gándara L, Sandes E, Di Venosa G, Prack Mc Cormick B, Rodriguez L, Mamone L, Batlle A, Eiján AM, Casas A. The natural flavonoid silybin improves the response to Photodynamic Therapy of bladder cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2014; 133:55-64. [PMID: 24705371 DOI: 10.1016/j.jphotobiol.2014.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/07/2014] [Accepted: 03/10/2014] [Indexed: 11/27/2022]
Abstract
Photodynamic Therapy (PDT) is an anticancer treatment based on photosensitisation of malignant cells. The precursor of the photosensitiser Protoporphyrin IX, 5-aminolevulinic acid (ALA), has been used for PDT of bladder cancer. Silybin is a flavonoid extracted from Silybum marianum, and it has been reported to increase the efficacy of several anticancer treatments. In the present work, we evaluated the cytotoxicity of the combination of ALA-PDT and silybin in the T24 and MB49 bladder cancer cell lines. MB49 cells were more sensitive to PDT damage, which was correlated with a higher Protoporphyrin IX production from ALA. Employing lethal light doses 50% (LD50) and 75% (LD75) and additional silybin treatment, there was a further increase of toxicity driven by PDT in both cell lines. Using the Chou-Talalay model for drug combination derived from the mass-action law principle, it was possible to identify the effect of the combination as synergic when using LD75, whilst the use of LD50 led to an additive effect on MB49 cells. On the other hand, the drug combination turned out to be nearly additive on T24 cells. Apoptotic cell death is involved both in silybin and PDT cytotoxicity in the MB49 line but there is no apparent correlation with the additive or synergic effect observed on cell viability. On the other hand, we found an enhancement of the PDT-driven impairment of cell migration on both cell lines as a consequence of silybin treatment. Overall, our results suggest that the combination of silybin and ALA-PDT would increase PDT outcome, leading to additive or synergistic effects and possibly impairing the occurrence of metastases.
Collapse
Affiliation(s)
- L Gándara
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - E Sandes
- Area Investigaciones, Instituto de Oncología Ángel H. Roffo, Argentina
| | - G Di Venosa
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | | | - L Rodriguez
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - L Mamone
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - A Batlle
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - A M Eiján
- Area Investigaciones, Instituto de Oncología Ángel H. Roffo, Argentina
| | - A Casas
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina.
| |
Collapse
|
43
|
Selective treatment and monitoring of disseminated cancer micrometastases in vivo using dual-function, activatable immunoconjugates. Proc Natl Acad Sci U S A 2014; 111:E933-42. [PMID: 24572574 DOI: 10.1073/pnas.1319493111] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Drug-resistant micrometastases that escape standard therapies often go undetected until the emergence of lethal recurrent disease. Here, we show that it is possible to treat microscopic tumors selectively using an activatable immunoconjugate. The immunoconjugate is composed of self-quenching, near-infrared chromophores loaded onto a cancer cell-targeting antibody. Chromophore phototoxicity and fluorescence are activated by lysosomal proteolysis, and light, after cancer cell internalization, enabling tumor-confined photocytotoxicity and resolution of individual micrometastases. This unique approach not only introduces a therapeutic strategy to help destroy residual drug-resistant cells but also provides a sensitive imaging method to monitor micrometastatic disease in common sites of recurrence. Using fluorescence microendoscopy to monitor immunoconjugate activation and micrometastatic disease, we demonstrate these concepts of "tumor-targeted, activatable photoimmunotherapy" in a mouse model of peritoneal carcinomatosis. By introducing targeted activation to enhance tumor selectively in complex anatomical sites, this study offers prospects for catching early recurrent micrometastases and for treating occult disease.
