1
|
Hughes SE, Hemenway E, Guo F, Yi K, Yu Z, Hawley RS. The E3 ubiquitin ligase Sina regulates the assembly and disassembly of the synaptonemal complex in Drosophila females. PLoS Genet 2019; 15:e1008161. [PMID: 31107865 PMCID: PMC6544331 DOI: 10.1371/journal.pgen.1008161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/31/2019] [Accepted: 04/26/2019] [Indexed: 01/04/2023] Open
Abstract
During early meiotic prophase, homologous chromosomes are connected along their entire lengths by a proteinaceous tripartite structure known as the synaptonemal complex (SC). Although the components that comprise the SC are predominantly studied in this canonical ribbon-like structure, they can also polymerize into repeated structures known as polycomplexes. We find that in Drosophila oocytes, the ability of SC components to assemble into canonical tripartite SC requires the E3 ubiquitin ligase Seven in absentia (Sina). In sina mutant oocytes, SC components assemble into large rod-like polycomplexes instead of proper SC. Thus, the wild-type Sina protein inhibits the polymerization of SC components, including those of the lateral element, into polycomplexes. These polycomplexes persist into meiotic stages when canonical SC has been disassembled, indicating that Sina also plays a role in controlling SC disassembly. Polycomplexes induced by loss-of-function sina mutations associate with centromeres, sites of double-strand breaks, and cohesins. Perhaps as a consequence of these associations, centromere clustering is defective and crossing over is reduced. These results suggest that while features of the polycomplexes can be recognized as SC by other components of the meiotic nucleus, polycomplexes nonetheless fail to execute core functions of canonical SC.
Collapse
Affiliation(s)
- Stacie E. Hughes
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Elizabeth Hemenway
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
2
|
Ketosugbo KF, Bushnell HL, Johnson RI. A screen for E3 ubiquitination ligases that genetically interact with the adaptor protein Cindr during Drosophila eye patterning. PLoS One 2017; 12:e0187571. [PMID: 29117266 PMCID: PMC5678704 DOI: 10.1371/journal.pone.0187571] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023] Open
Abstract
Ubiquitination is a crucial post-translational modification that can target proteins for degradation. The E3 ubiquitin ligases are responsible for recognizing substrate proteins for ubiquitination, hence providing specificity to the process of protein degradation. Here, we describe a genetic modifier screen that identified E3 ligases that modified the rough-eye phenotype generated by expression of cindrRNAi transgenes during Drosophila eye development. In total, we identified 36 E3 ligases, as well as 4 Cullins, that modified the mild cindrRNA mis-patterning phenotype. This indicates possible roles for these E3s/Cullins in processes that require Cindr function, including cytoskeletal regulation, cell adhesion, cell signaling and cell survival. Three E3 ligases identified in our screen had previously been linked to regulating JNK signaling.
Collapse
Affiliation(s)
- Kwami F. Ketosugbo
- Biology Department, Wesleyan University, Middletown, Connecticut, United States of America
| | - Henry L. Bushnell
- Biology Department, Wesleyan University, Middletown, Connecticut, United States of America
| | - Ruth I. Johnson
- Biology Department, Wesleyan University, Middletown, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
3
|
Peralta DA, Araya A, Busi MV, Gomez-Casati DF. The E3 ubiquitin-ligase SEVEN IN ABSENTIA like 7 mono-ubiquitinates glyceraldehyde-3-phosphate dehydrogenase 1 isoform in vitro and is required for its nuclear localization in Arabidopsis thaliana. Int J Biochem Cell Biol 2015; 70:48-56. [PMID: 26582368 DOI: 10.1016/j.biocel.2015.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/28/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
Abstract
The E3 ubiquitin-protein ligases are associated to various processes such as cell cycle control and diverse developmental pathways. Arabidopsis thaliana SEVEN IN ABSENTIA like 7, which has ubiquitin ligase activity, is located in the nucleus and cytosol and is expressed at several stages in almost all plant tissues suggesting an important role in plant functions. However, the mechanism underlying the regulation of this protein is unknown. Since we found that the SEVEN IN ABSENTIA like 7 gene expression is altered in plants with impaired mitochondria, and in plants deficient in the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase 1, we decided to study the possible interactions between both proteins as potential partners in plant signaling functions. We found that SEVEN IN ABSENTIA like 7 is able to interact in vitro with glyceraldehyde-3-phosphate dehydrogenase and that the Lys231 residue of the last is essential for this function. Following the interaction, a concomitant increase in the glyceraldehyde-3-phosphate dehydrogenase catalytic activity was observed. However, when SEVEN IN ABSENTIA like 7 was supplemented with E1 and E2 proteins to form a complete E1-E2-E3 modifier complex, we observed the mono-ubiquitination of glyceraldehyde-3-phosphate dehydrogenase 1 at the Lys76 residue and a dramatic decrease of its catalytic activity. Moreover, we found that localization of glyceraldehyde-3-phosphate dehydrogenase 1 in the nucleus is dependent on the expression SEVEN IN ABSENTIA like 7. These observations suggest that the association of both proteins might result in different biological consequences in plants either through affecting the glycolytic flux or via cytoplasm-nucleus relocation.
