1
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Albu M, Affolter E, Gentile A, Xu Y, Kikhi K, Howard S, Kuenne C, Priya R, Gunawan F, Stainier DYR. Distinct mechanisms regulate ventricular and atrial chamber wall formation. Nat Commun 2024; 15:8159. [PMID: 39289341 PMCID: PMC11408654 DOI: 10.1038/s41467-024-52340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Tissues undergo distinct morphogenetic processes to achieve similarly shaped structures. In the heart, cardiomyocytes in both the ventricle and atrium build internal structures for efficient contraction. Ventricular wall formation (trabeculation) is initiated by cardiomyocyte delamination. How cardiomyocytes build the atrial wall is poorly understood. Using longitudinal imaging in zebrafish, we found that at least 25% of the atrial cardiomyocytes elongate along the long axis of the heart. These cell shape changes result in cell intercalation and convergent thickening, leading to the formation of the internal muscle network. We tested factors important for ventricular trabeculation including Nrg/ErbB and Notch signaling and found no evidence for their role in atrial muscle network formation. Instead, our data suggest that atrial cardiomyocyte elongation is regulated by Yap, which has not been implicated in trabeculation. Altogether, these data indicate that distinct cellular and molecular mechanisms build the internal muscle structures in the atrium and ventricle.
Collapse
Affiliation(s)
- Marga Albu
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Eileen Affolter
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Alessandra Gentile
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- MRC Centre for Neurodevelopmental Disorders, King's College, London, UK
| | - Yanli Xu
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Khrievono Kikhi
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Flow Cytometry Service Group, Max Planck for Heart and Lung Research, Bad Nauheim, Germany
| | - Sarah Howard
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Carsten Kuenne
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rashmi Priya
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Francis Crick Institute, London, UK
| | - Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute of Cell Biology, University of Münster, Münster, Germany
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
3
|
Camacho-Macorra C, Tabanera N, Sánchez-Bustamante E, Bovolenta P, Cardozo MJ. Maternal vgll4a regulates zebrafish epiboly through Yap1 activity. Front Cell Dev Biol 2024; 12:1362695. [PMID: 38444829 PMCID: PMC10912589 DOI: 10.3389/fcell.2024.1362695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Gastrulation in zebrafish embryos commences with the morphogenetic rearrangement of blastodermal cells, which undergo a coordinated spreading from the animal pole to wrap around the egg at the vegetal pole. This rearrangement, known as epiboly, relies on the orchestrated activity of maternal transcripts present in the egg, compensating for the gradual activation of the zygotic genome. Epiboly involves the mechano-transducer activity of yap1 but what are the regulators of yap1 activity and whether these are maternally or zygotically derived remain elusive. Our study reveals the crucial role of maternal vgll4a, a proposed Yap1 competitor, during zebrafish epiboly. In embryos lacking maternal/zygotic vgll4a (MZvgll4a), the progression of epiboly and blastopore closure is delayed. This delay is associated with the ruffled appearance of the sliding epithelial cells, decreased expression of yap1-downstream targets and transient impairment of the actomyosin ring at the syncytial layer. Our study also shows that, rather than competing with yap1, vgll4a modulates the levels of the E-cadherin/β-catenin adhesion complex at the blastomeres' plasma membrane and hence their actin cortex distribution. Taking these results together, we propose that maternal vgll4a acts at epiboly initiation upstream of yap1 and the E-cadherin/β-catenin adhesion complex, contributing to a proper balance between tissue tension/cohesion and contractility, thereby promoting a timely epiboly progression.
Collapse
Affiliation(s)
- Carlos Camacho-Macorra
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Noemí Tabanera
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Elena Sánchez-Bustamante
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Marcos J Cardozo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
4
|
Sousa-Ortega A, Vázquez-Marín J, Sanabria-Reinoso E, Corbacho J, Polvillo R, Campoy-López A, Buono L, Loosli F, Almuedo-Castillo M, Martínez-Morales JR. A Yap-dependent mechanoregulatory program sustains cell migration for embryo axis assembly. Nat Commun 2023; 14:2804. [PMID: 37193708 DOI: 10.1038/s41467-023-38482-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
The assembly of the embryo's primary axis is a fundamental landmark for the establishment of the vertebrate body plan. Although the morphogenetic movements directing cell convergence towards the midline have been described extensively, little is known on how gastrulating cells interpret mechanical cues. Yap proteins are well-known transcriptional mechanotransducers, yet their role in gastrulation remains elusive. Here we show that the double knockout of yap and its paralog yap1b in medaka results in an axis assembly failure, due to reduced displacement and migratory persistence in mutant cells. Accordingly, we identified genes involved in cytoskeletal organization and cell-ECM adhesion as potentially direct Yap targets. Dynamic analysis of live sensors and downstream targets reveal that Yap is acting in migratory cells, promoting cortical actin and focal adhesions recruitment. Our results indicate that Yap coordinates a mechanoregulatory program to sustain intracellular tension and maintain the directed cell migration for embryo axis development.
Collapse
Affiliation(s)
- Ana Sousa-Ortega
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013, Sevilla, Spain
| | | | | | - Jorge Corbacho
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013, Sevilla, Spain
| | - Rocío Polvillo
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013, Sevilla, Spain
| | | | - Lorena Buono
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013, Sevilla, Spain
| | - Felix Loosli
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | | |
Collapse
|
5
|
Laureano AS, Flaherty K, Hinman AM, Jadali A, Nakamura T, Higashijima SI, Sabaawy HE, Kwan KY. shox2 is required for vestibular statoacoustic neuron development. Biol Open 2023; 11:286143. [PMID: 36594417 PMCID: PMC9838637 DOI: 10.1242/bio.059599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/22/2022] [Indexed: 01/04/2023] Open
Abstract
Homeobox genes act at the top of genetic hierarchies to regulate cell specification and differentiation during embryonic development. We identified the short stature homeobox domain 2 (shox2) transcription factor that is required for vestibular neuron development. shox2 transcripts are initially localized to the otic placode of the developing inner ear where neurosensory progenitors reside. To study shox2 function, we generated CRISPR-mediated mutant shox2 fish. Mutant embryos display behaviors associated with vestibular deficits and showed reduced number of anterior statoacoustic ganglion neurons that innervate the utricle, the vestibular organ in zebrafish. Moreover, a shox2-reporter fish showed labeling of developing statoacoustic ganglion neurons in the anterior macula of the otic vesicle. Single cell RNA-sequencing of cells from the developing otic vesicle of shox2 mutants revealed altered otic progenitor profiles, while single molecule in situ assays showed deregulated levels of transcripts in developing neurons. This study implicates a role for shox2 in development of vestibular but not auditory statoacoustic ganglion neurons.