Collapse
|
44
|
Conte C, Ungaro F, Mazzaglia A, Quaglia F. Photodynamic Therapy for Cancer: Principles, Clinical Applications, and Nanotechnological Approaches. NANO-ONCOLOGICALS 2014. [DOI: 10.1007/978-3-319-08084-0_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
45
|
Kaneko J, Inagaki Y, Ishizawa T, Gao J, Tang W, Aoki T, Sakamoto Y, Hasegawa K, Sugawara Y, Kokudo N. Photodynamic therapy for human hepatoma-cell-line tumors utilizing biliary excretion properties of indocyanine green. J Gastroenterol 2014; 49:110-6. [PMID: 23595610 DOI: 10.1007/s00535-013-0775-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 02/05/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) has not been reported for human hepatoma, because cancer cells only weakly take up the photosensitizer. Indocyanine green (ICG) is a photosensitizer normally excreted into the bile, and bile excretion is impaired in human hepatomas. We examined whether human hepatoma cell lines preferentially take up the ICG and then assessed the effectiveness of PDT using ICG and near-infrared (NIR) laser. METHODS HuH-7 and HepG2 human hepatoma cell lines were transplanted subcutaneously into mice. Developing HuH-7 and HepG2 tumors were confirmed that preferentially took up the ICG in 24 h after ICG was administered to mice via tail vein. The HuH-7 tumor showed a high tumor-to-background fluorescence intensity ratio, 255:1, whereas fluorescence intensity of HuH-7 is increased twofold compared to HepG2. HuH-7 cell transplanted mice were divided into three groups: ICG administration only (ICG+NIR-, n = 8), ICG and NIR laser exposure (ICG+NIR+, n = 12), and NIR laser exposure only (ICG-NIR+, n = 5). RESULTS Mean tumor volume in the ICG+NIR- and ICG-NIR+ groups increased steadily. In contrast, mean tumor volume in the ICG+NIR+ group did not change between days 0 and 3. Mean tumor volume did not differ significantly between the ICG-NIR+ and ICG-NIR- groups, but was significantly different between the ICG+NIR+ group and both the ICG-NIR+ and ICG+NIR- groups (p < 0.01). CONCLUSIONS ICG is preferentially taken up by HuH-7 and HepG2 human hepatoma cell line tumors. The tumor-to-background ratio of HuH-7 tumors, in particular, was extremely high. PDT with NIR laser irradiation suppressed HuH-7 human hepatoma cell line tumor growth.
Collapse
Affiliation(s)
- Junichi Kaneko
- Hepato-Biliary-Pancreatic Surgery Division and Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Shahzidi S, Brech A, Sioud M, Li X, Suo Z, Nesland JM, Peng Q. Lamin A/C cleavage by caspase-6 activation is crucial for apoptotic induction by photodynamic therapy with hexaminolevulinate in human B-cell lymphoma cells. Cancer Lett 2013; 339:25-32. [PMID: 23916608 DOI: 10.1016/j.canlet.2013.07.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/24/2013] [Indexed: 01/16/2023]
Abstract
Photodynamic therapy (PDT) with a light-activated drug is an approved modality for cancer treatment. Hexaminolevulinate (HAL), a hexylester of 5-aminolevulinic acid as the photosensitising protoporphyrin IX (PpIX) precursor, is clinically used for both PDT and photodetection. Our previous studies have shown that HAL-PDT can effectively induce apoptosis in several human blood malignant cell lines. However, the mechanisms involved in the apoptotic induction are still not fully elucidated. In this study we have focused on the role of cellular lamin A/C in the apoptotic induction. HAL-PDT-mediated apoptosis was confirmed by various techniques including fluorescence microscopy and electron microscopy in both human B-cell lymphoma Ramos and Daudi cell lines. The lamin A/C, together with caspases-6 and -3, was cleaved during the apoptosis. Western blots, immunocytochemistry, fluorescence microscopy and electron microscopy demonstrated that the specific caspase-6 inhibitor abrogated the HAL-PDT-mediated cleavages of both caspase-6 and lamin A/C and subsequent apoptosis in these two cell lines, suggesting that the cleavage of lamin A/C by the caspase-6 activation is crucial for such apoptotic induction.
Collapse
Affiliation(s)
- Susan Shahzidi
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital and Medical Faculty, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
47
|
Allison RR, Moghissi K. Oncologic photodynamic therapy: clinical strategies that modulate mechanisms of action. Photodiagnosis Photodyn Ther 2013; 10:331-41. [PMID: 24284082 DOI: 10.1016/j.pdpdt.2013.03.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/17/2013] [Accepted: 03/28/2013] [Indexed: 01/08/2023]
Abstract
Photodynamic therapy (PDT) is an elegant minimally invasive oncologic therapy. The clinical simplicity of photosensitizer (PS) drug application followed by appropriate illumination of target leading to the oxygen dependent tumor ablative Photodynamic Reaction (PDR) has gained this treatment worldwide acceptance. Yet the true potential of clinical PDT has not yet been achieved. This paper will review current mechanisms of action and treatment paradigms with critical commentary on means to potentially improve outcome using readily available clinical tools.
Collapse
Affiliation(s)
- Ron R Allison
- Medical Director 21st Century Oncology, 801 WH Smith Boulevard, Greenville, NC 27834, USA.
