1
|
Song X, Wei J, Shu J, Liu Y, Sun M, Zhu P, Qin J. Association of polymorphisms of FOLR1 gene and FOLR2 gene and maternal folic acid supplementation with risk of ventricular septal defect: a case-control study. Eur J Clin Nutr 2022; 76:1273-1280. [PMID: 35273364 DOI: 10.1038/s41430-022-01110-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVES It was the first time to examine the role of maternal polymorphisms of FOLR1 gene and FOLR2 gene, as well as their interactions with maternal folic acid supplementation (FAS), in the risk of ventricular septal defect (VSD). METHODS A case-control study was conducted with 385 mothers of VSD infants and 652 controls. The exposures of interest were FAS and FOLR1 gene and FOLR2 gene polymorphisms. The logistic regression model was used for accessing the strength of association. RESULTS After controlling for the potential confounders, women who did not utilize folic acid had a substantially higher risk of VSD (aOR = 2.25; 95% CI: 1.48 to 3.43), compared to those who did. We also observed genetic polymorphisms of FOLR1 gene at rs2071010 (GA vs. GG: aOR = 0.63, 95%CI: 0.45 to 0.88) and rs11235462 (AA vs. TT: aOR = 0.53, 95%CI: 0.33 to 0.84), as well as FOLR2 gene at rs651646 (AA vs. TT: aOR = 0.46, 95%CI: 0.30 to 0.70), rs2298444 (CC vs. TT: aOR = 0.58, 95%CI: 0.36 to 0.91) and rs514933 (TC vs. TT: aOR = 0.57, 95%CI: 0.41 to 0.78) were associated with a lower risk of VSD. Furthermore, there was a statistically significant interaction between maternal FAS and genetic polymorphisms at rs514933 on the risk of VSD (FDR_P = 0.015). CONCLUSIONS The maternal genetic polymorphisms of the FOLR1 gene and FOLR2 gene, as well as FAS and their interactions, were shown to be significantly associated with the risk of VSD in offspring.
Collapse
Affiliation(s)
- Xinli Song
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jianhui Wei
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jing Shu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yiping Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Mengting Sun
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Jiabi Qin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China. .,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China. .,NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China. .,Hunan Provincial Key Laboratory of clinical epidemiology, Changsha, Hunan, China.
| |
Collapse
|
2
|
Rowton M, Guzzetta A, Rydeen AB, Moskowitz IP. Control of cardiomyocyte differentiation timing by intercellular signaling pathways. Semin Cell Dev Biol 2021; 118:94-106. [PMID: 34144893 PMCID: PMC8968240 DOI: 10.1016/j.semcdb.2021.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Congenital Heart Disease (CHD), malformations of the heart present at birth, is the most common class of life-threatening birth defect (Hoffman (1995) [1], Gelb (2004) [2], Gelb (2014) [3]). A major research challenge is to elucidate the genetic determinants of CHD and mechanistically link CHD ontogeny to a molecular understanding of heart development. Although the embryonic origins of CHD are unclear in most cases, dysregulation of cardiovascular lineage specification, patterning, proliferation, migration or differentiation have been described (Olson (2004) [4], Olson (2006) [5], Srivastava (2006) [6], Dunwoodie (2007) [7], Bruneau (2008) [8]). Cardiac differentiation is the process whereby cells become progressively more dedicated in a trajectory through the cardiac lineage towards mature cardiomyocytes. Defects in cardiac differentiation have been linked to CHD, although how the complex control of cardiac differentiation prevents CHD is just beginning to be understood. The stages of cardiac differentiation are highly stereotyped and have been well-characterized (Kattman et al. (2011) [9], Wamstad et al. (2012) [10], Luna-Zurita et al. (2016) [11], Loh et al. (2016) [12], DeLaughter et al. (2016) [13]); however, the developmental and molecular mechanisms that promote or delay the transition of a cell through these stages have not been as deeply investigated. Tight temporal control of progenitor differentiation is critically important for normal organ size, spatial organization, and cellular physiology and homeostasis of all organ systems (Raff et al. (1985) [14], Amthor et al. (1998) [15], Kopan et al. (2014) [16]). This review will focus on the action of signaling pathways in the control of cardiomyocyte differentiation timing. Numerous signaling pathways, including the Wnt, Fibroblast Growth Factor, Hedgehog, Bone Morphogenetic Protein, Insulin-like Growth Factor, Thyroid Hormone and Hippo pathways, have all been implicated in promoting or inhibiting transitions along the cardiac differentiation trajectory. Gaining a deeper understanding of the mechanisms controlling cardiac differentiation timing promises to yield insights into the etiology of CHD and to inform approaches to restore function to damaged hearts.