Collapse
Affiliation(s)
- Alejandra S. Laureano
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ 08854, USA,Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, NJ 08854, USA
| | - Kathleen Flaherty
- Department of Comparative Medicine Resources, Rutgers University, Piscataway, NJ 08854, USA
| | - Anna-Maria Hinman
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ 08854, USA,Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, NJ 08854, USA
| | - Azadeh Jadali
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ 08854, USA,Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, NJ 08854, USA
| | - Tetsuya Nakamura
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Shin-ichi Higashijima
- Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems, Okazaki, Aichi 444-8787, Japan
| | - Hatim E. Sabaawy
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,Department of Medicine RBHS-Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Kelvin Y. Kwan
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ 08854, USA,Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, NJ 08854, USA,Author for correspondence ()
| |
Collapse
|
6
|
Garduño-Rosales M, Callejas-Negrete OA, Medina-Castellanos E, Bartnicki-García S, Herrera-Estrella A, Mouriño-Pérez RR. F-actin dynamics following mechanical injury of Trichoderma atroviride and Neurospora crassa hyphae. Fungal Genet Biol 2022; 159:103672. [PMID: 35150841 DOI: 10.1016/j.fgb.2022.103672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 11/04/2022]
Abstract
We investigated hyphae regeneration in Trichoderma atroviride and Neurospora crassa, with particular focus on determining the role of the actin cytoskeleton after mechanical injury. Filamentous actin (F-actin) dynamics were observed by live-cell confocal microscopy in both T. atroviride and N. crassa strains expressing Lifeact-GFP. In growing hyphae of both fungi, F-actin localized in three different structural forms: patches, cables and actomyosin rings. Most patches were conspicuously arranged in a collar in the hyphal subapex. A strong F-actin signal, likely actin filaments, colocalized with the core of the Spitzenkörper. Filaments and cables of F-actin we observed along the cortex throughout hyphae. Following mechanical damage at the margin of growing mycelia of T. atroviride and N. crassa, the severed hyphae lost their cytoplasmic contents, but plugging of the septal pore by a Woronin body, the rest of the hyphal tube remained whole. In both fungi, patches of F-actin began accumulating next to the plugged septum. Regeneration was attained by the emergence of a new hyphal tube as an extension of the plugged septum wall. The septum wall was gradually remodeled into the apical wall of the emerging hypha. Whereas in T. atroviride the re-initiation of polarized growth took about ∼1 h, in N. crassa, actin patch accumulation began almost immediately, and new growing hyphae were observed ∼30 min after injury. By confocal microscopy, we found that chitin synthase 1 (CHS-1), a microvesicle (chitosome) component, accumulated next to the plugged septum in regenerating hyphae of N. crassa. We concluded that the actin cytoskeleton plays a key role in hyphal regeneration by supporting membrane remodeling, helping to facilitate transport of vesicles responsible for new wall growth and organization of the new tip-growth apparatus.
Collapse
Affiliation(s)
- Marisela Garduño-Rosales
- Departamento de Microbiología. Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, B.C., México
| | - Olga A Callejas-Negrete
- Departamento de Microbiología. Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, B.C., México
| | - Elizabeth Medina-Castellanos
- Departamento de Microbiología. Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, B.C., México; Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV-Irapuato. Irapuato, Gto., México
| | - Salomon Bartnicki-García
- Departamento de Microbiología. Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, B.C., México
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV-Irapuato. Irapuato, Gto., México
| | - Rosa R Mouriño-Pérez
- Departamento de Microbiología. Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, B.C., México.
| |
Collapse
|
7
|
Hadjittofi C, Feretis M, Martin J, Harper S, Huguet E. Liver regeneration biology: Implications for liver tumour therapies. World J Clin Oncol 2021; 12:1101-1156. [PMID: 35070734 PMCID: PMC8716989 DOI: 10.5306/wjco.v12.i12.1101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
The liver has remarkable regenerative potential, with the capacity to regenerate after 75% hepatectomy in humans and up to 90% hepatectomy in some rodent models, enabling it to meet the challenge of diverse injury types, including physical trauma, infection, inflammatory processes, direct toxicity, and immunological insults. Current understanding of liver regeneration is based largely on animal research, historically in large animals, and more recently in rodents and zebrafish, which provide powerful genetic manipulation experimental tools. Whilst immensely valuable, these models have limitations in extrapolation to the human situation. In vitro models have evolved from 2-dimensional culture to complex 3 dimensional organoids, but also have shortcomings in replicating the complex hepatic micro-anatomical and physiological milieu. The process of liver regeneration is only partially understood and characterized by layers of complexity. Liver regeneration is triggered and controlled by a multitude of mitogens acting in autocrine, paracrine, and endocrine ways, with much redundancy and cross-talk between biochemical pathways. The regenerative response is variable, involving both hypertrophy and true proliferative hyperplasia, which is itself variable, including both cellular phenotypic fidelity and cellular trans-differentiation, according to the type of injury. Complex interactions occur between parenchymal and non-parenchymal cells, and regeneration is affected by the status of the liver parenchyma, with differences between healthy and diseased liver. Finally, the process of termination of liver regeneration is even less well understood than its triggers. The complexity of liver regeneration biology combined with limited understanding has restricted specific clinical interventions to enhance liver regeneration. Moreover, manipulating the fundamental biochemical pathways involved would require cautious assessment, for fear of unintended consequences. Nevertheless, current knowledge provides guiding principles for strategies to optimise liver regeneration potential.
Collapse
Affiliation(s)
- Christopher Hadjittofi
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Michael Feretis
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Jack Martin
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Simon Harper
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Huguet
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
8
|
Moreno-Mármol T, Ledesma-Terrón M, Tabanera N, Martin-Bermejo MJ, Cardozo MJ, Cavodeassi F, Bovolenta P. Stretching of the retinal pigment epithelium contributes to zebrafish optic cup morphogenesis. eLife 2021; 10:63396. [PMID: 34545806 PMCID: PMC8530511 DOI: 10.7554/elife.63396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
The vertebrate eye primordium consists of a pseudostratified neuroepithelium, the optic vesicle (OV), in which cells acquire neural retina or retinal pigment epithelium (RPE) fates. As these fates arise, the OV assumes a cup shape, influenced by mechanical forces generated within the neural retina. Whether the RPE passively adapts to retinal changes or actively contributes to OV morphogenesis remains unexplored. We generated a zebrafish Tg(E1-bhlhe40:GFP) line to track RPE morphogenesis and interrogate its participation in OV folding. We show that, in virtual absence of proliferation, RPE cells stretch and flatten, thereby matching the retinal curvature and promoting OV folding. Localized interference with the RPE cytoskeleton disrupts tissue stretching and OV folding. Thus, extreme RPE flattening and accelerated differentiation are efficient solutions adopted by fast-developing species to enable timely optic cup formation. This mechanism differs in amniotes, in which proliferation drives RPE expansion with a much-reduced need of cell flattening. Rounded eyeballs help to optimize vision – but how do they acquire their distinctive shape? In animals with backbones, including humans, the eye begins to form early in development. A single layer of embryonic tissue called the optic vesicle reorganizes itself into a two-layered structure: a thin outer layer of cells, known as the retinal pigmented epithelium (RPE for short), and a thicker inner layer called the neural retina. If this process fails, the animal may be born blind or visually impaired. How this flat two-layered structure becomes round is still being investigated. In fish, studies have shown that the inner cell layer – the neural retina – generates mechanical forces that cause the developing tissue to curve inwards to form a cup-like shape. But it was unclear whether the outer layer of cells (the RPE) also contributed to this process. Moreno-Marmol et al. were able to investigate this question by genetically modifying zebrafish to make all new RPE cells fluoresce. Following the early development of the zebrafish eye under a microscope revealed that RPE cells flattened themselves into long thin structures that stretched to cover the entire neural retina. This change was made possible by the cell’s internal skeleton reorganizing. In fact, preventing this reorganization stopped the RPE cells from flattening, and precluded the optic cup from acquiring its curved shape. The results thus confirmed a direct role for the RPE in generating curvature. The entire process did not require the RPE to produce new cells, allowing the curved shape to emerge in just a few hours. This is a major advantage for fast-developing species such as zebrafish. In species whose embryos develop more slowly, such as mice and humans, the RPE instead grows by producing additional cells – a process that takes many days. The development of the eye thus shows how various species use different evolutionary approaches to achieve a common goal.
