1
|
Jalal MS, Duttaroy A. Maternal Spargel/dPGC-1 is critical for embryonic development and influences chorion gene amplification via Cyclin E activity. Dev Biol 2024; 516:158-166. [PMID: 39173813 DOI: 10.1016/j.ydbio.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
The function of spargel/dPGC-1 in Drosophila oogenesis has been unequivocally established. Here, we sought to assess whether Spargel protein or RNA is essential for developmentally competent eggs. The trans-heterozygotic combination of two spargel mutant alleles allowed us to decrease Spargel expression to very low levels. Using this model, we now demonstrated the requirement for Spargel in eggshell patterning and embryonic development, which led us to establish that spargel is a maternal effect gene. Further examination of Spargel's potential mechanism of action in eggshell biogenesis revealed that low levels of Spargel in the adult ovary cause diminished Cyclin E activity, resulting in reduced chorion gene amplification levels, leading to eggshell biogenesis defects. Thus, another novel role for spargel/dPGC-1 is exposed whereby, through Cyclin E activity, this conserved transcriptional coactivator regulates the chorion gene amplification process.
Collapse
|
2
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
3
|
Sustar AE, Strand LG, Zimmerman SG, Berg CA. Imaginal disk growth factors are Drosophila chitinase-like proteins with roles in morphogenesis and CO2 response. Genetics 2023; 223:iyac185. [PMID: 36576887 PMCID: PMC9910413 DOI: 10.1093/genetics/iyac185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/18/2022] [Accepted: 11/16/2022] [Indexed: 12/29/2022] Open
Abstract
Chitinase-like proteins (CLPs) are members of the family 18 glycosyl hydrolases, which include chitinases and the enzymatically inactive CLPs. A mutation in the enzyme's catalytic site, conserved in vertebrates and invertebrates, allowed CLPs to evolve independently with functions that do not require chitinase activity. CLPs normally function during inflammatory responses, wound healing, and host defense, but when they persist at excessive levels at sites of chronic inflammation and in tissue-remodeling disorders, they correlate positively with disease progression and poor prognosis. Little is known, however, about their physiological function. Drosophila melanogaster has 6 CLPs, termed Imaginal disk growth factors (Idgfs), encoded by Idgf1, Idgf2, Idgf3, Idgf4, Idgf5, and Idgf6. In this study, we developed tools to facilitate characterization of the physiological roles of the Idgfs by deleting each of the Idgf genes using the CRISPR/Cas9 system and assessing loss-of-function phenotypes. Using null lines, we showed that loss of function for all 6 Idgf proteins significantly lowers viability and fertility. We also showed that Idgfs play roles in epithelial morphogenesis, maintaining proper epithelial architecture and cell shape, regulating E-cadherin and cortical actin, and remarkably, protecting these tissues against CO2 exposure. Defining the normal molecular mechanisms of CLPs is a key to understanding how deviations tip the balance from a physiological to a pathological state.
Collapse
Affiliation(s)
- Anne E Sustar
- Department of Genome Sciences, University of Washington, Foege Bldg. S-250, 3720 15th Ave NE, Seattle, WA 98195-5065, USA
| | - Liesl G Strand
- Department of Genome Sciences, University of Washington, Foege Bldg. S-250, 3720 15th Ave NE, Seattle, WA 98195-5065, USA
| | - Sandra G Zimmerman
- Department of Genome Sciences, University of Washington, Foege Bldg. S-250, 3720 15th Ave NE, Seattle, WA 98195-5065, USA
| | - Celeste A Berg
- Department of Genome Sciences, University of Washington, Foege Bldg. S-250, 3720 15th Ave NE, Seattle, WA 98195-5065, USA
| |
Collapse
|
4
|
Abstract
In this chapter, we highlight examples of the diverse array of developmental, cellular, and biochemical insights that can be gained by using Drosophila melanogaster oogenesis as a model tissue. We begin with an overview of ovary development and adult oogenesis. Then we summarize how the adult Drosophila ovary continues to advance our understanding of stem cells, cell cycle, cell migration, cytoplasmic streaming, nurse cell dumping, and cell death. We also review emerging areas of study, including the roles of lipid droplets, ribosomes, and nuclear actin in egg development. Finally, we conclude by discussing the growing conservation of processes and signaling pathways that regulate oogenesis and female reproduction from flies to humans.
Collapse
|
5
|
Stevens CA, Stott HL, Desai SV, Yakoby N. Shared cis-regulatory modules control expression of the tandem paralogs midline and H15 in the follicular epithelium. Development 2022; 149:dev201016. [PMID: 36278857 PMCID: PMC9845738 DOI: 10.1242/dev.201016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
The posterior end of the follicular epithelium is patterned by midline (MID) and its paralog H15, the Drosophila homologs of the mammalian Tbx20 transcription factor. We have previously identified two cis-regulatory modules (CRMs) that recapitulate the endogenous pattern of mid in the follicular epithelium. Here, using CRISPR/Cas9 genome editing, we demonstrate redundant activity of these mid CRMs. Although the deletion of either CRM alone generated marginal change in mid expression, the deletion of both CRMs reduced expression by 60%. Unexpectedly, the deletion of the 5' proximal CRM of mid eliminated H15 expression. Interestingly, expression of these paralogs in other tissues remained unaffected in the CRM deletion backgrounds. These results suggest that the paralogs are regulated by a shared CRM that coordinates gene expression during posterior fate determination. The consistent overlapping expression of mid and H15 in various tissues may indicate that the paralogs could also be under shared regulation by other CRMs in these tissues.
Collapse
Affiliation(s)
- Cody A. Stevens
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| | - Helen L. Stott
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| | - Shreya V. Desai
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| | - Nir Yakoby
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| |
Collapse
|
6
|
Sun YY, Fu DY, Liu B, Wang LJ, Chen H. Roles of Krüppel Homolog 1 and Broad-Complex in the Development of Dendroctonus armandi (Coleoptera: Scolytinae). Front Physiol 2022; 13:865442. [PMID: 35464080 PMCID: PMC9019567 DOI: 10.3389/fphys.2022.865442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
In insects, metamorphosis is controlled by juvenile hormone (JH) and 20-hydroxyecdysone (20E). Krüppel homolog 1 (Kr-h1), a key JH-early inducible gene, is responsible for the suppression of metamorphosis and the regulation of the Broad-Complex (Br-C) gene, which is induced by 20E and functions as a “pupal specifier”. In this study, we identified and characterized the expression patterns and tissue distribution of DaKr-h1 and DaBr-C at various developmental stages of Dendroctonus armandi. The expression of the two genes was induced by JH analog (JHA) methoprene and 20E, and their functions were investigated by RNA interference. DaKr-h1 and DaBr-C were predominantly expressed in the heads of larvae and were significantly downregulated during the molting stage. In contrast, the DaKr-h1 transcript level was highest in the adult anterior midgut. DaBr-C was mainly expressed in female adults, with the highest transcript levels in the ovaries. In the larval and pupal stages, both JHA and 20E significantly induced DaKr-h1, but only 20E significantly induced DaBr-C, indicating the importance of hormones in metamorphosis. DaKr-h1 knockdown in larvae upregulated DaBr-C expression, resulting in precocious metamorphosis from larvae to pupae and the formation of miniature pupae. DaKr-h1 knockdown in pupae suppressed DaBr-C expression, increased emergence, caused abnormal morphology, and caused the formation of small-winged adults. These results suggest that DaKr-h1 is required for the metamorphosis of D. armandi. Our findings provide insight into the roles of DaKr-h1 and DaBr-C in JH-induced transcriptional repression and highlight DaKr-h1 as a potential target for metamorphosis suppression in D. armandi.
Collapse
Affiliation(s)
- Ya-Ya Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Dan-Yang Fu
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Bin Liu
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Lin-Jun Wang
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- *Correspondence: Hui Chen,
| |
Collapse
|
7
|
Stevens CA, Revaitis NT, Caur R, Yakoby N. The ETS-transcription factor Pointed is sufficient to regulate the posterior fate of the follicular epithelium. Development 2020; 147:dev.189787. [PMID: 33028611 DOI: 10.1242/dev.189787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/29/2020] [Indexed: 11/20/2022]
Abstract
The Janus-kinase/signal transducer and activator of transcription (JAK/STAT) pathway regulates the anterior posterior axis of the Drosophila follicle cells. In the anterior, it activates the bone morphogenetic protein (BMP) signaling pathway through expression of the BMP ligand decapentaplegic (dpp). In the posterior, JAK/STAT works with the epidermal growth factor receptor (EGFR) pathway to express the T-box transcription factor midline (mid). Although MID is necessary for establishing the posterior fate of the egg chamber, we show that it is not sufficient to determine a posterior fate. The ETS-transcription factor pointed (pnt) is expressed in an overlapping domain to mid in the follicle cells. This study shows that pnt is upstream of mid and that it is sufficient to induce a posterior fate in the anterior end, which is characterized by the induction of mid, the prevention of the stretched cells formation and the abrogation of border cell migration. We demonstrate that the anterior BMP signaling is abolished by PNT through dpp repression. However, ectopic DPP cannot rescue the anterior fate formation, suggesting additional targets of PNT participate in the posterior fate determination.