Collapse
Affiliation(s)
- Diego A Peralta
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - Alejandro Araya
- Centre National de la Recherche Scientifique & UMR 1332 - Biologie du Fruit et Pathologie, Institute National de la Recherche Agronomique (INRA) Bordeaux Aquitaine, 71 avenue Edouard Bourlaux, Villenave D'Ornon 33882, France.
| | - Maria V Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| |
Collapse
|
4
|
Peralta DA, Araya A, Nardi CF, Busi MV, Gomez-Casati DF. Characterization of the Arabidopsis thaliana E3 ubiquitin-ligase AtSINAL7 and identification of the ubiquitination sites. PLoS One 2013; 8:e73104. [PMID: 24015288 PMCID: PMC3756039 DOI: 10.1371/journal.pone.0073104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 07/25/2013] [Indexed: 12/05/2022] Open
Abstract
Protein ubiquitination leading to degradation by the proteasome is an important mechanism in regulating key cellular functions. Protein ubiquitination is carried out by a three step process involving ubiquitin (Ub) activation by a E1 enzyme, the transfer of Ub to a protein E2, finally an ubiquitin ligase E3 catalyzes the transfer of the Ub peptide to an acceptor protein. The E3 component is responsible for the specific recognition of the target, making the unveiling of E3 components essential to understand the mechanisms regulating fundamental cell processes through the protein degradation pathways. The Arabidopsis thaliana seven in absentia-like 7 (AtSINAL7) gene encodes for a protein with characteristics from a C3HC4-type E3 ubiquitin ligase. We demonstrate here that AtSINAL7 protein is indeed an E3 protein ligase based on the self-ubiquitination in vitro assay. This activity is dependent of the presence of a Lys residue in position 124. We also found that higher AtSINAL7 transcript levels are present in tissues undergoing active cell division during floral development. An interesting observation is the circadian expression pattern of AtSINAL7 mRNA in floral buds. Furthermore, UV–B irradiation induces the expression of this transcript indicating that AtSINAL7 may be involved in a wide range of different cell processes.
Collapse
Affiliation(s)
- Diego A. Peralta
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Alejandro Araya
- Centre National de la Recherche Scientifique and UMR 1332 – Biologie du Fruit et Pathologie, Institute National de la Recherche Agronomique (INRA) Bordeaux Aquitaine, Villenave D’Ornon, France
| | - Cristina F. Nardi
- Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús (IIB-INTECH-CONICET), Universidad Nacional de San Martin, Chascomús, Argentina
| | - Maria V. Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail: (MVB); (DFG-C)
| | - Diego F. Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail: (MVB); (DFG-C)
| |
Collapse
|
5
|
Identification and characterization of a novel calcyclin binding protein (CacyBP) gene from Apis cerana cerana. Mol Biol Rep 2012; 39:8053-63. [DOI: 10.1007/s11033-012-1652-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
|
6
|
Park BS, Eo HJ, Jang IC, Kang HG, Song JT, Seo HS. Ubiquitination of LHY by SINAT5 regulates flowering time and is inhibited by DET1. Biochem Biophys Res Commun 2010; 398:242-6. [PMID: 20599732 DOI: 10.1016/j.bbrc.2010.06.067] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 06/16/2010] [Indexed: 12/21/2022]
Abstract
Ubiquitin is a small polypeptide and ubiquitination is the post-translational modification by ubiquitin protein, resulting in degradation of target proteins by the 26S proteasome complex. Here, we found that E3 ubiquitin ligase SINAT5, an Arabidopsis homologue of the Drosophila SINA RING-finger protein, interacts directly with LHY, a component of the circadian oscillator, and DET1, a negative regulator of light-regulated gene expression. We also found that SINAT5 has E3 ubiquitination activity for LHY but not for DET1. Interestingly, LHY ubiquitination by SINAT5 was inhibited by DET1. Late flowering of sinat5 mutants indicates that flowering time can be controlled by DET1 through regulation of LHY stability by SINAT5.