Collapse
Affiliation(s)
- Tania Moreno-Mármol
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Mario Ledesma-Terrón
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, Madrid, Spain
| | - Noemi Tabanera
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Maria Jesús Martin-Bermejo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Marcos J Cardozo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Florencia Cavodeassi
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
9
|
Bornhorst D, Abdelilah-Seyfried S. Strong as a Hippo's Heart: Biomechanical Hippo Signaling During Zebrafish Cardiac Development. Front Cell Dev Biol 2021; 9:731101. [PMID: 34422841 PMCID: PMC8375320 DOI: 10.3389/fcell.2021.731101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
The heart is comprised of multiple tissues that contribute to its physiological functions. During development, the growth of myocardium and endocardium is coupled and morphogenetic processes within these separate tissue layers are integrated. Here, we discuss the roles of mechanosensitive Hippo signaling in growth and morphogenesis of the zebrafish heart. Hippo signaling is involved in defining numbers of cardiac progenitor cells derived from the secondary heart field, in restricting the growth of the epicardium, and in guiding trabeculation and outflow tract formation. Recent work also shows that myocardial chamber dimensions serve as a blueprint for Hippo signaling-dependent growth of the endocardium. Evidently, Hippo pathway components act at the crossroads of various signaling pathways involved in embryonic zebrafish heart development. Elucidating how biomechanical Hippo signaling guides heart morphogenesis has direct implications for our understanding of cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Dorothee Bornhorst
- Stem Cell Program, Division of Hematology and Oncology, Boston Children's Hospital, Boston, MA, United States.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Institute of Molecular Biology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
10
|
Rödel CJ, Abdelilah-Seyfried S. A zebrafish toolbox for biomechanical signaling in cardiovascular development and disease. Curr Opin Hematol 2021; 28:198-207. [PMID: 33714969 DOI: 10.1097/moh.0000000000000648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW The zebrafish embryo has emerged as a powerful model organism to investigate the mechanisms by which biophysical forces regulate vascular and cardiac cell biology during development and disease. A versatile arsenal of methods and tools is available to manipulate and analyze biomechanical signaling. This review aims to provide an overview of the experimental strategies and tools that have been utilized to study biomechanical signaling in cardiovascular developmental processes and different vascular disease models in the zebrafish embryo. Within the scope of this review, we focus on work published during the last two years. RECENT FINDINGS Genetic and pharmacological tools for the manipulation of cardiac function allow alterations of hemodynamic flow patterns in the zebrafish embryo and various types of transgenic lines are available to report endothelial cell responses to biophysical forces. These tools have not only revealed the impact of biophysical forces on cardiovascular development but also helped to establish more accurate models for cardiovascular diseases including cerebral cavernous malformations, hereditary hemorrhagic telangiectasias, arteriovenous malformations, and lymphangiopathies. SUMMARY The zebrafish embryo is a valuable vertebrate model in which in-vivo manipulations of biophysical forces due to cardiac contractility and blood flow can be performed. These analyses give important insights into biomechanical signaling pathways that control endothelial and endocardial cell behaviors. The technical advances using this vertebrate model will advance our understanding of the impact of biophysical forces in cardiovascular pathologies.
Collapse
Affiliation(s)
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Peralta M, Ortiz Lopez L, Jerabkova K, Lucchesi T, Vitre B, Han D, Guillemot L, Dingare C, Sumara I, Mercader N, Lecaudey V, Delaval B, Meilhac SM, Vermot J. Intraflagellar Transport Complex B Proteins Regulate the Hippo Effector Yap1 during Cardiogenesis. Cell Rep 2021; 32:107932. [PMID: 32698004 DOI: 10.1016/j.celrep.2020.107932] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Cilia and the intraflagellar transport (IFT) proteins involved in ciliogenesis are associated with congenital heart diseases (CHDs). However, the molecular links between cilia, IFT proteins, and cardiogenesis are yet to be established. Using a combination of biochemistry, genetics, and live-imaging methods, we show that IFT complex B proteins (Ift88, Ift54, and Ift20) modulate the Hippo pathway effector YAP1 in zebrafish and mouse. We demonstrate that this interaction is key to restrict the formation of the proepicardium and the myocardium. In cellulo experiments suggest that IFT88 and IFT20 interact with YAP1 in the cytoplasm and functionally modulate its activity, identifying a molecular link between cilia-related proteins and the Hippo pathway. Taken together, our results highlight a noncanonical role for IFT complex B proteins during cardiogenesis and shed light on a mechanism of action for ciliary proteins in YAP1 regulation.
Collapse
Affiliation(s)
- Marina Peralta
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Laia Ortiz Lopez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Katerina Jerabkova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Tommaso Lucchesi
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France; INSERM UMR1163, Université Paris Descartes, Paris, France; Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Benjamin Vitre
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS, Université de Montpellier, Montpellier, France
| | - Dong Han
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France; INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Laurent Guillemot
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France; INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Chaitanya Dingare
- Institute for Cell Biology and Neurosciences, Goethe University of Frankfurt, Frankfurt, Germany
| | - Izabela Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern, Switzerland; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Virginie Lecaudey
- Institute for Cell Biology and Neurosciences, Goethe University of Frankfurt, Frankfurt, Germany
| | - Benedicte Delaval
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS, Université de Montpellier, Montpellier, France
| | - Sigolène M Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France; INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France; Sorbonne Université, Collège Doctoral, F-75005, Paris, France; Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
12
|
Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling. Genes (Basel) 2021; 12:genes12040553. [PMID: 33920182 PMCID: PMC8070103 DOI: 10.3390/genes12040553] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Oncogenic RAS (Rat sarcoma) mutations drive more than half of human cancers, and RAS inhibition is the holy grail of oncology. Thirty years of relentless efforts and harsh disappointments have taught us about the intricacies of oncogenic RAS signalling that allow us to now get a pharmacological grip on this elusive protein. The inhibition of effector pathways, such as the RAF-MEK-ERK pathway, has largely proven disappointing. Thus far, most of these efforts were aimed at blocking the activation of ERK. Here, we discuss RAF-dependent pathways that are regulated through RAF functions independent of catalytic activity and their potential role as targets to block oncogenic RAS signalling. We focus on the now well documented roles of RAF kinase-independent functions in apoptosis, cell cycle progression and cell migration.