Collapse
Affiliation(s)
- Cody A Stevens
- Center for Computational and Integrative Biology, Rutgers, The State University of NJ, Camden, NJ 08102, USA
| | - Nicole T Revaitis
- Center for Computational and Integrative Biology, Rutgers, The State University of NJ, Camden, NJ 08102, USA
| | - Rumkan Caur
- Department of Biology, Rutgers, The State University of NJ, Camden, NJ 08102, USA
| | - Nir Yakoby
- Center for Computational and Integrative Biology, Rutgers, The State University of NJ, Camden, NJ 08102, USA .,Department of Biology, Rutgers, The State University of NJ, Camden, NJ 08102, USA
| |
Collapse
|
8
|
Detecting New Allies: Modifier Screen Identifies a Genetic Interaction Between Imaginal disc growth factor 3 and combover, a Rho-kinase Substrate, During Dorsal Appendage Tube Formation in Drosophila. G3-GENES GENOMES GENETICS 2020; 10:3585-3599. [PMID: 32855169 PMCID: PMC7534437 DOI: 10.1534/g3.120.401476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biological tube formation underlies organ development and, when disrupted, can cause severe birth defects. To investigate the genetic basis of tubulogenesis, we study the formation of Drosophila melanogaster eggshell structures, called dorsal appendages, which are produced by epithelial tubes. Previously we found that precise levels of Drosophila Chitinase-Like Proteins (CLPs), encoded by the Imaginal disc growth factor (Idgf) gene family, are needed to regulate dorsal-appendage tube closure and tube migration. To identify factors that act in the Idgf pathway, we developed a genetic modifier screen based on the finding that overexpressing Idgf3 causes dorsal appendage defects with ∼50% frequency. Using a library of partially overlapping heterozygous deficiencies, we scanned chromosome 3L and found regions that enhanced or suppressed the Idgf3-overexpression phenotype. Using smaller deletions, RNAi, and mutant alleles, we further mapped five regions and refined the interactions to 58 candidate genes. Importantly, mutant alleles identified combover (cmb), a substrate of Rho-kinase (Rok) and a component of the Planar Cell Polarity (PCP) pathway, as an Idgf3-interacting gene: loss of function enhanced while gain of function suppressed the dorsal appendage defects. Since PCP drives cell intercalation in other systems, we asked if cmb/+ affected cell intercalation in our model, but we found no evidence of its involvement in this step. Instead, we found that loss of cmb dominantly enhanced tube defects associated with Idgf3 overexpression by expanding the apical area of dorsal appendage cells. Apical surface area determines tube volume and shape; in this way, Idgf3 and cmb regulate tube morphology.
Collapse
|
9
|
Abstract
A common path to the formation of complex 3D structures starts with an epithelial sheet that is patterned by inductive cues that control the spatiotemporal activities of transcription factors. These activities are then interpreted by the cis-regulatory regions of the genes involved in cell differentiation and tissue morphogenesis. Although this general strategy has been documented in multiple developmental contexts, the range of experimental models in which each of the steps can be examined in detail and evaluated in its effect on the final structure remains very limited. Studies of the Drosophila eggshell patterning provide unique insights into the multiscale mechanisms that connect gene regulation and 3D epithelial morphogenesis. Here we review the current understanding of this system, emphasizing how the recent identification of cis-regulatory regions of genes within the eggshell patterning network enables mechanistic analysis of its spatiotemporal dynamics and evolutionary diversification. It appears that cis-regulatory changes can account for only some aspects of the morphological diversity of Drosophila eggshells, such as the prominent differences in the number of the respiratory dorsal appendages. Other changes, such as the appearance of the respiratory eggshell ridges, are caused by changes in the spatial distribution of inductive signals. Both types of mechanisms are at play in this rapidly evolving system, which provides an excellent model of developmental patterning and morphogenesis.
Collapse
|
10
|
Kamath AD, Deehan MA, Frydman HM. Polar cell fate stimulates Wolbachia intracellular growth. Development 2018; 145:dev.158097. [PMID: 29467241 DOI: 10.1242/dev.158097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/12/2018] [Indexed: 11/20/2022]
Abstract
Bacteria are crucial partners in the development and evolution of vertebrates and invertebrates. A large fraction of insects harbor Wolbachia, bacterial endosymbionts that manipulate host reproduction to favor their spreading. Because they are maternally inherited, Wolbachia are under selective pressure to reach the female germline and infect the offspring. However, Wolbachia infection is not limited to the germline. Somatic cell types, including stem cell niches, have higher Wolbachia loads compared with the surrounding tissue. Here, we show a novel Wolbachia tropism to polar cells (PCs), specialized somatic cells in the Drosophila ovary. During oogenesis, all stages of PC development are easily visualized, facilitating the investigation of the kinetics of Wolbachia intracellular growth. Wolbachia accumulation is triggered by particular events of PC morphogenesis, including differentiation from progenitors and between stages 8 and 9 of oogenesis. Moreover, induction of ectopic PC fate is sufficient to promote Wolbachia accumulation. We found that Wolbachia PC tropism is evolutionarily conserved across most Drosophila species, but not in Culex mosquitos. These findings highlight the coordination of endosymbiont tropism with host development and cell differentiation.
Collapse
Affiliation(s)
- Ajit D Kamath
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Mark A Deehan
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Horacio M Frydman
- Department of Biology, Boston University, Boston, MA 02215, USA .,National Emerging Infectious Disease Laboratory, Boston University, Boston, MA 02118, USA
| |
Collapse
|
11
|
Osterfield M, Berg CA, Shvartsman SY. Epithelial Patterning, Morphogenesis, and Evolution: Drosophila Eggshell as a Model. Dev Cell 2017; 41:337-348. [PMID: 28535370 DOI: 10.1016/j.devcel.2017.02.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 02/06/2017] [Accepted: 02/24/2017] [Indexed: 11/30/2022]
Abstract
Understanding the mechanisms driving tissue and organ formation requires knowledge across scales. How do signaling pathways specify distinct tissue types? How does the patterning system control morphogenesis? How do these processes evolve? The Drosophila egg chamber, where EGF and BMP signaling intersect to specify unique cell types that construct epithelial tubes for specialized eggshell structures, has provided a tractable system to ask these questions. Work there has elucidated connections between scales of development, including across evolutionary scales, and fostered the development of quantitative modeling tools. These tools and general principles can be applied to the understanding of other developmental processes across organisms.
Collapse
Affiliation(s)
- Miriam Osterfield
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Celeste A Berg
- Molecular and Cellular Biology Program and Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
12
|
Simple Expression Domains Are Regulated by Discrete CRMs During Drosophila Oogenesis. G3-GENES GENOMES GENETICS 2017. [PMID: 28634244 PMCID: PMC5555475 DOI: 10.1534/g3.117.043810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Eggshell patterning has been extensively studied in Drosophila melanogaster. However, the cis-regulatory modules (CRMs), which control spatiotemporal expression of these patterns, are vastly unexplored. The FlyLight collection contains >7000 intergenic and intronic DNA fragments that, if containing CRMs, can drive the transcription factor GAL4. We cross-listed the 84 genes known to be expressed during D. melanogaster oogenesis with the ∼1200 listed genes of the FlyLight collection, and found 22 common genes that are represented by 281 FlyLight fly lines. Of these lines, 54 show expression patterns during oogenesis when crossed to an UAS-GFP reporter. Of the 54 lines, 16 recapitulate the full or partial pattern of the associated gene pattern. Interestingly, while the average DNA fragment size is ∼3 kb in length, the vast majority of fragments show one type of spatiotemporal pattern in oogenesis. Mapping the distribution of all 54 lines, we found a significant enrichment of CRMs in the first intron of the associated genes’ model. In addition, we demonstrate the use of different anteriorly active FlyLight lines as tools to disrupt eggshell patterning in a targeted manner. Our screen provides further evidence that complex gene patterns are assembled combinatorially by different CRMs controlling the expression of genes in simple domains.
Collapse
|
13
|
Drosophila Nociceptive Sensitization Requires BMP Signaling via the Canonical SMAD Pathway. J Neurosci 2017; 37:8524-8533. [PMID: 28855331 DOI: 10.1523/jneurosci.3458-16.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 06/24/2017] [Accepted: 07/27/2017] [Indexed: 11/21/2022] Open
Abstract
Nociceptive sensitization is a common feature in chronic pain, but its basic cellular mechanisms are only partially understood. The present study used the Drosophila melanogaster model system and a candidate gene approach to identify novel components required for modulation of an injury-induced nociceptive sensitization pathway presumably downstream of Hedgehog. This study demonstrates that RNAi silencing of a member of the Bone Morphogenetic Protein (BMP) signaling pathway, Decapentaplegic (Dpp), specifically in the Class IV multidendritic nociceptive neuron, significantly attenuated ultraviolet injury-induced sensitization. Furthermore, overexpression of Dpp in Class IV neurons was sufficient to induce thermal hypersensitivity in the absence of injury. The requirement of various BMP receptors and members of the SMAD signal transduction pathway in nociceptive sensitization was also demonstrated. The effects of BMP signaling were shown to be largely specific to the sensitization pathway and not associated with changes in nociception in the absence of injury or with changes in dendritic morphology. Thus, the results demonstrate that Dpp and its pathway play a crucial and novel role in nociceptive sensitization. Because the BMP family is so strongly conserved between vertebrates and invertebrates, it seems likely that the components analyzed in this study represent potential therapeutic targets for the treatment of chronic pain in humans.SIGNIFICANCE STATEMENT This report provides a genetic analysis of primary nociceptive neuron mechanisms that promote sensitization in response to injury. Drosophila melanogaster larvae whose primary nociceptive neurons were reduced in levels of specific components of the BMP signaling pathway, were injured and then tested for nocifensive responses to a normally subnoxious stimulus. Results suggest that nociceptive neurons use the BMP2/4 ligand, along with identified receptors and intracellular transducers to transition to a sensitized state. These findings are consistent with the observation that BMP receptor hyperactivation correlates with bone abnormalities and pain sensitization in fibrodysplasia ossificans progressiva (Kitterman et al., 2012). Because nociceptive sensitization is associated with chronic pain, these findings indicate that human BMP pathway components may represent targets for novel pain-relieving drugs.