Collapse
Affiliation(s)
- Bong Soo Park
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | | | | | |
Collapse
|
7
|
Chang PJ, Hsiao YL, Tien AC, Li YC, Pi H. Negative-feedback regulation of proneural proteins controls the timing of neural precursor division. Development 2008; 135:3021-30. [DOI: 10.1242/dev.021923] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurogenesis requires precise control of cell specification and division. In Drosophila, the timing of cell division of the sensory organ precursor (SOP) is under strict temporal control. But how the timing of mitotic entry is determined remains poorly understood. Here, we present evidence that the timing of the G2-M transition is determined by when proneural proteins are degraded from SOPs. This process requires the E3 ubiquitin ligase complex, including the RING protein Sina and the adaptor Phyl. In phyl mutants, proneural proteins accumulate, causing delay or arrest in the G2-M transition. The G2-M defect in phyl mutants is rescued by reducing the ac and sc gene doses. Misexpression of phyl downregulates proneural protein levels in a sina-dependent manner. Phyl directly associates with proneural proteins to act as a bridge between proneural proteins and Sina. As phyl is a direct transcriptional target of Ac and Sc, our data suggest that, in addition to mediating cell cycle arrest, proneural protein initiates a negative-feedback regulation to time the mitotic entry of neural precursors.
Collapse
Affiliation(s)
- Pao-Ju Chang
- Department of Life Science, Chang-Gung University, 259 Wen-Hwa 1st Road,Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Yun-Ling Hsiao
- Department of Life Science, Chang-Gung University, 259 Wen-Hwa 1st Road,Kwei-Shan, Tao-Yuan 333, Taiwan
| | - An-Chi Tien
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yi-Chen Li
- Department of Life Science, Chang-Gung University, 259 Wen-Hwa 1st Road,Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Haiwei Pi
- Department of Life Science, Chang-Gung University, 259 Wen-Hwa 1st Road,Kwei-Shan, Tao-Yuan 333, Taiwan
| |
Collapse
|
8
|
Den Herder G, De Keyser A, De Rycke R, Rombauts S, Van de Velde W, Clemente MR, Verplancke C, Mergaert P, Kondorosi E, Holsters M, Goormachtig S. Seven in absentia proteins affect plant growth and nodulation in Medicago truncatula. PLANT PHYSIOLOGY 2008; 148:369-82. [PMID: 18599652 PMCID: PMC2528092 DOI: 10.1104/pp.108.119453] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 06/24/2008] [Indexed: 05/18/2023]
Abstract
Protein ubiquitination is a posttranslational regulatory process essential for plant growth and interaction with the environment. E3 ligases, to which the seven in absentia (SINA) proteins belong, determine the specificity by selecting the target proteins for ubiquitination. SINA proteins are found in animals as well as in plants, and a small gene family with highly related members has been identified in the genome of rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), Medicago truncatula, and poplar (Populus trichocarpa). To acquire insight into the function of SINA proteins in nodulation, a dominant negative form of the Arabidopsis SINAT5 was ectopically expressed in the model legume M. truncatula. After rhizobial inoculation of the 35S:SINAT5DN transgenic plants, fewer nodules were formed than in control plants, and most nodules remained small and white, a sign of impaired symbiosis. Defects in rhizobial infection and symbiosome formation were observed by extensive microscopic analysis. Besides the nodulation phenotype, transgenic plants were affected in shoot growth, leaf size, and lateral root number. This work illustrates a function for SINA E3 ligases in a broad spectrum of plant developmental processes, including nodulation.
Collapse
Affiliation(s)
- Griet Den Herder
- Department of Plant Systems Biology, Flanders Institute for Biotechnology and Department of Molecular Genetics, Ghent University, B-9052 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cooper SE, Murawsky CM, Lowe N, Travers AA. Two modes of degradation of the tramtrack transcription factors by Siah homologues. J Biol Chem 2007; 283:1076-83. [PMID: 17962185 DOI: 10.1074/jbc.m707765200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Siah proteins, mammalian homologues of the Drosophila Sina protein, function as ubiquitin-protein isopeptide ligase enzymes to target a wide range of cellular proteins for degradation. We report here a novel Drosophila protein that is homologous to Sina, named Sina-Homologue (SinaH). We show that it can direct the degradation of the transcriptional repressor Tramtrack (Ttk) using two different mechanisms. One is similar to Sina and requires the adaptor Phyllopod, and the other is a novel mechanism of recognition. This novel mode of targeting for degradation is specific for the 69-kDa Ttk isoform, Ttk69. Ttk69 contains a region that is required for binding of SinaH and for SinaH-directed degradation. This region contains an AXVXP motif, which is the consensus sequence found in Siah substrate proteins. These results suggest that degradation directed by SinaH differs from that directed by Sina and is more similar to that found in vertebrates. We speculate that SinaH may be involved in regulating the levels of developmentally important transcription factors.
Collapse
Affiliation(s)
- Sarah E Cooper
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom.
| | | | | | | |
Collapse
|