Collapse
|
13
|
Clark BS, Miesfeld JB, Flinn MA, Collery RF, Link BA. Dynamic Polarization of Rab11a Modulates Crb2a Localization and Impacts Signaling to Regulate Retinal Neurogenesis. Front Cell Dev Biol 2021; 8:608112. [PMID: 33634099 PMCID: PMC7900515 DOI: 10.3389/fcell.2020.608112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/28/2020] [Indexed: 01/31/2023] Open
Abstract
Interkinetic nuclear migration (IKNM) is the process in which pseudostratified epithelial nuclei oscillate from the apical to basal surface and in phase with the mitotic cycle. In the zebrafish retina, neuroepithelial retinal progenitor cells (RPCs) increase Notch activity with apical movement of the nuclei, and the depth of nuclear migration correlates with the probability that the next cell division will be neurogenic. This study focuses on the mechanisms underlying the relationships between IKNM, cell signaling, and neurogenesis. In particular, we have explored the role IKNM has on endosome biology within RPCs. Through genetic manipulation and live imaging in zebrafish, we find that early (Rab5-positive) and recycling (Rab11a-positive) endosomes polarize in a dynamic fashion within RPCs and with reference to nuclear position. Functional analyses suggest that dynamic polarization of recycling endosomes and their activity within the neuroepithelia modulates the subcellular localization of Crb2a, consequently affecting multiple signaling pathways that impact neurogenesis including Notch, Hippo, and Wnt activities. As nuclear migration is heterogenous and asynchronous among RPCs, Rab11a-affected signaling within the neuroepithelia is modulated in a differential manner, providing mechanistic insight to the correlation of IKNM and selection of RPCs to undergo neurogenesis.
Collapse
Affiliation(s)
- Brian S Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Joel B Miesfeld
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael A Flinn
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ross F Collery
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin Eye Institute, Milwaukee, WI, United States
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
14
|
Sun WR, Ramirez S, Spiller KE, Zhao Y, Fuhrmann S. Nf2 fine-tunes proliferation and tissue alignment during closure of the optic fissure in the embryonic mouse eye. Hum Mol Genet 2020; 29:3373-3387. [PMID: 33075808 DOI: 10.1093/hmg/ddaa228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 11/14/2022] Open
Abstract
Uveal coloboma represents one of the most common congenital ocular malformations accounting for up to 10% of childhood blindness (~1 in 5000 live birth). Coloboma originates from defective fusion of the optic fissure (OF), a transient gap that forms during eye morphogenesis by asymmetric, ventral invagination. Genetic heterogeneity combined with the activity of developmentally regulated genes suggests multiple mechanisms regulating OF closure. The tumor suppressor and FERM domain protein Neurofibromin 2 (NF2) controls diverse processes in cancer, development and regeneration, via Hippo pathway and cytoskeleton regulation. In humans, NF2 mutations can cause ocular abnormalities, including coloboma, however, its actual role in OF closure is unknown. Using conditional inactivation in the embryonic mouse eye, our data indicate that loss of Nf2 function results in a novel underlying cause for coloboma. In particular, mutant eyes show substantially increased retinal pigmented epithelium (RPE) proliferation in the fissure region with concomitant acquisition of RPE cell fate. Cells lining the OF margin can maintain RPE fate ectopically and fail to transition from neuroepithelial to cuboidal shape. In the dorsal RPE of the optic cup, Nf2 inactivation leads to a robust increase in cell number, with local disorganization of the cytoskeleton components F-actin and pMLC2. We propose that RPE hyperproliferation is the primary cause for the observed defects causing insufficient alignment of the OF margins in Nf2 mutants and failure to fuse properly, resulting in persistent coloboma. Our findings indicate that limiting proliferation particularly in the RPE layer is a critical mechanism during OF closure.
Collapse
Affiliation(s)
- Wesley R Sun
- Department of Ophthalmology and Visual Sciences, VEI, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sara Ramirez
- Department of Ophthalmology and Visual Sciences, VEI, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Kelly E Spiller
- Department of Ophthalmology and Visual Sciences, VEI, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yan Zhao
- Department of Ophthalmology and Visual Sciences, VEI, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sabine Fuhrmann
- Department of Ophthalmology and Visual Sciences, VEI, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| |
Collapse
|
15
|
Lawrence EA, Hammond CL, Blain EJ. Potential of zebrafish as a model to characterise MicroRNA profiles in mechanically mediated joint degeneration. Histochem Cell Biol 2020; 154:521-531. [PMID: 32935147 PMCID: PMC7609428 DOI: 10.1007/s00418-020-01918-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 12/19/2022]
Abstract
Mechanically mediated joint degeneration and cartilage dyshomeostasis is implicated in highly prevalent diseases such as osteoarthritis. Increasingly, MicroRNAs are being associated with maintaining the normal state of cartilage, making them an exciting and potentially key contributor to joint health and disease onset. Here, we present a summary of current in vitro and in vivo models which can be used to study the role of mechanical load and MicroRNAs in joint degeneration, including: non-invasive murine models of PTOA, surgical models which involve ligament transection, and unloading models based around immobilisation of joints or removal of load from the joint through suspension. We also discuss how zebrafish could be used to advance this field, namely through the availability of transgenic lines relevant to cartilage homeostasis and the ability to accurately map strain through the cartilage, enabling the response of downstream MicroRNA targets to be followed dynamically at a cellular level in areas of high and low strain.
Collapse
Affiliation(s)
- Elizabeth A Lawrence
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| | - Chrissy L Hammond
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Emma J Blain
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| |
Collapse
|
16
|
Flinn MA, Otten C, Brandt ZJ, Bostrom JR, Kenarsary A, Wan TC, Auchampach JA, Abdelilah-Seyfried S, O'Meara CC, Link BA. Llgl1 regulates zebrafish cardiac development by mediating Yap stability in cardiomyocytes. Development 2020; 147:147/16/dev193581. [PMID: 32843528 DOI: 10.1242/dev.193581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/10/2020] [Indexed: 01/19/2023]
Abstract
The Hippo-Yap pathway regulates multiple cellular processes in response to mechanical and other stimuli. In Drosophila, the polarity protein Lethal (2) giant larvae [L(2)gl], negatively regulates Hippo-mediated transcriptional output. However, in vertebrates, little is known about its homolog Llgl1. Here, we define a novel role for vertebrate Llgl1 in regulating Yap stability in cardiomyocytes, which impacts heart development. In contrast to the role of Drosophila L(2)gl, Llgl1 depletion in cultured rat cardiomyocytes decreased Yap protein levels and blunted target gene transcription without affecting Yap transcript abundance. Llgl1 depletion in zebrafish resulted in larger and dysmorphic cardiomyocytes, pericardial effusion, impaired blood flow and aberrant valvulogenesis. Cardiomyocyte Yap protein levels were decreased in llgl1 morphants, whereas Notch, which is regulated by hemodynamic forces and participates in valvulogenesis, was more broadly activated. Consistent with the role of Llgl1 in regulating Yap stability, cardiomyocyte-specific overexpression of Yap in Llgl1-depleted embryos ameliorated pericardial effusion and restored blood flow velocity. Altogether, our data reveal that vertebrate Llgl1 is crucial for Yap stability in cardiomyocytes and its absence impairs cardiac development.