Collapse
|
14
|
Duhart JC, Parsons TT, Raftery LA. The repertoire of epithelial morphogenesis on display: Progressive elaboration of Drosophila egg structure. Mech Dev 2017; 148:18-39. [PMID: 28433748 DOI: 10.1016/j.mod.2017.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 12/26/2022]
Abstract
Epithelial structures are foundational for tissue organization in all metazoans. Sheets of epithelial cells form lateral adhesive junctions and acquire apico-basal polarity perpendicular to the surface of the sheet. Genetic analyses in the insect model, Drosophila melanogaster, have greatly advanced our understanding of how epithelial organization is established, and how it is modulated during tissue morphogenesis. Major insights into collective cell migrations have come from analyses of morphogenetic movements within the adult follicular epithelium that cooperates with female germ cells to build a mature egg. Epithelial follicle cells progress through tightly choreographed phases of proliferation, patterning, reorganization and migrations, before they differentiate to form the elaborate structures of the eggshell. Distinct structural domains are organized by differential adhesion, within which lateral junctions are remodeled to further shape the organized epithelia. During collective cell migrations, adhesive interactions mediate supracellular organization of planar polarized macromolecules, and facilitate crawling over the basement membrane or traction against adjacent cell surfaces. Comparative studies with other insects are revealing the diversification of morphogenetic movements for elaboration of epithelial structures. This review surveys the repertoire of follicle cell morphogenesis, to highlight the coordination of epithelial plasticity with progressive differentiation of a secretory epithelium. Technological advances will keep this tissue at the leading edge for interrogating the precise spatiotemporal regulation of normal epithelial reorganization events, and provide a framework for understanding pathological tissue dysplasia.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States
| | - Travis T Parsons
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States.
| |
Collapse
|
15
|
Proteomics Analysis Identifies Orthologs of Human Chitinase-Like Proteins as Inducers of Tube Morphogenesis Defects in Drosophila melanogaster. Genetics 2017; 206:973-984. [PMID: 28404605 DOI: 10.1534/genetics.116.199323] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/05/2017] [Indexed: 11/18/2022] Open
Abstract
Elevated levels of human chitinase-like proteins (CLPs) are associated with numerous chronic inflammatory diseases and several cancers, often correlating with poor prognosis. Nevertheless, there is scant knowledge of their function. The CLPs normally mediate immune responses and wound healing and, when upregulated, they can promote disease progression by remodeling tissue, activating signaling cascades, stimulating proliferation and migration, and by regulating adhesion. We identified Imaginal disc growth factors (Idgfs), orthologs of human CLPs CHI3L1, CHI3L2, and OVGP1, in a proteomics analysis designed to discover factors that regulate tube morphogenesis in a Drosophila melanogaster model of tube formation. We implemented a novel approach that uses magnetic beads to isolate a small population of specialized ovarian cells, cells that nonautonomously regulate morphogenesis of epithelial tubes that form and secrete eggshell structures called dorsal appendages (DAs). Differential mass spectrometry analysis of these cells detected elevated levels of four of the six Idgf family members (Idgf1, Idgf2, Idgf4, and Idgf6) in flies mutant for bullwinkle (bwk), which encodes a transcription factor and is a known regulator of DA-tube morphogenesis. We show that, during oogenesis, dysregulation of Idgfs (either gain or loss of function) disrupts the formation of the DA tubes. Previous studies demonstrate roles for Drosophila Idgfs in innate immunity, wound healing, and cell proliferation and motility in cell culture. Here, we identify a novel role for Idgfs in both normal and aberrant tubulogenesis processes.
Collapse
|
16
|
Nagel AC, Szawinski J, Zimmermann M, Preiss A. Drosophila Cyclin G Is a Regulator of the Notch Signalling Pathway during Wing Development. PLoS One 2016; 11:e0151477. [PMID: 26963612 PMCID: PMC4786218 DOI: 10.1371/journal.pone.0151477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/29/2016] [Indexed: 01/24/2023] Open
Abstract
Notch signalling regulates a multitude of differentiation processes during Drosophila development. For example, Notch activity is required for proper wing vein differentiation which is hampered in mutants of either the receptor Notch, the ligand Delta or the antagonist Hairless. Moreover, the Notch pathway is involved in several aspects of Drosophila oogenesis as well. We have identified Drosophila Cyclin G (CycG) as a molecular interaction partner of Hairless, the major antagonist in the Notch signalling pathway, in vitro and in vivo. Loss of CycG was shown before to cause female sterility and to disturb the architecture of the egg shell. Nevertheless, Notch dependent processes during oogenesis appeared largely unaffected in cycG mutant egg chambers. Loss of CycG modified the dominant wing phenotypes of Notch, Delta and Hairless mutants. Whereas the Notch loss of function phenotype was ameliorated by a loss of CycG, the phenotypes of either Notch gain of function or of Delta or Hairless loss of function were enhanced. In contrast, loss of CycG had only a minor effect on the wing vein phenotype of mutants affecting the EGFR signalling pathway emphasizing the specificity of the interaction of CycG and Notch pathway members.
Collapse
Affiliation(s)
- Anja C. Nagel
- Institut für Genetik, Universität Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Jutta Szawinski
- Institut für Genetik, Universität Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Mirjam Zimmermann
- Institut für Genetik, Universität Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Anette Preiss
- Institut für Genetik, Universität Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
- * E-mail:
| |
Collapse
|
17
|
Peters NC, Berg CA. Dynamin-mediated endocytosis is required for tube closure, cell intercalation, and biased apical expansion during epithelial tubulogenesis in the Drosophila ovary. Dev Biol 2015; 409:39-54. [PMID: 26542010 DOI: 10.1016/j.ydbio.2015.10.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 08/09/2015] [Accepted: 10/31/2015] [Indexed: 11/28/2022]
Abstract
Most metazoans are able to grow beyond a few hundred cells and to support differentiated tissues because they elaborate multicellular, epithelial tubes that are indispensable for nutrient and gas exchange. To identify and characterize the cellular behaviors and molecular mechanisms required for the morphogenesis of epithelial tubes (i.e., tubulogenesis), we have turned to the D. melanogaster ovary. Here, epithelia surrounding the developing egg chambers first pattern, then form and extend a set of simple, paired, epithelial tubes, the dorsal appendage (DA) tubes, and they create these structures in the absence of cell division or cell death. This genetically tractable system lets us assess the relative contributions that coordinated changes in cell shape, adhesion, orientation, and migration make to basic epithelial tubulogenesis. We find that Dynamin, a conserved regulator of endocytosis and the cytoskeleton, serves a key role in DA tubulogenesis. We demonstrate that Dynamin is required for distinct aspects of DA tubulogenesis: DA-tube closure, DA-tube-cell intercalation, and biased apical-luminal cell expansion. We provide evidence that Dynamin promotes these processes by facilitating endocytosis of cell-cell and cell-matrix adhesion complexes, and we find that precise levels and sub-cellular distribution of E-Cadherin and specific Integrin subunits impact DA tubulogenesis. Thus, our studies identify novel morphogenetic roles (i.e., tube closure and biased apical expansion), and expand upon established roles (i.e., cell intercalation and adhesion remodeling), for Dynamin in tubulogenesis.
Collapse
Affiliation(s)
- Nathaniel C Peters
- University of Washington, Molecular and Cellular Biology Program and Department of Genome Sciences, Box 355065, Seattle, WA 98195-5065, United States
| | - Celeste A Berg
- University of Washington, Molecular and Cellular Biology Program and Department of Genome Sciences, Box 355065, Seattle, WA 98195-5065, United States.
| |
Collapse
|
18
|
Osterfield M, Schüpbach T, Wieschaus E, Shvartsman SY. Diversity of epithelial morphogenesis during eggshell formation in drosophilids. Development 2015; 142:1971-7. [PMID: 25953345 DOI: 10.1242/dev.119404] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/30/2015] [Indexed: 11/20/2022]
Abstract
The eggshells of drosophilid species provide a powerful model for studying the origins of morphological diversity. The dorsal appendages, or respiratory filaments, of these eggshells display a remarkable interspecies variation in number and shape, and the epithelial patterning underlying the formation of these structures is an area of active research. To extend the analysis of dorsal appendage formation to include morphogenesis, we developed an improved 3D image reconstruction approach. This approach revealed considerable interspecies variation in the cell shape changes and neighbor exchanges underlying appendage formation. Specifically, although the appendage floor in Drosophila melanogaster is formed through spatially ordered neighbor exchanges, the same structure in Scaptodrosophila pattersoni is formed through extreme changes in cell shape, whereas Drosophila funebris appears to display a combination of both cellular mechanisms. Furthermore, localization patterns of Par3/Bazooka suggest a self-organized, cell polarity-based origin for the variability of appendage number in S. pattersoni. Our results suggest that species deploy different combinations of apically and basally driven mechanisms to convert a two-dimensional primordium into a three-dimensional structure, and provide new directions for exploring the molecular origins of interspecies morphological variation.
Collapse
Affiliation(s)
- Miriam Osterfield
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Eric Wieschaus
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Stanislav Y Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
19
|
Niepielko MG, Yakoby N. Evolutionary changes in TGFα distribution underlie morphological diversity in eggshells from Drosophila species. Development 2015; 141:4710-5. [PMID: 25468939 DOI: 10.1242/dev.111898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila eggshells display remarkable morphological diversity among species; however, the molecular origin of this structural diversification is mostly unknown. Here, we analyzed the dorsal ridge (DR), a lumen-like structure along the dorsal side of eggshells, from numerous Drosophila species. This structure varies in length and width across species, and is absent from D. melanogaster eggshells. We associated DR formation with distinct spatiotemporal changes in epidermal growth factor receptor (EGFR) activation, which acts as a key receptor in eggshell patterning. We show that changes in the distribution of the TGFα-like ligand Gurken (GRK), a crucial ligand for axis formation, underlies EGFR activation and DR formation in D. willistoni. Furthermore, we demonstrate that GRK from D. willistoni rescues a grk-null D. melanogaster fly and, remarkably, it is also sufficient to generate a DR-like structure on its eggshell.