Collapse
|
3
|
Milstone ZJ, Lawson G, Trivedi CM. Histone deacetylase 1 and 2 are essential for murine neural crest proliferation, pharyngeal arch development, and craniofacial morphogenesis. Dev Dyn 2017; 246:1015-1026. [PMID: 28791750 DOI: 10.1002/dvdy.24563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Craniofacial anomalies involve defective pharyngeal arch development and neural crest function. Copy number variation at 1p35, containing histone deacetylase 1 (Hdac1), or 6q21-22, containing Hdac2, are implicated in patients with craniofacial defects, suggesting an important role in guiding neural crest development. However, the roles of Hdac1 and Hdac2 within neural crest cells remain unknown. RESULTS The neural crest and its derivatives express both Hdac1 and Hdac2 during early murine development. Ablation of Hdac1 and Hdac2 within murine neural crest progenitor cells cause severe hemorrhage, atrophic pharyngeal arches, defective head morphogenesis, and complete embryonic lethality. Embryos lacking Hdac1 and Hdac2 in the neural crest exhibit decreased proliferation and increased apoptosis in both the neural tube and the first pharyngeal arch. Mechanistically, loss of Hdac1 and Hdac2 upregulates cyclin-dependent kinase inhibitors Cdkn1a, Cdkn1b, Cdkn1c, Cdkn2b, Cdkn2c, and Tp53 within the first pharyngeal arch. CONCLUSIONS Our results show that Hdac1 and Hdac2 function redundantly within the neural crest to regulate proliferation and the development of the pharyngeal arches by means of repression of cyclin-dependent kinase inhibitors. Developmental Dynamics 246:1015-1026, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zachary J Milstone
- Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Grace Lawson
- Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Chinmay M Trivedi
- Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
4
|
Touma M, Reemtsen B, Halnon N, Alejos J, Finn JP, Nelson SF, Wang Y. A Path to Implement Precision Child Health Cardiovascular Medicine. Front Cardiovasc Med 2017; 4:36. [PMID: 28620608 PMCID: PMC5451507 DOI: 10.3389/fcvm.2017.00036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/04/2017] [Indexed: 12/17/2022] Open
Abstract
Congenital heart defects (CHDs) affect approximately 1% of live births and are a major source of childhood morbidity and mortality even in countries with advanced healthcare systems. Along with phenotypic heterogeneity, the underlying etiology of CHDs is multifactorial, involving genetic, epigenetic, and/or environmental contributors. Clear dissection of the underlying mechanism is a powerful step to establish individualized therapies. However, the majority of CHDs are yet to be clearly diagnosed for the underlying genetic and environmental factors, and even less with effective therapies. Although the survival rate for CHDs is steadily improving, there is still a significant unmet need for refining diagnostic precision and establishing targeted therapies to optimize life quality and to minimize future complications. In particular, proper identification of disease associated genetic variants in humans has been challenging, and this greatly impedes our ability to delineate gene–environment interactions that contribute to the pathogenesis of CHDs. Implementing a systematic multileveled approach can establish a continuum from phenotypic characterization in the clinic to molecular dissection using combined next-generation sequencing platforms and validation studies in suitable models at the bench. Key elements necessary to advance the field are: first, proper delineation of the phenotypic spectrum of CHDs; second, defining the molecular genotype/phenotype by combining whole-exome sequencing and transcriptome analysis; third, integration of phenotypic, genotypic, and molecular datasets to identify molecular network contributing to CHDs; fourth, generation of relevant disease models and multileveled experimental investigations. In order to achieve all these goals, access to high-quality biological specimens from well-defined patient cohorts is a crucial step. Therefore, establishing a CHD BioCore is an essential infrastructure and a critical step on the path toward precision child health cardiovascular medicine.