Collapse
Affiliation(s)
- Michael A Flinn
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Cécile Otten
- Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Zachary J Brandt
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jonathan R Bostrom
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Aria Kenarsary
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Tina C Wan
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John A Auchampach
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Salim Abdelilah-Seyfried
- Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany.,Institute for Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Caitlin C O'Meara
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA .,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
17
|
van Soldt BJ, Cardoso WV. Hippo-Yap/Taz signaling: Complex network interactions and impact in epithelial cell behavior. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e371. [PMID: 31828974 DOI: 10.1002/wdev.371] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
The Hippo pathway has emerged as a crucial integrator of signals in biological events from development to adulthood and in diseases. Although extensively studied in Drosophila and in cell cultures, major gaps of knowledge still remain on how this pathway functions in mammalian systems. The pathway consists of a growing number of components, including core kinases and adaptor proteins, which control the subcellular localization of the transcriptional co-activators Yap and Taz through phosphorylation of serines at key sites. When localized to the nucleus, Yap/Taz interact with TEAD transcription factors to induce transcriptional programs of proliferation, stemness, and growth. In the cytoplasm, Yap/Taz interact with multiple pathways to regulate a variety of cellular functions or are targeted for degradation. The Hippo pathway receives cues from diverse intracellular and extracellular inputs, including growth factor and integrin signaling, polarity complexes, and cell-cell junctions. This review highlights the mechanisms of regulation of Yap/Taz nucleocytoplasmic shuttling and their implications for epithelial cell behavior using the lung as an intriguing example of this paradigm. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Signaling Pathways > Cell Fate Signaling Establishment of Spatial and Temporal Patterns > Cytoplasmic Localization.
Collapse
Affiliation(s)
- Benjamin J van Soldt
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care Medicine, Columbia University Irving Medical Center, New York, New York.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| | - Wellington V Cardoso
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care Medicine, Columbia University Irving Medical Center, New York, New York.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
18
|
Duchemin AL, Vignes H, Vermot J. Mechanically activated piezo channels modulate outflow tract valve development through the Yap1 and Klf2-Notch signaling axis. eLife 2019; 8:44706. [PMID: 31524599 PMCID: PMC6779468 DOI: 10.7554/elife.44706] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 09/14/2019] [Indexed: 12/12/2022] Open
Abstract
Mechanical forces are well known for modulating heart valve developmental programs. Yet, it is still unclear how genetic programs and mechanosensation interact during heart valve development. Here, we assessed the mechanosensitive pathways involved during zebrafish outflow tract (OFT) valve development in vivo. Our results show that the hippo effector Yap1, Klf2, and the Notch signaling pathway are all essential for OFT valve morphogenesis in response to mechanical forces, albeit active in different cell layers. Furthermore, we show that Piezo and TRP mechanosensitive channels are important factors modulating these pathways. In addition, live reporters reveal that Piezo controls Klf2 and Notch activity in the endothelium and Yap1 localization in the smooth muscle progenitors to coordinate OFT valve morphogenesis. Together, this work identifies a unique morphogenetic program during OFT valve formation and places Piezo as a central modulator of the cell response to forces in this process.
Collapse
Affiliation(s)
- Anne-Laure Duchemin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Hélène Vignes
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
19
|
Brandt ZJ, North PN, Link BA. Somatic Mutations of lats2 Cause Peripheral Nerve Sheath Tumors in Zebrafish. Cells 2019; 8:E972. [PMID: 31450674 PMCID: PMC6770745 DOI: 10.3390/cells8090972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
The cellular signaling pathways underlying peripheral nerve sheath tumor (PNST) formation are poorly understood. Hippo signaling has been recently implicated in the biology of various cancers, and is thought to function downstream of mutations in the known PNST driver, NF2. Utilizing CRISPR-Cas9 gene editing, we targeted the canonical Hippo signaling kinase Lats2. We show that, while germline deletion leads to early lethality, targeted somatic mutations of zebrafish lats2 leads to peripheral nerve sheath tumor formation. These peripheral nerve sheath tumors exhibit high levels of Hippo effectors Yap and Taz, suggesting that dysregulation of these transcriptional co-factors drives PNST formation in this model. These data indicate that somatic lats2 deletion in zebrafish can serve as a powerful experimental platform to probe the mechanisms of PNST formation and progression.
Collapse
Affiliation(s)
- Zachary J Brandt
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Paula N North
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
20
|
Whitesell TR, Chrystal PW, Ryu JR, Munsie N, Grosse A, French CR, Workentine ML, Li R, Zhu LJ, Waskiewicz A, Lehmann OJ, Lawson ND, Childs SJ. foxc1 is required for embryonic head vascular smooth muscle differentiation in zebrafish. Dev Biol 2019; 453:34-47. [PMID: 31199900 DOI: 10.1016/j.ydbio.2019.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/29/2019] [Accepted: 06/09/2019] [Indexed: 11/15/2022]
Abstract
Vascular smooth muscle of the head derives from neural crest, but developmental mechanisms and early transcriptional drivers of the vSMC lineage are not well characterized. We find that in early development, the transcription factor foxc1b is expressed in mesenchymal cells that associate with the vascular endothelium. Using timelapse imaging, we observe that foxc1b expressing mesenchymal cells differentiate into acta2 expressing vascular mural cells. We show that in zebrafish, while foxc1b is co-expressed in acta2 positive smooth muscle cells that associate with large diameter vessels, it is not co-expressed in capillaries where pdgfrβ positive pericytes are located. In addition to being an early marker of the lineage, foxc1 is essential for vSMC differentiation; we find that foxc1 loss of function mutants have defective vSMC differentiation and that early genetic ablation of foxc1b or acta2 expressing populations blocks vSMC differentiation. Furthermore, foxc1 is expressed upstream of acta2 and is required for acta2 expression in vSMCs. Using RNA-Seq we determine an enriched intersectional gene expression profile using dual expression of foxc1b and acta2 to identify novel vSMC markers. Taken together, our data suggests that foxc1 is a marker of vSMCs and plays a critical functional role in promoting their differentiation.
Collapse
Affiliation(s)
- Thomas R Whitesell
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
| | - Paul W Chrystal
- Departments of Ophthalmology, and Medical Genetics, University of Alberta, Edmonton, Alberta, Canada; Department of Biological Sciences, CW405, Biological Sciences Bldg., 11455, Saskatchewan Dr., University of Alberta, Edmonton, AB, T6G 2E9, Canada; Women & Children's Health Research Institute, ECHA 4-081, 11405 87, Ave NW, University of Alberta, Edmonton, AB, T6G 1C9, Canada; Neurosciences and Mental Health Institute, 4-120 Katz Group Centre, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Jae-Ryeon Ryu
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
| | - Nicole Munsie
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
| | - Ann Grosse
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA, 01605
| | - Curtis R French
- Department of Biological Sciences, CW405, Biological Sciences Bldg., 11455, Saskatchewan Dr., University of Alberta, Edmonton, AB, T6G 2E9, Canada; Women & Children's Health Research Institute, ECHA 4-081, 11405 87, Ave NW, University of Alberta, Edmonton, AB, T6G 1C9, Canada; Neurosciences and Mental Health Institute, 4-120 Katz Group Centre, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Matthew L Workentine
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
| | - Rui Li
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA, 01605
| | - Lihua Julie Zhu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA, 01605; Program in Bioinformatics and Integrative Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA, 01605
| | - Andrew Waskiewicz
- Department of Biological Sciences, CW405, Biological Sciences Bldg., 11455, Saskatchewan Dr., University of Alberta, Edmonton, AB, T6G 2E9, Canada; Women & Children's Health Research Institute, ECHA 4-081, 11405 87, Ave NW, University of Alberta, Edmonton, AB, T6G 1C9, Canada; Neurosciences and Mental Health Institute, 4-120 Katz Group Centre, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Ordan J Lehmann
- Departments of Ophthalmology, and Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Nathan D Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA, 01605
| | - Sarah J Childs
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1.