Collapse
Affiliation(s)
- Matthew G Niepielko
- Department of Biology and Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| | - Nir Yakoby
- Department of Biology and Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| |
Collapse
|
20
|
Regulation of broad by the Notch pathway affects timing of follicle cell development. Dev Biol 2014; 392:52-61. [PMID: 24815210 DOI: 10.1016/j.ydbio.2014.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/23/2014] [Accepted: 04/29/2014] [Indexed: 12/20/2022]
Abstract
During Drosophila oogenesis, activation of Notch signaling in the follicular epithelium (FE) around stage 6 of oogenesis is essential for entry into the endocycle and a series of other changes such as cell differentiation and migration of subsets of the follicle cells. Notch induces the expression of zinc finger protein Hindsight and suppresses homeodomain protein Cut to regulate the mitotic/endocycle (ME) switch. Here we report that broad (br), encoding a small group of zinc-finger transcription factors resulting from alternative splicing, is a transcriptional target of Notch nuclear effector Suppressor of Hairless (Su(H)). The early pattern of Br in the FE, uniformly expressed except in the polar cells, is established by Notch signaling around stage 6, through the binding of Su(H) to the br early enhancer (brE) region. Mutation of the Su(H) binding site leads to a significant reduction of brE reporter expression in follicle cells undergoing the endocycle. Chromatin immunoprecipitation results further confirm Su(H) binding to the br early enhancer. Consistent with its expression in follicle cells during midoogenesis, loss of br function results in a delayed entry into the endocycle. Our findings suggest an important role of br in the timing of follicle cell development, and its transcriptional regulation by the Notch pathway.
Collapse
|
21
|
Fauré A, Vreede BMI, Sucena É, Chaouiya C. A discrete model of Drosophila eggshell patterning reveals cell-autonomous and juxtacrine effects. PLoS Comput Biol 2014; 10:e1003527. [PMID: 24675973 PMCID: PMC3967936 DOI: 10.1371/journal.pcbi.1003527] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 01/22/2014] [Indexed: 11/19/2022] Open
Abstract
The Drosophila eggshell constitutes a remarkable system for the study of epithelial patterning, both experimentally and through computational modeling. Dorsal eggshell appendages arise from specific regions in the anterior follicular epithelium that covers the oocyte: two groups of cells expressing broad (roof cells) bordered by rhomboid expressing cells (floor cells). Despite the large number of genes known to participate in defining these domains and the important modeling efforts put into this developmental system, key patterning events still lack a proper mechanistic understanding and/or genetic basis, and the literature appears to conflict on some crucial points. We tackle these issues with an original, discrete framework that considers single-cell models that are integrated to construct epithelial models. We first build a phenomenological model that reproduces wild type follicular epithelial patterns, confirming EGF and BMP signaling input as sufficient to establish the major features of this patterning system within the anterior domain. Importantly, this simple model predicts an instructive juxtacrine signal linking the roof and floor domains. To explore this prediction, we define a mechanistic model that integrates the combined effects of cellular genetic networks, cell communication and network adjustment through developmental events. Moreover, we focus on the anterior competence region, and postulate that early BMP signaling participates with early EGF signaling in its specification. This model accurately simulates wild type pattern formation and is able to reproduce, with unprecedented level of precision and completeness, various published gain-of-function and loss-of-function experiments, including perturbations of the BMP pathway previously seen as conflicting results. The result is a coherent model built upon rules that may be generalized to other epithelia and developmental systems.
Collapse
Affiliation(s)
- Adrien Fauré
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Yamaguchi University, Faculty of Science, Yoshida, Yamaguchi City, Yamaguchi, Japan
| | | | - Élio Sucena
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Universidade de Lisboa, Faculdade de Ciências, Departamento de Biologia Animal, Campo Grande, Lisboa, Portugal
| | | |
Collapse
|
22
|
Niepielko MG, Marmion RA, Kim K, Luor D, Ray C, Yakoby N. Chorion patterning: a window into gene regulation and Drosophila species' relatedness. Mol Biol Evol 2013; 31:154-64. [PMID: 24109603 DOI: 10.1093/molbev/mst186] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Changes in gene regulation are associated with the evolution of morphologies. However, the specific sequence information controlling gene expression is largely unknown and discovery is time and labor consuming. We use the intricate patterning of follicle cells to probe species' relatedness in the absence of sequence information. We focus on one of the major families of genes that pattern the Drosophila eggshell, the Chorion protein (Cp). Systematically screening for the spatiotemporal patterning of all nine Cp genes in three species (Drosophila melanogaster, D. nebulosa, and D. willistoni), we found that most genes are expressed dynamically during mid and late stages of oogenesis. Applying an annotation code, we transformed the data into binary matrices that capture the complexity of gene expression. Gene patterning is sufficient to predict species' relatedness, consistent with their phylogeny. Surprisingly, we found that expression domains of most genes are different among species, suggesting that Cp regulation is rapidly evolving. In addition, we found a morphological novelty along the dorsalmost side of the eggshell, the dorsal ridge. Our matrix analysis placed the dorsal ridge domain in a cluster of epidermal growth factor receptor associated domains, which was validated through genetic and chemical perturbations. Expression domains are regulated cooperatively or independently by signaling pathways, supporting that complex patterns are combinatorially assembled from simple domains.
Collapse
Affiliation(s)
- Matthew G Niepielko
- Center for Computational and Integrative Biology, Rutgers, The State University of NJ
| | | | | | | | | | | |
Collapse
|
23
|
Soshnev AA, Baxley RM, Manak JR, Tan K, Geyer PK. The insulator protein Suppressor of Hairy-wing is an essential transcriptional repressor in the Drosophila ovary. Development 2013; 140:3613-23. [PMID: 23884443 DOI: 10.1242/dev.094953] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Suppressor of Hairy-wing [Su(Hw)] is a DNA-binding factor required for gypsy insulator function and female germline development in Drosophila. The insulator function of the gypsy retrotransposon depends on Su(Hw) binding to clustered Su(Hw) binding sites (SBSs) and recruitment of the insulator proteins Centrosomal Protein 190 kD (CP190) and Modifier of mdg4 67.2 kD (Mod67.2). By contrast, the Su(Hw) germline function involves binding to non-clustered SBSs and does not require CP190 or Mod67.2. Here, we identify Su(Hw) target genes, using genome-wide analyses in the ovary to uncover genes with an ovary-bound SBS that are misregulated upon Su(Hw) loss. Most Su(Hw) target genes demonstrate enriched expression in the wild-type CNS. Loss of Su(Hw) leads to increased expression of these CNS-enriched target genes in the ovary and other tissues, suggesting that Su(Hw) is a repressor of neural genes in non-neural tissues. Among the Su(Hw) target genes is RNA-binding protein 9 (Rbp9), a member of the ELAV/Hu gene family. Su(Hw) regulation of Rbp9 appears to be insulator independent, as Rbp9 expression is unchanged in a genetic background that compromises the functions of the CP190 and Mod67.2 insulator proteins, even though both localize to Rbp9 SBSs. Rbp9 misregulation is central to su(Hw)(-/-) sterility, as Rbp9(+/-), su(Hw)(-/-) females are fertile. Eggs produced by Rbp9(+/-), su(Hw)(-/-) females show patterning defects, revealing a somatic requirement for Su(Hw) in the ovary. Our studies demonstrate that Su(Hw) is a versatile transcriptional regulatory protein with an essential developmental function involving transcriptional repression.
Collapse
Affiliation(s)
- Alexey A Soshnev
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
24
|
Osterfield M, Du X, Schüpbach T, Wieschaus E, Shvartsman SY. Three-dimensional epithelial morphogenesis in the developing Drosophila egg. Dev Cell 2013; 24:400-10. [PMID: 23449472 DOI: 10.1016/j.devcel.2013.01.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 12/21/2012] [Accepted: 01/20/2013] [Indexed: 10/27/2022]
Abstract
Morphogenesis of the respiratory appendages on eggshells of Drosophila species provides a powerful experimental system for studying how cell sheets give rise to complex three-dimensional structures. In Drosophila melanogaster, each of the two tubular eggshell appendages is derived from a primordium comprising two distinct cell types. Using live imaging and three-dimensional image reconstruction, we demonstrate that the transformation of this two-dimensional primordium into a tube involves out-of-plane bending followed by a sequence of spatially ordered cell intercalations. These morphological transformations correlate with the appearance of complementary distributions of myosin and Bazooka in the primordium. These distributions suggest that a two-dimensional pattern of line tensions along cell-cell edges on the apical side of the epithelium is sufficient to produce the observed changes in morphology. Computational modeling shows that this mechanism could explain the main features of tissue deformation and cell rearrangements observed during three-dimensional morphogenesis.
Collapse
Affiliation(s)
- Miriam Osterfield
- Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
25
|
Following the 'tracks': Tramtrack69 regulates epithelial tube expansion in the Drosophila ovary through Paxillin, Dynamin, and the homeobox protein Mirror. Dev Biol 2013; 378:154-69. [PMID: 23545328 DOI: 10.1016/j.ydbio.2013.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/05/2013] [Accepted: 03/16/2013] [Indexed: 11/21/2022]
Abstract
Epithelial tubes are the infrastructure for organs and tissues, and tube morphogenesis requires precise orchestration of cell signaling, shape, migration, and adhesion. Follicle cells in the Drosophila ovary form a pair of epithelial tubes whose lumens act as molds for the eggshell respiratory filaments, or dorsal appendages (DAs). DA formation is a robust and accessible model for studying the patterning, formation, and expansion of epithelial tubes. Tramtrack69 (TTK69), a transcription factor that exhibits a variable embryonic DNA-binding preference, controls DA lumen volume and shape by promoting tube expansion; the tramtrack mutation twin peaks (ttk(twk)) reduces TTK69 levels late in oogenesis, inhibiting this expansion. Microarray analysis of wild-type and ttk(twk) ovaries, followed by in situ hybridization and RNAi of candidate genes, identified the Phospholipase B-like protein Lamina ancestor (LAMA), the scaffold protein Paxillin, the endocytotic regulator Shibire (Dynamin), and the homeodomain transcription factor Mirror, as TTK69 effectors of DA-tube expansion. These genes displayed enriched expression in DA-tube cells, except lama, which was expressed in all follicle cells. All four genes showed reduced expression in ttk(twk) mutants and exhibited RNAi phenotypes that were enhanced in a ttk(twk)/+ background, indicating ttk(twk) genetic interactions. Although previous studies show that Mirror patterns the follicular epithelium prior to DA tubulogenesis, we show that Mirror has an independent, novel role in tube expansion, involving positive regulation of Paxillin. Thus, characterization of ttk(twk)-differentially expressed genes expands the network of TTK69 effectors, identifies novel epithelial tube-expansion regulators, and significantly advances our understanding of this vital developmental process.