Collapse
Affiliation(s)
- Marlin Touma
- Department of Pediatrics, Children's Discovery and Innovation Institute, University of California at Los Angeles, Los Angeles, CA, United States.,Cardiovascular Research Laboratory, University of California at Los Angeles, Los Angeles, CA, United States
| | - Brian Reemtsen
- Department of Cardiothoracic Surgery, University of California at Los Angeles, Los Angeles, CA, United States
| | - Nancy Halnon
- Department of Pediatrics, University of California at Los Angeles, Los Angeles, CA, United States
| | - Juan Alejos
- Department of Pediatrics, University of California at Los Angeles, Los Angeles, CA, United States
| | - J Paul Finn
- Department of Radiology, Cardiovascular Imaging, University of California at Los Angeles, Los Angeles, CA, United States
| | - Stanley F Nelson
- Department of Human Genetics, University of California at Los Angeles, Los Angeles, CA, United States
| | - Yibin Wang
- Cardiovascular Research Laboratory, University of California at Los Angeles, Los Angeles, CA, United States.,Department of Anesthesiology, Physiology and Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Watrous RL, Chin AJ. Model-Based Comparison of the Normal and Fontan Circulatory Systems-Part III. World J Pediatr Congenit Heart Surg 2017; 8:148-160. [PMID: 28329460 DOI: 10.1177/2150135116679831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND For patients with the Fontan circulatory arrangement, angiotensin-converting enzyme inhibition, guanylate cyclase activation, phosphodiesterase 5 inhibition, and endothelin receptor antagonism have so far resulted in little or no improvement in [Formula: see text] or peak cardiac index (CI), suggesting that our understanding of the factors that most impact the exercise hemodynamics is incomplete. METHODS To facilitate comparisons with clinical reports of the exercise performance of preadolescent Fontan patients, we rescaled our previously reported computational models of a two-year-old normal child and similarly aged Fontan patient, extended our Fontan model to capture the nonlinear relationship between flow and resistance quantified from previous computational fluid dynamic analyses of the total cavopulmonary connection (TCPC), and added respiration as well as skeletal muscle contraction. RESULTS (1) Without respiration, the computational model for both the normal and the Fontan cannot attain the values for CI at peak exercise reported in the clinical literature, (2) because flow through the TCPC is much greater during inspiration than during expiration, the effect on the CI of the dynamic (flow-related) TCPC resistance is much more dramatic during exercise than it is in breath-hold mode at rest, and (3) coupling breathing with skeletal muscle contraction leads to the highest augmentation of cardiac output, that is, the skeletal muscle pump is most effective when the intrathoracic pressure is at a minimum-at peak inspiration. CONCLUSIONS Novel insights emerge when a Fontan model incorporating dynamic TCPC resistance, full respiration, and skeletal muscle contraction can be compared to the model of the normal.
Collapse
Affiliation(s)
- Raymond L Watrous
- 1 Division of Cardiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alvin J Chin
- 1 Division of Cardiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,2 Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Degenhardt K, Rychik J. Fetal Situs, Isomerism, Heterotaxy Syndrome: Diagnostic Evaluation and Implication for Postnatal Management. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2016; 18:77. [PMID: 27844411 DOI: 10.1007/s11936-016-0494-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OPINION STATEMENT A hallmark of vertebrate anatomy is asymmetry of structures, especially internal organs, on the left and right side of the body. Heterotaxy syndrome is the combination of correct-sided, and incorrect-sided organs. The establishment of the left-right axis is an early event in vertebrate embryogenesis. Failure to establish this axis has numerous consequences for later development and can result in a wide range of potential defects. Congenital heart disease is among the more frequent and serious problems. Heterotaxy syndrome is diagnosed prenatally with increasing frequency due to improved screening practices. The key to proper management of fetal heterotaxy syndrome is reliable determination of left and right in the fetus, a thorough understanding of associated defects and comprehensive imaging.