| | | |
Collapse
|
48
|
Shirmanova MV, Serebrovskaya EO, Lukyanov KA, Snopova LB, Sirotkina MA, Prodanetz NN, Bugrova ML, Minakova EA, Turchin IV, Kamensky VA, Lukyanov SA, Zagaynova EV. Phototoxic effects of fluorescent protein KillerRed on tumor cells in mice. JOURNAL OF BIOPHOTONICS 2013; 6:283-90. [PMID: 22696211 DOI: 10.1002/jbio.201200056] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/12/2012] [Accepted: 05/21/2012] [Indexed: 06/01/2023]
Abstract
KillerRed is known to be a unique red fluorescent protein displaying strong phototoxic properties. Its effectiveness has been shown previously for killing bacterial and cancer cells in vitro. Here, we investigated the photototoxicity of the protein on tumor xenografts in mice. HeLa Kyoto cell line stably expressing KillerRed in mitochondria and in fusion with histone H2B was used. Irradiation of the tumors with 593 nm laser led to photobleaching of KillerRed indicating photosensitization reaction and caused significant destruction of the cells and activation of apoptosis. The portion of the dystrophically changed cells increased from 9.9% to 63.7%, and the cells with apoptosis hallmarks from 6.3% to 14%. The results of this study suggest KillerRed as a potential genetically encoded photosensitizer for photodynamic therapy of cancer.
Collapse
Affiliation(s)
- Marina V Shirmanova
- Nizhny Novgorod State Medical Academy, 603005 Minin Sq., 10/1, Nizhny Novgorod, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tsutsumi M, Miki Y, Akimoto J, Haraoka J, Aizawa K, Hirano K, Beppu M. Photodynamic therapy with talaporfin sodium induces dose-dependent apoptotic cell death in human glioma cell lines. Photodiagnosis Photodyn Ther 2012; 10:103-10. [PMID: 23769275 DOI: 10.1016/j.pdpdt.2012.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/05/2012] [Accepted: 08/08/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To investigate the kinetics of cell death in human glioma cell lines induced by photodynamic therapy (PDT) with the second-generation photosensitizer talaporfin sodium (TS) and a 664-nm diode laser. MATERIALS AND METHODS Three human glioma cell lines (T98G, A172, U251) were studied. After incubation of the cell lines with various concentrations of TS for 4 h, PDT using diode laser irradiation at 33 mW/cm² and 10 J/cm² was performed. Cell viability and changes in cell morphology were examined by the Cell Counting Kit-8 assay and phase-contrast microscopy, respectively. In addition, to evaluate the pathology of cell death, changes in cell viability after treatment with a caspase activation inhibitor and an autophagy inhibitor were also examined. RESULTS In all 3 human glioma cell lines, TS induced dose-dependent cell death. However, the 50% lethal dose of TS varied among these cell lines. The main morphological feature of cell death was shrinkage of the cell body, and the number of cells with this morphological change increased in a time-dependent manner, resulting in cell death. In addition, a dose-dependent improvement in cell viability by the caspase inhibitor Z-VAD-fmk was observed. CONCLUSION PDT with TS induces dose-dependent apoptosis in human glioma cell lines. However, the sensitivity to PDT varied among the cell lines, indicating a possible difference in the intracellular content of TS, or a difference in the susceptibility to the intracellular oxidative stress caused by PDT.
Collapse
|
50
|
Abu-Yousif AO, Moor ACE, Zheng X, Savellano MD, Yu W, Selbo PK, Hasan T. Epidermal growth factor receptor-targeted photosensitizer selectively inhibits EGFR signaling and induces targeted phototoxicity in ovarian cancer cells. Cancer Lett 2012; 321:120-7. [PMID: 22266098 PMCID: PMC3356439 DOI: 10.1016/j.canlet.2012.01.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 12/31/2022]
Abstract
Targeted photosensitizer delivery to EGFR-expressing cells was achieved in the present study using a high purity, targeted photoimmunoconjugate (PIC). When the PDT agent, benzoporphyrin derivative monoacid ring A (BPD) was coupled to an EGFR-targeting antibody (cetuximab), we observed altered cellular localization and selective phototoxicity of EGFR-positive cells, but no phototoxicity of EGFR-negative cells. Cetuximab in the PIC formulation blocked EGF-induced activation of the EGFR and downstream signaling pathways. Our results suggest that photoimmunotargeting is a useful dual strategy for the selective destruction of cancer cells and also exerts the receptor-blocking biological function of the antibody.
Collapse
Affiliation(s)
- Adnan O. Abu-Yousif
- Wellman Center for Photomedicine, Department of Dermatology (Bartlett Hall 314), Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114, USA
| | - Anne C. E. Moor
- Wellman Center for Photomedicine, Department of Dermatology (Bartlett Hall 314), Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114, USA
| | - Xiang Zheng
- Wellman Center for Photomedicine, Department of Dermatology (Bartlett Hall 314), Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114, USA
| | - Mark D. Savellano
- Wellman Center for Photomedicine, Department of Dermatology (Bartlett Hall 314), Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114, USA
| | - Weiping Yu
- Wellman Center for Photomedicine, Department of Dermatology (Bartlett Hall 314), Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114, USA
| | | | - Tayyaba Hasan
- Wellman Center for Photomedicine, Department of Dermatology (Bartlett Hall 314), Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114, USA
| |
Collapse
|