Collapse
|
26
|
Vreede BM, Lynch JA, Roth S, Sucena E. Co-option of a coordinate system defined by the EGFr and Dpp pathways in the evolution of a morphological novelty. EvoDevo 2013; 4:7. [PMID: 23448685 PMCID: PMC3621409 DOI: 10.1186/2041-9139-4-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/06/2012] [Indexed: 12/01/2022] Open
Abstract
Background Morphological innovation is an elusive and fascinating concept in evolutionary biology. A novel structure may open up an array of possibilities for adaptation, and thus is fundamental to the evolution of complex multicellular life. We use the respiratory appendages on the dorsal-anterior side of the Drosophila eggshell as a model system for morphological novelty. To study the co-option of genetic pathways in the evolution of this novelty we have compared oogenesis and eggshell patterning in Drosophila melanogaster with Ceratitis capitata, a dipteran whose eggs do not bear dorsal appendages. Results During the final stages of oogenesis, the appendages are formed by specific groups of cells in the follicular epithelium of the egg chamber. These cells are defined via signaling activity of the Dpp and EGFr pathways, and we find that both pathways are active in C. capitata oogenesis. The transcription factor gene mirror is expressed downstream of EGFr activation in a dorsolateral domain in the D. melanogaster egg chamber, but could not be detected during C. capitata oogenesis. In D. melanogaster, mirror regulates the expression of two important genes: broad, which defines the appendage primordia, and pipe, involved in embryonic dorsoventral polarity. In C. capitata, broad remains expressed ubiquitously throughout the follicular epithelium, and is not restricted to the appendage primordia. Interestingly pipe expression did not differ between the two species. Conclusions Our analysis identifies both broad and mirror as important nodes that have been redeployed in the Drosophila egg chamber patterning network in the evolution of a morphologically novel feature. Further, our results show how pre-existing signals can provide an epithelium with a spatial coordinate system, which can be co-opted for novel patterns.
Collapse
Affiliation(s)
- Barbara Mi Vreede
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, Portugal.
| | | | | | | |
Collapse
|
27
|
Marmion RA, Jevtic M, Springhorn A, Pyrowolakis G, Yakoby N. The Drosophila BMPRII, wishful thinking, is required for eggshell patterning. Dev Biol 2012; 375:45-53. [PMID: 23274688 DOI: 10.1016/j.ydbio.2012.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 10/13/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
The Drosophila eggshell is an elaborate structure that is derived from a monolayer of follicular epithelium surrounding the developing oocyte within the female ovary. The bone morphogenetic protein (BMP) signaling pathway is essential for controlling the patterning and morphogenesis of the eggshell. During oogenesis, the roles of patterning and morphogenesis by the BMP type I receptor thickveins (tkv) have been studied extensively. However, signaling through this pathway requires both type I and II receptors, and the latter has yet to be established in oogenesis. We focus on wishful thinking (wit), the Drosophila homolog to the mammalian BMP type II receptor, BMPRII. We found that wit is expressed dynamically in the FCs of D. melanogaster in an evolutionary conserved pattern. The expression patterns are highly correlated with the dynamics of the BMP signaling, which is consistent with our finding that wit is a target of BMP signaling. Furthermore, we established that WIT is necessary for BMP signaling, and loss of WIT is associated with cell autonomous loss of BMP responses. Of importance, we demonstrated that perturbations in WIT led to changes in eggshell morphologies in domains that are patterned by BMP signaling. Previous studies have shown a role for WIT in BMP signaling during neurogenesis; however, our results reveal a role for WIT in epithelial cells' development.
Collapse
Affiliation(s)
- Robert A Marmion
- Department of Biology and Center for Computational and Integrative Biology, Rutgers, The State University of NJ, Camden, NJ, USA
| | | | | | | | | |
Collapse
|
28
|
Niepielko MG, Ip K, Kanodia JS, Lun DS, Yakoby N. Evolution of BMP signaling in Drosophila oogenesis: a receptor-based mechanism. Biophys J 2012; 102:1722-30. [PMID: 22768927 DOI: 10.1016/j.bpj.2012.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 03/06/2012] [Accepted: 03/12/2012] [Indexed: 01/22/2023] Open
Abstract
The bone morphogenetic protein (BMP) signaling pathway is a conserved regulator of cellular and developmental processes in animals. The mechanisms underlying BMP signaling activation differ among tissues and mostly reflect changes in the expression of pathway components. BMP signaling is one of the major pathways responsible for the patterning of the Drosophila eggshell, a complex structure derived from a layer of follicle cells (FCs) surrounding the developing oocyte. Activation of BMP signaling in the FCs is dynamic. Initially, signaling is along the anterior-posterior (A/P) axis; later, signaling acquires dorsal-ventral (D/V) polarity. These dynamics are regulated by changes in the expression pattern of the type I BMP receptor thickveins (tkv). We recently found that signaling dynamics and TKV patterning are highly correlated in the FCs of multiple Drosophila species. In addition, we showed that signaling patterns are spatially different among species. Here, we use a mathematical model to simulate the dynamics and differences of BMP signaling in numerous species. This model predicts that qualitative and quantitative changes in receptor expression can lead to differences in the spatial pattern of BMP signaling. We tested these predications experimentally in three different Drosophila species and through genetic perturbations of BMP signaling in D. melanogaster. On the basis of our results, we concluded that changes in tkv patterning can account for the experimentally observed differences in the patterns of BMP signaling in multiple Drosophila species.
Collapse
|
29
|
Simakov DSA, Cheung LS, Pismen LM, Shvartsman SY. EGFR-dependent network interactions that pattern Drosophila eggshell appendages. Development 2012; 139:2814-20. [PMID: 22782725 DOI: 10.1242/dev.077669] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Similar to other organisms, Drosophila uses its Epidermal Growth Factor Receptor (EGFR) multiple times throughout development. One crucial EGFR-dependent event is patterning of the follicular epithelium during oogenesis. In addition to providing inductive cues necessary for body axes specification, patterning of the follicle cells initiates the formation of two respiratory eggshell appendages. Each appendage is derived from a primordium comprising a patch of cells expressing broad (br) and an adjacent stripe of cells expressing rhomboid (rho). Several mechanisms of eggshell patterning have been proposed in the past, but none of them can explain the highly coordinated expression of br and rho. To address some of the outstanding issues in this system, we synthesized the existing information into a revised mathematical model of follicle cell patterning. Based on the computational model analysis, we propose that dorsal appendage primordia are established by sequential action of feed-forward loops and juxtacrine signals activated by the gradient of EGFR signaling. The model describes pattern formation in a large number of mutants and points to several unanswered questions related to the dynamic interaction of the EGFR and Notch pathways.
Collapse
Affiliation(s)
- David S A Simakov
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Israel
| | | | | | | |
Collapse
|
30
|
Abstract
The development of multicellular organisms relies on a small set of construction techniques-assembly, sculpting, and folding-that are spatially and temporally regulated in a combinatorial manner to produce the diversity of tissues within the body. These basic processes are well conserved across tissue types and species at the level of both genes and mechanisms. Here we review the signaling, patterning, and biomechanical transformations that occur in two well-studied model systems of epithelial folding to illustrate both the complexity and modularity of tissue development. In particular, we discuss the possibility of a spatial code specifying morphogenesis. To decipher this code, engineers and scientists need to establish quantitative experimental systems and to develop models that address mechanisms at multiple levels of organization, from gene sequence to tissue biomechanics. In turn, quantitative models of embryogenesis can inspire novel methods for creating synthetic organs and treating degenerative tissue diseases.
Collapse
Affiliation(s)
- Jeremiah J Zartman
- Department of Chemical Engineering, Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544, USA.
| | | |
Collapse
|
31
|
Omelina ES, Baricheva EM. Main components of gene network controlling development of dorsal appendages of egg chorion in Drosophila melanogaster. Russ J Dev Biol 2012. [DOI: 10.1134/s106236041203006x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Niepielko MG, Hernáiz-Hernández Y, Yakoby N. BMP signaling dynamics in the follicle cells of multiple Drosophila species. Dev Biol 2011; 354:151-9. [PMID: 21402065 DOI: 10.1016/j.ydbio.2011.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 02/13/2011] [Accepted: 03/04/2011] [Indexed: 11/18/2022]
Abstract
The dorsal anterior region of the follicle cells (FCs) in the developing Drosophila egg gives rise to the respiratory eggshell appendages. These tubular structures display a wide range of qualitative and quantitative variations across Drosophila species, providing a remarkable example of a rapidly evolving morphology. In D. melanogaster, the bone morphogenetic protein (BMP) signaling pathway is an important regulator of FCs patterning and dorsal appendages morphology. To explore the mechanisms underlying the diversification of eggshell patterning, we analyzed BMP signaling in the FCs of 16 Drosophila species that span 45 million years of evolution. We found that the spatial patterns of BMP signaling in the FCs are dynamic and exhibit a range of interspecies' variations. In most of the species examined, the dynamics of BMP signaling correlate with the expression of the type I BMP receptor thickveins (tkv). This correlation suggests that interspecies' variations of tkv expression are responsible for the diversification of BMP signaling during oogenesis. This model was supported by genetic manipulations of tkv expression in the FCs of D. melanogaster that successfully recapitulated the signaling diversities found in the other species. Our results suggest that regulation of receptor expression mediates spatial diversification of BMP signaling in Drosophila oogenesis, and they provide insight into a mechanism underlying the evolution of eggshell patterning.