Collapse
Affiliation(s)
- Karl Degenhardt
- The Fetal Heart Program at the Cardiac Center at the Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Division of Cardiology, The University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | - Jack Rychik
- The Fetal Heart Program at the Cardiac Center at the Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Division of Cardiology, The University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
7
|
Powell R, Bubenshchikova E, Fukuyo Y, Hsu C, Lakiza O, Nomura H, Renfrew E, Garrity D, Obara T. Wtip is required for proepicardial organ specification and cardiac left/right asymmetry in zebrafish. Mol Med Rep 2016; 14:2665-78. [PMID: 27484451 PMCID: PMC4991684 DOI: 10.3892/mmr.2016.5550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 06/02/2016] [Indexed: 01/20/2023] Open
Abstract
Wilm's tumor 1 interacting protein (Wtip) was identified as an interacting partner of Wilm's tumor protein (WT1) in a yeast two-hybrid screen. WT1 is expressed in the proepicardial organ (PE) of the heart, and mouse and zebrafish wt1 knockout models appear to lack the PE. Wtip's role in the heart remains unexplored. In the present study, we demonstrate that wtip expression is identical in wt1a-, tcf21-, and tbx18-positive PE cells, and that Wtip protein localizes to the basal body of PE cells. We present the first genetic evidence that Wtip signaling in conjunction with WT1 is essential for PE specification in the zebrafish heart. By overexpressing wtip mRNA, we observed ectopic expression of PE markers in the cardiac and pharyngeal arch regions. Furthermore, wtip knockdown embryos showed perturbed cardiac looping and lacked the atrioventricular (AV) boundary. However, the chamber-specific markers amhc and vmhc were unaffected. Interestingly, knockdown of wtip disrupts early left-right (LR) asymmetry. Our studies uncover new roles for Wtip regulating PE cell specification and early LR asymmetry, and suggest that the PE may exert non-autonomous effects on heart looping and AV morphogenesis. The presence of cilia in the PE, and localization of Wtip in the basal body of ciliated cells, raises the possibility of cilia-mediated PE signaling in the embryonic heart.
Collapse
Affiliation(s)
- Rebecca Powell
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Ekaterina Bubenshchikova
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Yayoi Fukuyo
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Chaonan Hsu
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Olga Lakiza
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Hiroki Nomura
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Erin Renfrew
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Deborah Garrity
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Tomoko Obara
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| |
Collapse
|
8
|
Teele SA, Jacobs JP, Border WL, Chanani NK. Heterotaxy Syndrome: Proceedings From the 10th International PCICS Meeting. World J Pediatr Congenit Heart Surg 2016; 6:616-29. [PMID: 26467876 DOI: 10.1177/2150135115604470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A session dedicated to heterotaxy syndrome was included in the program of the Tenth International Conference of the Pediatric Cardiac Intensive Care Society in Miami, Florida in December 2014. An invited panel of experts reviewed the anatomic considerations, surgical considerations, noncardiac issues, and long-term outcomes in this challenging group of patients. The presentations, summarized in this article, reflect the current approach to this complex multiorgan syndrome and highlight future areas of clinical interest and research.
Collapse
Affiliation(s)
- Sarah A Teele
- Division of Cardiovascular Critical Care, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey P Jacobs
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA Johns Hopkins All Children's Heart Institute, All Children's Hospital, Saint Petersburg and Tampa, FL, USA
| | - William L Border
- Sibley Heart Center Cardiology, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Nikhil K Chanani
- Sibley Heart Center Cardiology, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
9
|
Samsa LA, Givens C, Tzima E, Stainier DYR, Qian L, Liu J. Cardiac contraction activates endocardial Notch signaling to modulate chamber maturation in zebrafish. Development 2016; 142:4080-91. [PMID: 26628092 DOI: 10.1242/dev.125724] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Congenital heart disease often features structural abnormalities that emerge during development. Accumulating evidence indicates a crucial role for cardiac contraction and the resulting fluid forces in shaping the heart, yet the molecular basis of this function is largely unknown. Using the zebrafish as a model of early heart development, we investigated the role of cardiac contraction in chamber maturation, focusing on the formation of muscular protrusions called trabeculae. By genetic and pharmacological ablation of cardiac contraction, we showed that cardiac contraction is required for trabeculation through its role in regulating notch1b transcription in the ventricular endocardium. We also showed that Notch1 activation induces expression of ephrin b2a (efnb2a) and neuregulin 1 (nrg1) in the endocardium to promote trabeculation and that forced Notch activation in the absence of cardiac contraction rescues efnb2a and nrg1 expression. Using in vitro and in vivo systems, we showed that primary cilia are important mediators of fluid flow to stimulate Notch expression. Together, our findings describe an essential role for cardiac contraction-responsive transcriptional changes in endocardial cells to regulate cardiac chamber maturation.