| |
Collapse
|
21
|
Isani MA, Gee K, Schall K, Schlieve CR, Fode A, Fowler KL, Grikscheit TC. Wnt signaling inhibition by monensin results in a period of Hippo pathway activation during intestinal adaptation in zebrafish. Am J Physiol Gastrointest Liver Physiol 2019; 316:G679-G691. [PMID: 30896968 DOI: 10.1152/ajpgi.00343.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intestinal adaptation (IA) is a critical response to increase epithelial surface area after intestinal loss. Short bowel syndrome (SBS) may follow massive intestinal resection in human patients, particularly without adequate IA. We previously validated a model in zebrafish (ZF) that recapitulates key SBS pathophysiological features. Previous RNA sequencing in this model identified upregulation of genes in the Wnt and Hippo pathways. We therefore sought to identify the timeline of increasing cell proliferation and considered the signaling that might underpin the epithelial remodeling of IA in SBS. SBS was created in a ZF model as previously reported and compared with sham fish with and without exposure to monensin, an ionophore known to inhibit canonical Wnt signaling. Rescue of the monensin effects was attempted with a glycogen synthase kinase 3 inhibitor that activates wnt signaling, CHIR-99021. A timeline was constructed to identify peak cellular proliferation, and the Wnt and Hippo pathways were evaluated. Peak stem cell proliferation and morphological changes of adaptation were identified at 7 days. Wnt inhibition diminished IA at 2 wk and resulted in activation of genes of the Wnt/β-catenin and Yes-associated protein (YAP)/Hippo pathway. Increased cytoplasmic YAP was observed in monensin-treated SBS fish. Genes of the WASP-interacting protein (WIP) pathway were elevated during Wnt blockade. In conclusion, cellular proliferation and morphological changes accompany SBS even in attempted Wnt blockade. Wnt/β-catenin, YAP/Hippo pathway, and WIP pathway genes increase during early Wnt blockade. Further understanding of the effects of Wnt and YAP pathway signaling in proliferating stem cells might enrich our knowledge of targets to assist IA. NEW & NOTEWORTHY Intestinal adaptation is a critical response to increase epithelial surface area after large intestinal losses. Inhibition of Wnt/β-catenin signaling impairs intestinal adaptation in a zebrafish model of short bowel syndrome. There is a subsequent upregulation in genes of the Yes-associated protein/Hippo and WIP pathway. These may be targets for future human therapies, as patients are salvaged by the compensation of increased intestinal epithelial surface area through successful intestinal adaptation.
Collapse
Affiliation(s)
- Mubina A Isani
- Division of Pediatric Surgery and Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles, California
| | - Kristin Gee
- Division of Pediatric Surgery and Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles, California
| | - Kathy Schall
- Division of Pediatric Surgery and Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles, California
| | - Christopher R Schlieve
- Division of Pediatric Surgery and Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles, California
| | - Alexa Fode
- Division of Pediatric Surgery and Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles, California
| | - Kathryn L Fowler
- Division of Pediatric Surgery and Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles, California
| | - Tracy C Grikscheit
- Division of Pediatric Surgery and Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles, California.,Department of Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
22
|
Lateral Inhibition in Cell Specification Mediated by Mechanical Signals Modulating TAZ Activity. Cell 2019; 176:1379-1392.e14. [PMID: 30773315 DOI: 10.1016/j.cell.2019.01.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/18/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
Cell fate specification by lateral inhibition typically involves contact signaling through the Delta-Notch signaling pathway. However, whether this is the only signaling mode mediating lateral inhibition remains unclear. Here we show that in zebrafish oogenesis, a group of cells within the granulosa cell layer at the oocyte animal pole acquire elevated levels of the transcriptional coactivator TAZ in their nuclei. One of these cells, the future micropyle precursor cell (MPC), accumulates increasingly high levels of nuclear TAZ and grows faster than its surrounding cells, mechanically compressing those cells, which ultimately lose TAZ from their nuclei. Strikingly, relieving neighbor-cell compression by MPC ablation or aspiration restores nuclear TAZ accumulation in neighboring cells, eventually leading to MPC re-specification from these cells. Conversely, MPC specification is defective in taz-/- follicles. These findings uncover a novel mode of lateral inhibition in cell fate specification based on mechanical signals controlling TAZ activity.
Collapse
|
23
|
Voltes A, Hevia CF, Engel C, Dingare C, Calzolari S, Terriente J, Norden C, Lecaudey V, Pujades C. Yap/Taz-TEAD activity links mechanical cues to progenitor cell behavior during zebrafish hindbrain segmentation. Development 2019; 146:dev.176735. [DOI: 10.1242/dev.176735] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/25/2019] [Indexed: 12/30/2022]
Abstract
Cells perceive their microenvironment through chemical and physical cues. However, how mechanical signals are interpreted during embryonic tissue deformation resulting in specific cell behaviors is largely unknown. The Yap/Taz family of transcriptional co-activators has emerged as an important regulator of tissue growth and regeneration, responding to physical cues from the extracellular matrix, cell shape changes and actomyosin cytoskeleton. In this study, we demonstrated the role of Yap/Taz-TEAD activity as a sensor of mechanical signals in the regulation of the progenitor behavior of boundary cells during zebrafish hindbrain compartmentalization. Monitoring of in vivo Yap/Taz-activity during hindbrain segmentation indicated that boundary cells responded to mechanical cues in a cell-autonomous manner through Yap/Taz-TEAD activity. Cell-lineage analysis revealed that Yap/Taz-TEAD boundary cells decreased their proliferative activity when Yap/Taz-TEAD activity ceased, which preceded changes in their cell fate from proliferating progenitors to differentiated neurons. Functional experiments demonstrated the pivotal role of Yap/Taz-TEAD signaling in maintaining progenitor features in the hindbrain boundary cell population.