Collapse
Affiliation(s)
- Matthew G Niepielko
- Biology Department and Center for Computational and Integrative Biology, Science Building, 315 Penn Street, Rutgers, The State University of New Jersey, Camden, NJ 08102, USA
| | | | | |
Collapse
|
33
|
Boyle MJ, French RL, Cosand KA, Dorman JB, Kiehart DP, Berg CA. Division of labor: subsets of dorsal-appendage-forming cells control the shape of the entire tube. Dev Biol 2010; 346:68-79. [PMID: 20659448 DOI: 10.1016/j.ydbio.2010.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 06/30/2010] [Accepted: 07/16/2010] [Indexed: 11/19/2022]
Abstract
The function of an organ relies on its form, which in turn depends on the individual shapes of the cells that create it and the interactions between them. Despite remarkable progress in the field of developmental biology, how cells collaborate to make a tissue remains an unsolved mystery. To investigate the mechanisms that determine organ structure, we are studying the cells that form the dorsal appendages (DAs) of the Drosophila melanogaster eggshell. These cells consist of two differentially patterned subtypes: roof cells, which form the outward-facing roof of the lumen, and floor cells, which dive underneath the roof cells to seal off the floor of the tube. In this paper, we present three lines of evidence that reveal a further stratification of the DA-forming epithelium. Laser ablation of only a few cells in the anterior of the region causes a disproportionately severe shortening of the appendage. Genetic alteration through the twin peaks allele of tramtrack69 (ttk(twk)), a female-sterile mutation that leads to severely shortened DAs, causes no such shortening when removed from a majority of the DA-forming cells, but rather, produces short appendages only when removed from cells in the very anterior of the tube-forming tissue. Additionally we show that heterotrimeric G-protein function is required for DA morphogenesis. Like TTK69, Gbeta 13F is not required in all DA-forming follicle cells but only in the floor and leading roof cells. The different phenotypes that result from removal of Gbeta 13F from each region demonstrate a striking division of function between different DA-forming cells. Gbeta mutant floor cells are unable to control the width of the appendage while Gbeta mutant leading roof cells fail to direct the elongation of the appendage and the convergent-extension of the roof-cell population.
Collapse
Affiliation(s)
- Michael J Boyle
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA
| | | | | | | | | | | |
Collapse
|
34
|
Boyle MJ, Berg CA. Control in time and space: Tramtrack69 cooperates with Notch and Ecdysone to repress ectopic fate and shape changes during Drosophila egg chamber maturation. Development 2010; 136:4187-97. [PMID: 19934014 DOI: 10.1242/dev.042770] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Organ morphogenesis requires cooperation between cells, which determine their course of action based upon location within a tissue. Just as important, cells must synchronize their activities, which requires awareness of developmental time. To understand how cells coordinate behaviors in time and space, we analyzed Drosophila egg chamber development. We found that the transcription factor Tramtrack69 (TTK69) controls the fates and shapes of all columnar follicle cells by integrating temporal and spatial information, restricting characteristic changes in morphology and expression that occur at stage 10B to appropriate domains. TTK69 is required again later in oogenesis: it controls the volume of the dorsal-appendage (DA) tubes by promoting apical re-expansion and lateral shortening of DA-forming follicle cells. We show that TTK69 and Notch compete to repress each other's expression and that a local Ecdysone signal is required to shift the balance in favor of TTK69. We hypothesize that TTK69 then cooperates with spatially restricted co-factors to define appropriate responses to a globally available (but as yet unidentified) temporal signal that initiates the S10B transformations.
Collapse
Affiliation(s)
- Michael J Boyle
- Molecular and Cellular Biology Program, University of Washington, Box 355065, Seattle, WA 98195-5065, USA
| | | |
Collapse
|
35
|
Spokony RF, Restifo LL. Broad Complex isoforms have unique distributions during central nervous system metamorphosis in Drosophila melanogaster. J Comp Neurol 2009; 517:15-36. [PMID: 19711379 DOI: 10.1002/cne.22119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Broad Complex (BRC) is a highly conserved, ecdysone-pathway gene essential for metamorphosis in Drosophila melanogaster, and possibly all holometabolous insects. Alternative splicing among duplicated exons produces several BRC isoforms, each with one zinc-finger DNA-binding domain (Z1, Z2, Z3, or Z4), highly expressed at the onset of metamorphosis. BRC-Z1, BRC-Z2, and BRC-Z3 represent distinct genetic functions (BRC complementation groups rbp, br, and 2Bc, respectively) and are required at discrete stages spanning final-instar larva through very young pupa. We showed previously that morphogenetic movements necessary for adult CNS maturation require BRC-Z1, -Z2, and -Z3, but not at the same time: BRC-Z1 is required in the mid-prepupa, BRC-Z2 and -Z3 are required earlier, at the larval-prepupal transition. To explore how BRC isoforms controlling the same morphogenesis events do so at different times, we examined their central nervous system (CNS) expression patterns during the approximately 16 hours bracketing the hormone-regulated start of metamorphosis. Each isoform had a unique pattern, with BRC-Z3 being the most distinctive. There was some colocalization of isoform pairs, but no three-way overlap of BRC-Z1, -Z2, and -Z3. Instead, their most prominent expression was in glia (BRC-Z1), neuroblasts (BRC-Z2), or neurons (BRC-Z3). Despite sequence similarity to BRC-Z1, BRC-Z4 was expressed in a unique subset of neurons. These data suggest a switch in BRC isoform choice, from BRC-Z2 in proliferating cells to BRC-Z1, BRC-Z3, or BRC-Z4 in differentiating cells. Together with isoform-selective temporal requirements and phenotype considerations, this cell-type-selective expression suggests a model of BRC-dependent CNS morphogenesis resulting from intercellular interactions, culminating in BRC-Z1-controlled, glia-mediated CNS movements in late prepupa.
Collapse
Affiliation(s)
- Rebecca F Spokony
- Graduate Interdisciplinary Program in Insect Science, University of Arizona, Tucson, Arizona 85721-0108, USA.
| | | |
Collapse
|
36
|
Zartman JJ, Kanodia JS, Cheung LS, Shvartsman SY. Feedback control of the EGFR signaling gradient: superposition of domain-splitting events in Drosophila oogenesis. Development 2009; 136:2903-11. [PMID: 19641013 DOI: 10.1242/dev.039545] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The morphogenesis of structures with repeated functional units, such as body segments and appendages, depends on multi-domain patterns of cell signaling and gene expression. We demonstrate that during Drosophila oogenesis, the two-domain expression pattern of Broad, a transcription factor essential for the formation of the two respiratory eggshell appendages, is established by a single gradient of EGFR activation that induces both Broad and Pointed, which mediates repression of Broad. Two negative-feedback loops provided by the intracellular inhibitors of EGFR signaling, Kekkon-1 and Sprouty, control the number and position of Broad-expressing cells and in this way influence eggshell morphology. Later in oogenesis, the gradient of EGFR activation is split into two smaller domains in a process that depends on Argos, a secreted antagonist of EGFR signaling. In contrast to the previously proposed model of eggshell patterning, we show that the two-domain pattern of EGFR signaling is not essential for specifying the number of appendages. Thus, the processes that define the two-domain patterns of Broad and EGFR activation are distinct; their actions are separated in time and have different effects on eggshell morphology.
Collapse
Affiliation(s)
- Jeremiah J Zartman
- Lewis Sigler Institute and Department of Chemical Engineering, Carl Icahn Laboratory, Washington Road, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
37
|
Abstract
The reorganization of epithelial sheets into tubes is a fundamental process in the formation of many organs, such as the lungs, kidneys, gut, and neural tube. This process involves the patterning of distinct cell types and the coordination of those cells during the shape changes and rearrangements that produce the tube. A better understanding of the cellular and genetic mechanisms that regulate tube formation is necessary for tissue engineers to develop functional organs in vitro. The Drosophila egg chamber has emerged as an outstanding model for studying tubulogenesis. Synthesis of the dorsal respiratory appendages by the follicular epithelium resembles primary neurulation in vertebrates. This review summarizes work on the patterning and morphogenesis of the dorsal-appendage tubes and highlights key areas where mathematical modeling could contribute to our understanding of these processes.
Collapse
Affiliation(s)
- Celeste A Berg
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195-5065, USA.
| |
Collapse
|
38
|
Dinkins MB, Fratto VM, LeMosy EK. Integrin alpha chains exhibit distinct temporal and spatial localization patterns in epithelial cells of the Drosophila ovary. Dev Dyn 2008; 237:3927-39. [PMID: 19035354 PMCID: PMC2688772 DOI: 10.1002/dvdy.21802] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Integrins are heterodimeric transmembrane receptors that modulate cell adhesion, migration, and signaling. Multiple integrin chains contribute to development and morphogenesis of a given tissue. Here, we analyze the expression of Drosophila integrin alpha chains in the ovarian follicular epithelium, a model for tissue morphogenesis and cell migration. We find expression throughout development of the beta chain, betaPS. Alpha chains, however, exhibit both spatial and temporal expression differences. alphaPS1 and alphaPS2 integrins are detected during early and mid-oogenesis on apical, lateral, and basal membranes with the betaPS chain, whereas alphaPS3-family integrins (alphaPS3, alphaPS4, alphaPS5) are expressed in anterior cells late in oogenesis. Surprisingly, we find that alphaPS3-family integrins are dispensable for dorsal appendage morphogenesis but play a role in the final length of the egg, suggesting redundant functions of integrins in a simple tissue. We also demonstrate roles for alphaPS3betaPS integrin in border cell migration and in stretch cells.