Collapse
Affiliation(s)
- Leigh Ann Samsa
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA McAllister Heart Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chris Givens
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA McAllister Heart Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eleni Tzima
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA McAllister Heart Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Didier Y R Stainier
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Li Qian
- McAllister Heart Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- McAllister Heart Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Devotta A, Juraver-Geslin H, Gonzalez JA, Hong CS, Saint-Jeannet JP. Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome. Dev Biol 2016; 415:371-382. [PMID: 26874011 DOI: 10.1016/j.ydbio.2016.02.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 11/16/2022]
Abstract
Mandibulofacial dysostosis (MFD) is a human developmental disorder characterized by defects of the facial bones. It is the second most frequent craniofacial malformation after cleft lip and palate. Nager syndrome combines many features of MFD with a variety of limb defects. Mutations in SF3B4 (splicing factor 3b, subunit 4) gene, which encodes a component of the pre-mRNA spliceosomal complex, were recently identified as a cause of Nager syndrome, accounting for 60% of affected individuals. Nothing is known about the cellular pathogenesis underlying Nager type MFD. Here we describe the first animal model for Nager syndrome, generated by knocking down Sf3b4 function in Xenopus laevis embryos, using morpholino antisense oligonucleotides. Our results indicate that Sf3b4-depleted embryos show reduced expression of the neural crest genes sox10, snail2 and twist at the neural plate border, associated with a broadening of the neural plate. This phenotype can be rescued by injection of wild-type human SF3B4 mRNA but not by mRNAs carrying mutations that cause Nager syndrome. At the tailbud stage, morphant embryos had decreased sox10 and tfap2a expression in the pharyngeal arches, indicative of a reduced number of neural crest cells. Later in development, Sf3b4-depleted tadpoles exhibited hypoplasia of neural crest-derived craniofacial cartilages, phenocopying aspects of the craniofacial skeletal defects seen in Nager syndrome patients. With this animal model we are now poised to gain important insights into the etiology and pathogenesis of Nager type MFD, and to identify the molecular targets of Sf3b4.
Collapse
Affiliation(s)
- Arun Devotta
- Department of Basic Science & Craniofacial Biology, College of Dentistry, New York University, New York, USA
| | - Hugo Juraver-Geslin
- Department of Basic Science & Craniofacial Biology, College of Dentistry, New York University, New York, USA
| | - Jose Antonio Gonzalez
- Department of Basic Science & Craniofacial Biology, College of Dentistry, New York University, New York, USA; Master Program in Biology, New York University, New York, USA
| | - Chang-Soo Hong
- Department of Biological Sciences, College of Natural Sciences, Daegu University, Gyeongsan, Republic of Korea
| | - Jean-Pierre Saint-Jeannet
- Department of Basic Science & Craniofacial Biology, College of Dentistry, New York University, New York, USA.
| |
Collapse
|
11
|
Chaudhry B, Ramsbottom S, Henderson DJ. Genetics of cardiovascular development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 124:19-41. [PMID: 24751425 DOI: 10.1016/b978-0-12-386930-2.00002-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Structural malformations of the heart are the commonest abnormalities found at the time of birth and the incidence is higher in fetuses that are lost during the first trimester. Although the form of the heart has been studied for centuries, it is in the past decades that the genetic pathways that control heart development have been unraveled. Recently, the concept of the second heart field, a population of multipotent cardiac cells that augment the initial simple heart tube, has clarified the development of the heart. Understanding how the second heart field is used in morphogenesis and how genes interact in a subtle and more complex way is moving us closer to understanding how the normal heart forms and why abnormalities occur. In this chapter, we present a description of the morphological processes that create the formed postnatal human heart and emphasize key genetic pathways and genes that control these aspects. Where possible, these are also linked to the common patterns of human cardiac malformation. Undoubtedly, the details will refine or change with further research but emphasis has been placed on areas of greatest certainty and the presentation designed to promote a general understanding.