Collapse
Affiliation(s)
- Adrià Voltes
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Covadonga F. Hevia
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Carolyn Engel
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | | - Simone Calzolari
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Javier Terriente
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
24
|
Dingare C, Niedzwetzki A, Klemmt PA, Godbersen S, Fuentes R, Mullins MC, Lecaudey V. The Hippo pathway effector Taz is required for cell morphogenesis and fertilization in zebrafish. Development 2018; 145:dev.167023. [PMID: 30327325 DOI: 10.1242/dev.167023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022]
Abstract
Hippo signaling is a critical pathway that integrates extrinsic and intrinsic mechanical cues to regulate organ size. Despite its essential role in organogenesis, little is known about its role in cell fate specification and differentiation. Here, we unravel a novel and unexpected role of the Hippo pathway effector Taz (wwtr1) in controlling the size, shape and fate of a unique cell in the zebrafish ovary. We show that wwtr1 mutant females are infertile. In teleosts, fertilization occurs through the micropyle, a funnel-like opening in the chorion, formed by a unique enlarged follicle cell, the micropylar cell (MC). We describe here, for the first time, the mechanism that underlies the differentiation of the MC. Our genetic analyses show that Taz is essential for MC fate acquisition and subsequent micropyle formation in zebrafish. We identify Taz as the first bona fide MC marker and show that Taz is specifically and strongly enriched in the MC precursor. Altogether, we performed the first genetic and molecular characterization of the MC and propose that Taz is a key regulator of MC fate.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Chaitanya Dingare
- Institute of Cell Biology and Neuroscience, Department of Developmental Biology of Vertebrates, Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany.,Developmental Biology, Institute for Biology I, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Alina Niedzwetzki
- Institute of Cell Biology and Neuroscience, Department of Developmental Biology of Vertebrates, Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Petra A Klemmt
- Institute of Cell Biology and Neuroscience, Department of Developmental Biology of Vertebrates, Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Svenja Godbersen
- Developmental Biology, Institute for Biology I, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Ricardo Fuentes
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Virginie Lecaudey
- Institute of Cell Biology and Neuroscience, Department of Developmental Biology of Vertebrates, Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany .,Developmental Biology, Institute for Biology I, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
25
|
Astone M, Lai JKH, Dupont S, Stainier DYR, Argenton F, Vettori A. Zebrafish mutants and TEAD reporters reveal essential functions for Yap and Taz in posterior cardinal vein development. Sci Rep 2018; 8:10189. [PMID: 29976931 PMCID: PMC6033906 DOI: 10.1038/s41598-018-27657-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/05/2018] [Indexed: 01/07/2023] Open
Abstract
As effectors of the Hippo signaling cascade, YAP1 and TAZ are transcriptional regulators playing important roles in development, tissue homeostasis and cancer. A number of different cues, including mechanotransduction of extracellular stimuli, adhesion molecules, oncogenic signaling and metabolism modulate YAP1/TAZ nucleo-cytoplasmic shuttling. In the nucleus, YAP1/TAZ tether with the DNA binding proteins TEADs, to activate the expression of target genes that regulate proliferation, migration, cell plasticity, and cell fate. Based on responsive elements present in the human and zebrafish promoters of the YAP1/TAZ target gene CTGF, we established zebrafish fluorescent transgenic reporter lines of Yap1/Taz activity. These reporter lines provide an in vivo view of Yap1/Taz activity during development and adulthood at the whole organism level. Transgene expression was detected in many larval tissues including the otic vesicles, heart, pharyngeal arches, muscles and brain and is prominent in endothelial cells. Analysis of vascular development in yap1/taz zebrafish mutants revealed specific defects in posterior cardinal vein (PCV) formation, with altered expression of arterial/venous markers. The overactivation of Yap1/Taz in endothelial cells was sufficient to promote an aberrant vessel sprouting phenotype. Our findings confirm and extend the emerging role of Yap1/Taz in vascular development including angiogenesis.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Connective Tissue Growth Factor/genetics
- Embryo, Nonmammalian
- Endothelial Cells/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Gene Expression Regulation, Developmental
- Genes, Reporter/genetics
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Luciferases/chemistry
- Luciferases/genetics
- Microscopy, Confocal
- Microscopy, Fluorescence
- Mutation
- Neovascularization, Physiologic/genetics
- Promoter Regions, Genetic/genetics
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcriptional Coactivator with PDZ-Binding Motif Proteins
- Transgenes/genetics
- Veins/cytology
- Veins/growth & development
- YAP-Signaling Proteins
- Zebrafish
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Matteo Astone
- University of Padova, Department of Biology, Padova, Italy
| | | | - Sirio Dupont
- University of Padova, Department of Molecular Medicine, Padova, Italy
| | | | | | - Andrea Vettori
- University of Padova, Department of Biology, Padova, Italy.
| |
Collapse
|
26
|
Lee M, Goraya N, Kim S, Cho SH. Hippo-yap signaling in ocular development and disease. Dev Dyn 2018; 247:794-806. [PMID: 29532607 PMCID: PMC5980750 DOI: 10.1002/dvdy.24628] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 12/17/2022] Open
Abstract
The Hippo-Yes associated protein (Yap) pathway plays an important role in organ size control by regulating cell proliferation, apoptosis, and stem cell renewal. Hippo-Yap signaling also functions at the level of cellular development in a variety of organs through its effects on cell cycle control, cell survival, cell polarity, and cell fate. Because of its important roles in normal development and homeostasis, abnormal regulation of this pathway has been shown to lead to pathological outcomes such as tissue overgrowth, tumor formation, and abnormal organogenesis, including ocular-specific disorders. In this review, we summarize how normal and perturbed control of Yap signaling is implicated in ocular development and disease Developmental Dynamics 247:794-806, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matthew Lee
- Temple University Lewis Katz School of Medicine, Temple University Lewis Katz School of Medicine 3500 N. Broad Street, Philadelphia, PA 19140
| | - Navneet Goraya
- Temple University Lewis Katz School of Medicine, Temple University Lewis Katz School of Medicine 3500 N. Broad Street, Philadelphia, PA 19140
| | - Seonhee Kim
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine 3500 N. Broad Street, Philadelphia, PA 19140
| | - Seo-Hee Cho
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine 3500 N. Broad Street, Philadelphia, PA 19140
| |
Collapse
|
27
|
Dynamic Tissue Rearrangements during Vertebrate Eye Morphogenesis: Insights from Fish Models. J Dev Biol 2018; 6:jdb6010004. [PMID: 29615553 PMCID: PMC5875564 DOI: 10.3390/jdb6010004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022] Open
Abstract
Over the last thirty years, fish models, such as the zebrafish and medaka, have become essential to pursue developmental studies and model human disease. Community efforts have led to the generation of wide collections of mutants, a complete sequence of their genomes, and the development of sophisticated genetic tools, enabling the manipulation of gene activity and labelling and tracking of specific groups of cells during embryonic development. When combined with the accessibility and optical clarity of fish embryos, these approaches have made of them an unbeatable model to monitor developmental processes in vivo and in real time. Over the last few years, live-imaging studies in fish have provided fascinating insights into tissue morphogenesis and organogenesis. This review will illustrate the advantages of fish models to pursue morphogenetic studies by highlighting the findings that, in the last decade, have transformed our understanding of eye morphogenesis.