Collapse
Affiliation(s)
- Michael B. Dinkins
- Department of Cellular Biology and Anatomy, Medical College of Georgia, 1120 15 St., CB1101, Augusta, GA 30912
| | - Victoria M. Fratto
- Department of Cellular Biology and Anatomy, Medical College of Georgia, 1120 15 St., CB1101, Augusta, GA 30912
| | - Ellen K. LeMosy
- Department of Cellular Biology and Anatomy, Medical College of Georgia, 1120 15 St., CB1101, Augusta, GA 30912
| |
Collapse
|
39
|
Yakoby N, Bristow CA, Gong D, Schafer X, Lembong J, Zartman JJ, Halfon MS, Schüpbach T, Shvartsman SY. A combinatorial code for pattern formation in Drosophila oogenesis. Dev Cell 2008; 15:725-37. [PMID: 19000837 PMCID: PMC2822874 DOI: 10.1016/j.devcel.2008.09.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 08/27/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
Abstract
Two-dimensional patterning of the follicular epithelium in Drosophila oogenesis is required for the formation of three-dimensional eggshell structures. Our analysis of a large number of published gene expression patterns in the follicle cells suggests that they follow a simple combinatorial code based on six spatial building blocks and the operations of union, difference, intersection, and addition. The building blocks are related to the distribution of inductive signals, provided by the highly conserved epidermal growth factor receptor and bone morphogenetic protein signaling pathways. We demonstrate the validity of the code by testing it against a set of patterns obtained in a large-scale transcriptional profiling experiment. Using the proposed code, we distinguish 36 distinct patterns for 81 genes expressed in the follicular epithelium and characterize their joint dynamics over four stages of oogenesis. The proposed combinatorial framework allows systematic analysis of the diversity and dynamics of two-dimensional transcriptional patterns and guides future studies of gene regulation.
Collapse
Affiliation(s)
- Nir Yakoby
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zartman JJ, Yakoby N, Bristow CA, Zhou X, Schlichting K, Dahmann C, Shvartsman SY. Cad74A is regulated by BR and is required for robust dorsal appendage formation in Drosophila oogenesis. Dev Biol 2008; 322:289-301. [PMID: 18708045 PMCID: PMC2808026 DOI: 10.1016/j.ydbio.2008.07.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 07/17/2008] [Accepted: 07/18/2008] [Indexed: 11/27/2022]
Abstract
Drosophila egg development is an established model for studying epithelial patterning and morphogenesis, but the connection between signaling pathways and egg morphology is still incompletely understood. We have identified a non-classical cadherin, Cad74A, as a putative adhesion gene that bridges epithelial patterning and morphogenesis in the follicle cells. Starting in mid-oogenesis, Cad74A is expressed in the follicle cells that contact the oocyte, including the border cells and most of the columnar follicle cells. However, Cad74A is repressed in two dorsolateral patches of follicle cells, which participate in the formation of tubular respiratory appendages. We show genetically that Cad74A is downstream of the EGFR and BMP signaling pathways and is repressed by the Zn-finger transcription factor Broad. The correlation of Cad74A repression in the cells that bend out of the plane of the follicular epithelium is preserved across Drosophila species and mutant backgrounds exhibiting a range of eggshell phenotypes. Complete removal of Cad74A from the follicle cells causes defects in dorsal appendage formation. Ectopic expression of Cad74A in the roof cells results in shortened, flattened appendages due to the hindered migration of the roof cells. Based on these results, we propose that Cad74A is part of the adhesive machinery that enables robust dorsal appendage formation, and as such provides a link between the patterning of the follicle cells and eggshell morphogenesis.
Collapse
Affiliation(s)
- Jeremiah J Zartman
- Lewis Sigler Institute and Department of Chemical Engineering, Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Zartman JJ, Kanodia JS, Yakoby N, Schafer X, Watson C, Schlichting K, Dahmann C, Shvartsman SY. Expression patterns of cadherin genes in Drosophila oogenesis. Gene Expr Patterns 2008; 9:31-6. [PMID: 18817893 DOI: 10.1016/j.gep.2008.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 08/28/2008] [Accepted: 09/03/2008] [Indexed: 01/31/2023]
Abstract
In Drosophila oogenesis, the follicular epithelium that envelops the oocyte is patterned by a small set of inductive signals and gives rise to an elaborate three-dimensional eggshell. Several eggshell structures provide sensitive readouts of the patterning signals, but the formation of these structures is still poorly understood. In other systems, epithelial morphogenesis is guided by the spatial patterning of cell adhesion and cytoskeleton genes. As a step towards developing a comprehensive description of patterning events leading to eggshell morphogenesis, we report the expression of Drosophila cadherins, calcium-dependent adhesion molecules that are repeatedly used throughout development. We found that 9/17 of Drosophila cadherins are expressed in the follicular epithelium in dynamic patterns during oogenesis. In late oogenesis, the expression patterns of cadherin genes in the main body follicle cells is summarized using a compact set of simple geometric shapes, reflecting the integration of the EGFR and DPP inductive signals. The multi-layered composite patterning of the cadherins is hypothesized to play a key role in the formation of the eggshell. Of particular note is the complex patterning of the region of the follicular epithelium that gives rise to the dorsal appendages, which are tubular structures that serve as respiratory organs for the developing embryo.
Collapse
Affiliation(s)
- Jeremiah J Zartman
- Lewis Sigler Institute, Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Dansereau DA, Lasko P. RanBPM regulates cell shape, arrangement, and capacity of the female germline stem cell niche in Drosophila melanogaster. ACTA ACUST UNITED AC 2008; 182:963-77. [PMID: 18762575 PMCID: PMC2528568 DOI: 10.1083/jcb.200711046] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Experiments in cultured cells with Ran-binding protein M (RanBPM) suggest that it links cell surface receptors and cell adhesion proteins. In this study, we undertake a genetic study of RanBPM function in the germline stem cell (GSC) niche of Drosophila melanogaster ovaries. We find that two RanBPM isoforms are produced from alternatively spliced transcripts, the longer of which is specifically enriched in the GSC niche, a cluster of somatic cells that physically anchors GSCs and expresses signals that maintain GSC fate. Loss of the long isoform from the niche causes defects in niche organization and cell size and increases the number of GSCs attached to the niche. In genetic mosaics for a null RanBPM allele, we find a strong bias for GSC attachment to mutant cap cells and observe abnormal accumulation of the adherens junction component Armadillo (beta-catenin) and the membrane skeletal protein Hu-li tai shao in mutant terminal filament cells. These results implicate RanBPM in the regulation of niche capacity and adhesion.
Collapse
|
43
|
Wu X, Tanwar PS, Raftery LA. Drosophila follicle cells: morphogenesis in an eggshell. Semin Cell Dev Biol 2008; 19:271-82. [PMID: 18304845 PMCID: PMC2430523 DOI: 10.1016/j.semcdb.2008.01.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 01/16/2008] [Indexed: 01/15/2023]
Abstract
Epithelial morphogenesis is important for organogenesis and pivotal for carcinogenesis, but mechanisms that control it are poorly understood. The Drosophila follicular epithelium is a genetically tractable model to understand these mechanisms in vivo. This epithelium of follicle cells encases germline cells to create an egg. In this review, we summarize progress toward understanding mechanisms that maintain the epithelium or permit migrations essential for oogenesis. Cell-cell communication is important, but the same signals are used repeatedly to control distinct events. Understanding intrinsic mechanisms that alter responses to developmental signals will be important to understand regulation of cell shape and organization.
Collapse
Affiliation(s)
| | | | - Laurel A. Raftery
- Cutaneous Biology Research Center, Massachusetts General Hospital/ Harvard Medical School, Charlestown, MA 02129 USA
| |
Collapse
|
44
|
Shravage BV, Altmann G, Technau M, Roth S. The role of Dpp and its inhibitors during eggshell patterning in Drosophila. Development 2007; 134:2261-71. [PMID: 17507396 DOI: 10.1242/dev.02856] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila eggshell is patterned by the combined action of the epidermal growth factor [EGF; Gurken (Grk)] and transforming growth factor beta [TGF-beta; Decapentaplegic (Dpp)] signaling cascades. Although Grk signaling alone can induce asymmetric gene expression within the follicular epithelium, here we show that the ability of Grk to induce dorsoventral polarity within the eggshell strictly depends on Dpp. Dpp, however, specifies at least one anterior region of the eggshell in the absence of Grk. Dpp forms an anteriorposterior morphogen gradient within the follicular epithelium and synergizes with the dorsoventral gradient of Grk signaling. High levels of Grk and Dpp signaling induce the operculum, whereas lower levels of both pathways induce the dorsal appendages. We provide evidence that the crosstalk between both pathways occurs at least at two levels. First, Dpp appears to directly enhance the levels of EGF pathway activity within the follicular epithelium. Second, Dpp and EGF signaling collaborate in controlling the expression of Dpp inhibitors. One of these inhibitors is Drosophila sno (dSno), a homolog of the Ski/Sno family of vertebrate proto-oncogenes, which synergizes with daughters against dpp and brinker to set the posterior and lateral limits of the region, giving rise to dorsal follicle cells.