Collapse
Affiliation(s)
- Bill Chaudhry
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Simon Ramsbottom
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Deborah J Henderson
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
12
|
Baker CN, Gidus SA, Price GF, Peoples JNR, Ebert SN. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation. Am J Physiol Endocrinol Metab 2015; 308:E402-13. [PMID: 25516547 PMCID: PMC4346738 DOI: 10.1152/ajpendo.00267.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh-/- embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development.
Collapse
Affiliation(s)
- Candice N Baker
- Burnett School of Biomedical Sciences, University of Central Florida, College of Medicine, Orlando, Florida; and
| | - Sarah A Gidus
- Burnett School of Biomedical Sciences, University of Central Florida, College of Medicine, Orlando, Florida; and
| | - George F Price
- Department of Electron Microscopy, Department of Pathology, Orlando Regional Medical Center, Orlando, Florida
| | - Jessica N R Peoples
- Burnett School of Biomedical Sciences, University of Central Florida, College of Medicine, Orlando, Florida; and
| | - Steven N Ebert
- Burnett School of Biomedical Sciences, University of Central Florida, College of Medicine, Orlando, Florida; and
| |
Collapse
|
13
|
Liang D, Wang X, Mittal A, Dhiman S, Hou SY, Degenhardt K, Astrof S. Mesodermal expression of integrin α5β1 regulates neural crest development and cardiovascular morphogenesis. Dev Biol 2014; 395:232-44. [PMID: 25242040 DOI: 10.1016/j.ydbio.2014.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 01/09/2023]
Abstract
Integrin α5-null embryos die in mid-gestation from severe defects in cardiovascular morphogenesis, which stem from defective development of the neural crest, heart and vasculature. To investigate the role of integrin α5β1 in cardiovascular development, we used the Mesp1(Cre) knock-in strain of mice to ablate integrin α5 in the anterior mesoderm, which gives rise to all of the cardiac and many of the vascular and muscle lineages in the anterior portion of the embryo. Surprisingly, we found that mutant embryos displayed numerous defects related to the abnormal development of the neural crest such as cleft palate, ventricular septal defect, abnormal development of hypoglossal nerves, and defective remodeling of the aortic arch arteries. We found that defects in arch artery remodeling stem from the role of mesodermal integrin α5β1 in neural crest proliferation and differentiation into vascular smooth muscle cells, while proliferation of pharyngeal mesoderm and differentiation of mesodermal derivatives into vascular smooth muscle cells was not defective. Taken together our studies demonstrate a requisite role for mesodermal integrin α5β1 in signaling between the mesoderm and the neural crest, thereby regulating neural crest-dependent morphogenesis of essential embryonic structures.
Collapse
Affiliation(s)
- Dong Liang
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Xia Wang
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ashok Mittal
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Sonam Dhiman
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Shuan-Yu Hou
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Karl Degenhardt
- Childrens Hospital of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19107, USA
| | - Sophie Astrof
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
14
|
Keyte AL, Alonzo-Johnsen M, Hutson MR. Evolutionary and developmental origins of the cardiac neural crest: building a divided outflow tract. ACTA ACUST UNITED AC 2014; 102:309-23. [PMID: 25227322 DOI: 10.1002/bdrc.21076] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/22/2014] [Indexed: 12/14/2022]
Abstract
The cardiac neural crest cells (CNCCs) have played an important role in the evolution and development of the vertebrate cardiovascular system: from reinforcement of the developing aortic arch arteries early in vertebrate evolution, to later orchestration of aortic arch artery remodeling into the great arteries of the heart, and finally outflow tract septation in amniotes. A critical element necessary for the evolutionary advent of outflow tract septation was the co-evolution of the cardiac neural crest cells with the second heart field. This review highlights the major transitions in vertebrate circulatory evolution, explores the evolutionary developmental origins of the CNCCs from the third stream cranial neural crest, and explores candidate signaling pathways in CNCC and outflow tract evolution drawn from our knowledge of DiGeorge Syndrome.