Collapse
Affiliation(s)
- Bhupendra V Shravage
- Institute of Developmental Biology, University of Cologne, Gyrhofstr.17, D-50931, Germany
| | | | | | | |
Collapse
|
45
|
Levine B, Jean-Francois M, Bernardi F, Gargiulo G, Dobens L. Notch signaling links interactions between the C/EBP homolog slow border cells and the GILZ homolog bunched during cell migration. Dev Biol 2007; 305:217-31. [PMID: 17383627 DOI: 10.1016/j.ydbio.2007.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 01/11/2007] [Accepted: 02/09/2007] [Indexed: 10/23/2022]
Abstract
In the follicle cell (FC) epithelium that surrounds the Drosophila egg, a complex set of cell signals specifies two cell fates that pattern the eggshell: the anterior centripetal FC that produce the operculum and the posterior columnar FC that produce the main body eggshell structure. We have previously shown that the long-range morphogen DPP represses the expression of the bunched (bun) gene in the anterior-most centripetal FC. bun, which encodes a homolog of vertebrate TSC-22/GILZ, in turn represses anterior gene expression and antagonizes Notch signaling to restrict centripetal FC fates in posterior cells. From a screen for novel targets of bun repression we have identified the C/EBP homolog slow border cells (slbo). At stage 10A, slbo expression overlaps bun in anterior FC; by stage 10B they repress each other's expression to establish a sharp slbo/bun expression boundary. The precise position of the slbo/bun expression boundary is sensitive to Notch signaling, which is required for both slbo activation and bun repression. As centripetal migration proceeds from stages 10B-14, slbo represses its own expression and both slbo loss-of-function mutations and overexpression approaches reveal that slbo is required to coordinate centripetal migration with nurse cell dumping. We propose that in anterior FC exposed to a Dpp morphogen gradient, high and low levels of slbo and bun, respectively, are established by modulation of Notch signaling to direct threshold cell fates. Interactions among Notch, slbo and bun resemble a conserved signaling cassette that regulates mammalian adipocyte differentiation.
Collapse
Affiliation(s)
- Benjamin Levine
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | | | | | | | | |
Collapse
|
46
|
Nakamura Y, Kagesawa T, Nishikawa M, Hayashi Y, Kobayashi S, Niimi T, Matsuno K. Soma-dependent modulations contribute to divergence ofrhomboidexpression during evolution ofDrosophilaeggshell morphology. Development 2007; 134:1529-37. [PMID: 17360774 DOI: 10.1242/dev.001578] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Patterning of the respiratory dorsal appendages (DAs) on the Drosophila melanogaster eggshell is tightly regulated by epidermal growth factor receptor (EGFR) signaling. Variation in the DA number is observed among Drosophila species; D. melanogaster has two DAs and D. virilis has four. Diversification in the expression pattern of rhomboid (rho), which activates EGFR signaling in somatic follicle cells, could cause the evolutionary divergence of DA numbers. Here we identified a cis-regulatory element of D. virilis rho. A comparison with D. melanogaster rho enhancer and activity studies in homologous and heterologous species suggested that these rho enhancers did not functionally diverge significantly during the evolution of these species. Experiments using chimeric eggs composed of a D. virilis oocyte and D. melanogaster follicle cells showed the evolution of DA number was not attributable to germline Gurken (Grk) signaling, but to divergence in events downstream of Grk signaling affecting the rho enhancer activity in somatic follicle cells. We found that a transcription factor,Mirror, which activates rho, could be one of these downstream factors. Thus, evolution of the trans-regulatory environment that controls rho expression in somatic follicle cells could be a major contributor to the evolutionary changes in DA number.
Collapse
Affiliation(s)
- Yukio Nakamura
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Wahlström G, Norokorpi HL, Heino TI. Drosophila alpha-actinin in ovarian follicle cells is regulated by EGFR and Dpp signalling and required for cytoskeletal remodelling. Mech Dev 2006; 123:801-18. [PMID: 17008069 DOI: 10.1016/j.mod.2006.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 08/04/2006] [Accepted: 08/16/2006] [Indexed: 01/09/2023]
Abstract
alpha-Actinin is an evolutionarily conserved actin filament crosslinking protein with functions in both muscle and non-muscle cells. In non-muscle cells, interactions between alpha-actinin and its many binding partners regulate cell adhesion and motility. In Drosophila, one non-muscle and two muscle-specific alpha-actinin isoforms are produced by alternative splicing of a single gene. In wild-type ovaries, alpha-actinin is ubiquitously expressed. The non-muscle alpha-actinin mutant Actn(Delta233), which is viable and fertile, lacks alpha-actinin expression in ovarian germline cells, while somatic follicle cells express alpha-actinin at late oogenesis. Here we show that this latter population of alpha-actinin, termed FC-alpha-actinin, is absent from the dorsoanterior follicle cells, and we present evidence that this is the result of a negative regulation by combined Epidermal growth factor receptor (EGFR) and Decapentaplegic signalling. Furthermore, EGFR signalling increased the F-actin bundling activity of ectopically expressed muscle-specific alpha-actinin. We also describe a novel morphogenetic event in the follicle cells that occurs during egg elongation. This event involves a transient repolarisation of the basal actin fibres and the assembly of a posterior beta-integrin-dependent adhesion site accumulating alpha-actinin and Enabled. Clonal analysis using Actn null alleles demonstrated that although alpha-actinin was not necessary for actin fibre formation or maintenance, the cytoskeletal remodelling was perturbed, and Enabled did not localise in the posterior adhesion site. Nevertheless, epithelial morphogenesis proceeded normally. This work provides the first evidence that alpha-actinin is involved in the organisation of the cytoskeleton in a non-muscle tissue in Drosophila.
Collapse
Affiliation(s)
- Gudrun Wahlström
- Developmental Biology Programme/Institute of Biotechnology, Viikki Biocenter, P.O. Box 56 (Viikinkaari 9), FIN-00014, University of Helsinki, Finland.
| | | | | |
Collapse
|
48
|
Laplante C, Nilson LA. Differential expression of the adhesion molecule Echinoid drives epithelial morphogenesis in Drosophila. Development 2006; 133:3255-64. [PMID: 16854971 DOI: 10.1242/dev.02492] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Epithelial morphogenesis requires cell movements and cell shape changes coordinated by modulation of the actin cytoskeleton. We identify a role for Echinoid (Ed), an immunoglobulin domain-containing cell-adhesion molecule, in the generation of a contractile actomyosin cable required for epithelial morphogenesis in both the Drosophila ovarian follicular epithelium and embryo. Analysis of ed mutant follicle cell clones indicates that the juxtaposition of wild-type and ed mutant cells is sufficient to trigger actomyosin cable formation. Moreover, in wild-type ovaries and embryos, specific epithelial domains lack detectable Ed, thus creating endogenous interfaces between cells with and without Ed; these interfaces display the same contractile characteristics as the ectopic Ed expression borders generated by ed mutant clones. In the ovary, such an interface lies between the two cell types of the dorsal appendage primordia. In the embryo, Ed is absent from the amnioserosa during dorsal closure, generating an Ed expression border with the lateral epidermis that coincides with the actomyosin cable present at this interface. In both cases, ed mutant epithelia exhibit loss of this contractile structure and subsequent defects in morphogenesis. We propose that local modulation of the cytoskeleton at Ed expression borders may represent a general mechanism for promoting epithelial morphogenesis.
Collapse
Affiliation(s)
- Caroline Laplante
- Department of Biology, McGill University, 1205 Doctor Penfield Avenue, Montréal, QC H3A 1B1, Canada
| | | |
Collapse
|
49
|
Ward EJ, Zhou X, Riddiford LM, Berg CA, Ruohola-Baker H. Border of Notch activity establishes a boundary between the two dorsal appendage tube cell types. Dev Biol 2006; 297:461-70. [PMID: 16828735 DOI: 10.1016/j.ydbio.2006.05.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 05/18/2006] [Accepted: 05/19/2006] [Indexed: 01/02/2023]
Abstract
Boundaries establish and maintain separate populations of cells critical for organ formation. We show that Notch signaling establishes the boundary between two types of post-mitotic epithelial cells, the Rhomboid- and the Broad-positive cells. These cells will undergo morphogenetic movements to generate the two sides of a simple organ, the dorsal appendage tube of the Drosophila egg chamber. The boundary forms due to a difference in Notch levels in adjacent cells. The Notch expression pattern mimics the boundary; Notch levels are high in Rhomboid cells and low in Broad cells. Notch(-) mutant clones generate an ectopic boundary: ectopic Rhomboid cells arise in Notch(+) cells adjacent to the Notch(-) mutant cells but not further away from the clonal border. Pangolin, a component of the Wingless pathway, is required for Broad expression and for rhomboid repression. We further show that Broad represses rhomboid cell autonomously. Our data provide a foundation for understanding how a single row of Rhomboid cells arises adjacent to the Broad cells in the dorsal appendage primordia. Generating a boundary by the Notch pathway might constitute an evolutionarily conserved first step during organ formation in many tissues.
Collapse
Affiliation(s)
- Ellen J Ward
- Department of Biochemistry, University of Washington, Box 357350, Seattle, WA 98195-7350, USA
| | | | | | | | | |
Collapse
|
50
|
Chen Y, Schüpbach T. The role of brinker in eggshell patterning. Mech Dev 2006; 123:395-406. [PMID: 16707253 DOI: 10.1016/j.mod.2006.03.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 03/10/2006] [Accepted: 03/13/2006] [Indexed: 11/22/2022]
Abstract
Drosophila oogenesis provides a useful system to study signal transduction pathways and their interactions. Through clonal analysis, we found that brinker (brk), a repressor of Dpp signaling, plays an important role in the Drosophila ovary, where its function is essential for dorsal appendage formation. In the absence of brk, operculum fates are specified at the expense of dorsal appendage fates. Brk is expressed by most of the oocyte associated follicle cells, starting from stage 8 of oogenesis. Transforming Growth Factor beta (TGFbeta) signaling represses brk expression in both the early stage egg chambers and in the anterior follicle cells. In brk mutant follicle cell clones at the dorsal anterior region, Broad Complex (BR-C) expression is down-regulated in a larger domain than in wild type. We show that BR-C is required for dorsal appendage development. In large anterior BR-C mutant clones, dorsal appendages are absent, and instead, the eggshell has an enlarged operculum like region at the anterior. In addition, we show that the Epidermal Growth Factor (EGF) receptor signaling represses the TGFbeta signaling in oogenesis by up-regulating brk expression. From our results and previously published data, it appears that anterior follicle cells integrate the levels of EGF receptor activation and TGFbeta receptor activation. Operculum fate results when the sum of the level of activation of both pathways reaches a threshold level, and reduction of activity of one pathway can be compensated to some extent by increase in the other pathway.
Collapse
Affiliation(s)
- Yu Chen
- Department of Molecular Biology, Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|