Collapse
Affiliation(s)
- Anna L Keyte
- Brumley Neonatal Perinatal Research Institute, Department of Pediatrics, Duke University, Durham, North Carolina
| | | | | |
Collapse
|
15
|
Zhou YQ, Cahill LS, Wong MD, Seed M, Macgowan CK, Sled JG. Assessment of flow distribution in the mouse fetal circulation at late gestation by high-frequency Doppler ultrasound. Physiol Genomics 2014; 46:602-14. [PMID: 24963005 DOI: 10.1152/physiolgenomics.00049.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study used high-frequency ultrasound to evaluate the flow distribution in the mouse fetal circulation at late gestation. We studied 12 fetuses (embryonic day 17.5) from 12 pregnant CD1 mice with 40 MHz ultrasound to assess the flow in 11 vessels based on Doppler measurements of blood velocity and M-mode measurements of diameter. Specifically, the intrahepatic umbilical vein (UVIH), ductus venosus (DV), foramen ovale (FO), ascending aorta (AA), main pulmonary artery (MPA), ductus arteriosus (DA), descending thoracic aorta (DTA), common carotid artery (CCA), inferior vena cava (IVC), and right and left superior vena cavae (RSVC, LSVC) were examined, and anatomically confirmed by micro-CT. The mouse fetal circulatory system was found to be similar to that of the humans in terms of the major circuit and three shunts, but characterized by bilateral superior vena cavae and a single umbilical artery. The combined cardiac output (CCO) was 1.22 ± 0.05 ml/min, with the left ventricle (flow in AA) contributing 47.8 ± 2.3% and the right ventricle (flow in MPA) 52.2 ± 2.3%. Relative to the CCO, the flow percentages were 13.6 ± 1.0% for the UVIH, 10.4 ± 1.1% for the DV, 35.6 ± 2.4% for the DA, 41.9 ± 2.6% for the DTA, 3.8 ± 0.3% for the CCA, 29.5 ± 2.2% for the IVC, 12.7 ± 1.0% for the RSVC, and 9.9 ± 0.9% for the LSVC. The calculated flow percentage was 16.6 ± 3.4% for the pulmonary circulation and 31.2 ± 5.3% for the FO. In conclusion, the flow in mouse fetal circulation can be comprehensively evaluated with ultrasound. The baseline data of the flow distribution in normal mouse fetus serve as the reference range for future studies.
Collapse
Affiliation(s)
- Yu-Qing Zhou
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Lindsay S Cahill
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael D Wong
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mike Seed
- Division of Cardiology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christopher K Macgowan
- Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada; and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John G Sled
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Amin NM, Greco TM, Kuchenbrod LM, Rigney MM, Chung MI, Wallingford JB, Cristea IM, Conlon FL. Proteomic profiling of cardiac tissue by isolation of nuclei tagged in specific cell types (INTACT). Development 2014; 141:962-73. [PMID: 24496632 DOI: 10.1242/dev.098327] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The proper dissection of the molecular mechanisms governing the specification and differentiation of specific cell types requires isolation of pure cell populations from heterogeneous tissues and whole organisms. Here, we describe a method for purification of nuclei from defined cell or tissue types in vertebrate embryos using INTACT (isolation of nuclei tagged in specific cell types). This method, previously developed in plants, flies and worms, utilizes in vivo tagging of the nuclear envelope with biotin and the subsequent affinity purification of the labeled nuclei. In this study we successfully purified nuclei of cardiac and skeletal muscle from Xenopus using this strategy. We went on to demonstrate the utility of this approach by coupling the INTACT approach with liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic methodologies to profile proteins expressed in the nuclei of developing hearts. From these studies we have identified the Xenopus orthologs of 12 human proteins encoded by genes, which when mutated in human lead to congenital heart disease. Thus, by combining these technologies we are able to identify tissue-specific proteins that are expressed and required for normal vertebrate organ development.
Collapse
Affiliation(s)
- Nirav M Amin
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Disruption of G-protein γ5 subtype causes embryonic lethality in mice. PLoS One 2014; 9:e90970. [PMID: 24599258 PMCID: PMC3944967 DOI: 10.1371/journal.pone.0090970] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 02/06/2014] [Indexed: 12/01/2022] Open
Abstract
Heterotrimeric G-proteins modulate many processes essential for embryonic development including cellular proliferation, migration, differentiation, and survival. Although most research has focused on identifying the roles of the various αsubtypes, there is growing recognition that similarly divergent βγ dimers also regulate these processes. In this paper, we show that targeted disruption of the mouse Gng5 gene encoding the γ5 subtype produces embryonic lethality associated with severe head and heart defects. Collectively, these results add to a growing body of data that identify critical roles for the γ subunits in directing the assembly of functionally distinct G-αβγ trimers that are responsible for regulating diverse biological processes. Specifically, the finding that loss of the G-γ5 subtype is associated with a reduced number of cardiac precursor cells not only provides a causal basis for the mouse phenotype but also raises the possibility that G-βγ5 dependent signaling contributes to the pathogenesis of human congenital heart problems.
Collapse
|
18
|
Burns KM, Pearson GD, Kaltman JR. Novel initiatives of the National Institutes of Health to support congenital heart disease research. Curr Opin Pediatr 2013; 25:585-90. [PMID: 23995430 PMCID: PMC5777356 DOI: 10.1097/mop.0b013e328364b8a7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW In fiscally challenging times, scientists must seek creative strategies and leverage existing resources to advance research. RECENT FINDINGS This review describes programmes supported by the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (NIH) to promote research in paediatric cardiology and congenital heart disease (CHD). SUMMARY An understanding of NHLBI-supported research programmes will help investigators identify opportunities to collaborate with existing systems and use scientific results from existing efforts to catalyse future research in CHD.
Collapse
Affiliation(s)
- Kristin M Burns
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
19
|
Suflita MT, Pfaltzgraff ER, Mundell NA, Pevny LH, Labosky PA. Ground-state transcriptional requirements for skin-derived precursors. Stem Cells Dev 2013; 22:1779-88. [PMID: 23316968 DOI: 10.1089/scd.2012.0501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Skin-derived precursors (SKPs) are an attractive stem cell model for cell-based therapies. SKPs can be readily generated from embryonic and adult mice and adult humans, exhibit a high degree of multipotency, and have the potential to serve as a patient autologous stem cell. The advancement of these cells toward therapeutic use depends on the ability to control precisely the self-renewal and differentiation of SKPs. Here we show that two well-known stem cell factors, Foxd3 and Sox2, are critical regulators of the stem cell properties of SKPs. Deletion of Foxd3 completely abolishes the sphere-forming potential of these cells. In the absence of Sox2, SKP spheres can be formed, but with reduced size and frequency. Our results provide entry points into the gene regulatory networks dictating SKP behavior, and pave the way for future studies on a therapeutically relevant stem cell.
Collapse
Affiliation(s)
- Michael T Suflita
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
20
|
Rosenquist TH. Folate, Homocysteine and the Cardiac Neural Crest. Dev Dyn 2013; 242:201-18. [DOI: 10.1002/dvdy.23922] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 12/21/2022] Open
Affiliation(s)
- Thomas H. Rosenquist
- Department of Genetics; Cell Biology and Anatomy; University of Nebraska Medical Center; Omaha; Nebraska
| |
Collapse
|
21
|
Inhibition of neural crest formation by Kctd15 involves regulation of transcription factor AP-2. Proc Natl Acad Sci U S A 2013; 110:2870-5. [PMID: 23382213 DOI: 10.1073/pnas.1300203110] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The neural crest develops in vertebrate embryos within a discrete domain at the neural plate boundary and eventually gives rise to a migrating population of cells that differentiate into a multitude of derivatives. We have shown that the broad-complex, tramtrack and bric a brac (BTB) domain-containing factor potassium channel tetramerization domain containing 15 (Kctd15) inhibits neural crest formation, and we proposed that its function is to delimit the neural crest domain. Here we report that Kctd15 is a highly effective inhibitor of transcription factor activating enhancer binding protein 2 (AP-2) in zebrafish embryos and in human cells; AP-2 is known to be critical for several steps of neural crest development. Kctd15 interacts with AP-2α but does not interfere with its nuclear localization or binding to cognate sites in the genome. Kctd15 binds specifically to the activation domain of AP-2α and efficiently inhibits transcriptional activation by a hybrid protein composed of the regulatory protein Gal4 DNA binding and AP-2α activation domains. Mutation of one proline residue in the activation domain to an alanine (P59A) yields a protein that is highly active but largely insensitive to Kctd15. These results indicate that Kctd15 acts in the embryo at least in part by specifically binding to the activation domain of AP-2α, thereby blocking the function of this critical factor in the neural crest induction hierarchy.
Collapse
|