Collapse
|
28
|
Yang W, Han W, Qin A, Wang Z, Xu J, Qian Y. The emerging role of Hippo signaling pathway in regulating osteoclast formation. J Cell Physiol 2018; 233:4606-4617. [PMID: 29219182 DOI: 10.1002/jcp.26372] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022]
Abstract
A delicate balance between osteoblastic bone formation and osteoclastic bone resorption is crucial for bone homeostasis. This process is regulated by the Hippo signaling pathway including key regulatory molecules RASSF2, NF2, MST1/2, SAV1, LATS1/2, MOB1, YAP, and TAZ. It is well established that the Hippo signaling pathway plays an important part in regulating osteoblast differentiation, but its role in osteoclast formation and activation remains poorly understood. In this review, we discuss the emerging role of Hippo-signaling pathway in osteoclast formation and bone homeostasis. It is revealed that specific molecules of the Hippo-signaling pathway take part in a stage specific regulation in pre-osteoclast proliferation, osteoclast differentiation and osteoclast apoptosis and survival. Upon activation, MST and LAST, transcriptional co-activators YAP and TAZ bind to the members of the TEA domain (TEAD) family transcription factors, and influence osteoclast differentiation via regulating the expression of downstream target genes such as connective tissue growth factor (CTGF/CCN2) and cysteine-rich protein 61 (CYR61/CCN1). In addition, through interacting or cross talking with RANKL-mediated signaling cascades including NF-κB, MAPKs, AP1, and NFATc1, Hippo-signaling molecules such as YAP/TAZ/TEAD complex, RASSF2, MST2, and Ajuba could also potentially modulate osteoclast differentiation and function. Elucidating the roles of the Hippo-signaling pathway in osteoclast development and specific molecules involved is important for understanding the mechanism of bone homeostasis and diseases.
Collapse
Affiliation(s)
- Wanlei Yang
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, P. R. China
| | - Weiqi Han
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, P. R. China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyi Wang
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yu Qian
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, P. R. China
| |
Collapse
|
29
|
Moon KH, Kim HT, Lee D, Rao MB, Levine EM, Lim DS, Kim JW. Differential Expression of NF2 in Neuroepithelial Compartments Is Necessary for Mammalian Eye Development. Dev Cell 2017; 44:13-28.e3. [PMID: 29249622 DOI: 10.1016/j.devcel.2017.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/10/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022]
Abstract
The optic neuroepithelial continuum of vertebrate eye develops into three differentially growing compartments: the retina, the ciliary margin (CM), and the retinal pigment epithelium (RPE). Neurofibromin 2 (Nf2) is strongly expressed in slowly expanding RPE and CM compartments, and the loss of mouse Nf2 causes hyperplasia in these compartments, replicating the ocular abnormalities seen in human NF2 patients. The hyperplastic ocular phenotypes were largely suppressed by heterozygous deletion of Yap and Taz, key targets of the Nf2-Hippo signaling pathway. We also found that, in addition to feedback transcriptional regulation of Nf2 by Yap/Taz in the CM, activation of Nf2 expression by Mitf in the RPE and suppression by Sox2 in retinal progenitor cells are necessary for the differential growth of the corresponding cell populations. Together, our findings reveal that Nf2 is a key player that orchestrates the differential growth of optic neuroepithelial compartments during vertebrate eye development.
Collapse
Affiliation(s)
- Kyeong Hwan Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hyoung-Tai Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dahye Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Mahesh B Rao
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Edward M Levine
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Dae-Sik Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| |
Collapse
|
30
|
Cechmanek PB, McFarlane S. Retinal pigment epithelium expansion around the neural retina occurs in two separate phases with distinct mechanisms. Dev Dyn 2017; 246:598-609. [PMID: 28556369 DOI: 10.1002/dvdy.24525] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/17/2017] [Accepted: 05/10/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The retinal pigment epithelium (RPE) is a specialized monolayer of epithelial cells that forms a tight barrier surrounding the neural retina. RPE cells are indispensable for mature photoreceptor renewal and survival, yet how the initial RPE cell population expands around the neural retina during eye development is poorly understood. RESULTS Here we characterize the differentiation, proliferation, and movements of RPE progenitors in the Zebrafish embryo over the period of optic cup morphogenesis. RPE progenitors are present in the dorsomedial eye vesicle shortly after eye vesicle evagination. We define two separate phases that allow for full RPE expansion. The first phase involves a previously uncharacterized antero-wards expansion of the RPE progenitor domain in the inner eye vesicle leaflet, driven largely by an increase in cell number. During this phase, RPE progenitors start to express differentiation markers. In the second phase, the progenitor domain stretches in the dorsoventral and posterior axes, involving cell movements and shape changes, and coinciding with optic cup morphogenesis. Significantly, cell division is not required for RPE expansion. CONCLUSIONS RPE development to produce the monolayer epithelium that covers the back of the neural retina occurs in two distinct phases driven by distinct mechanisms. Developmental Dynamics 246:598-609, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paula Bernice Cechmanek
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
31
|
Yap is essential for retinal progenitor cell cycle progression and RPE cell fate acquisition in the developing mouse eye. Dev Biol 2016; 419:336-347. [PMID: 27616714 DOI: 10.1016/j.ydbio.2016.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 12/30/2022]
Abstract
Yap functions as a transcriptional regulator by acting together with sequence-specific DNA binding factors and transcription cofactors to mediate cell proliferation in developing epithelial tissues and tumors. An upstream kinase cascade controls nuclear localization and function in response to partially identified exogenous signals, including cell-to-cell contact. Nevertheless, its role in CNS development is poorly understood. In order to investigate Yap function in developing CNS, we characterized the cellular outcomes after selective Yap gene ablation in developing ocular tissues. When Yap was lost, presumptive retinal pigment epithelium acquired anatomical and molecular characteristics resembling those of the retinal epithelium rather than of RPE, including loss of pigmentation, pseudostratified epithelial morphology and ectopic induction of markers for retinal progenitor cells, like Chx10, and neurons, like β-Tubulin III. In addition, developing retina showed signs of progressive degeneration, including laminar folding, thinning and cell loss, which resulted from multiple defects in cell proliferation and survival, and in junction integrity. Furthermore, Yap-deficient retinal progenitors displayed decreased S-phase cells and altered cell cycle progression. Altogether, our studies not only illustrate the canonical function of Yap in promoting the proliferation of progenitors, but also shed new light on its evolutionarily conserved, instructive role in regional specification, maintenance of junctional integrity and precise regulation of cell proliferation during neuroepithelial development.
Collapse
|
32
|
Uygur A, Lee RT. Mechanisms of Cardiac Regeneration. Dev Cell 2016; 36:362-74. [PMID: 26906733 DOI: 10.1016/j.devcel.2016.01.018] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/13/2016] [Accepted: 01/25/2016] [Indexed: 02/07/2023]
Abstract
Adult humans fail to regenerate their hearts following injury, and this failure to regenerate myocardium is a leading cause of heart failure and death worldwide. Although all adult mammals appear to lack significant cardiac regeneration potential, some vertebrates can regenerate myocardium throughout life. In addition, new studies indicate that mammals have cardiac regeneration potential during development and very soon after birth. The mechanisms of heart regeneration among model organisms, including neonatal mice, appear remarkably similar. Orchestrated waves of inflammation, matrix deposition and remodeling, and cardiomyocyte proliferation are commonly seen in heart regeneration models. Understanding why adult mammals develop extensive scarring instead of regeneration is a crucial goal for regenerative biology.
Collapse
Affiliation(s)
- Aysu Uygur
- Department of Stem Cell and Regenerative Biology, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Cambridge, MA 02139, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Cambridge, MA 02139, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
33
|
|
34
|
Pappalardo A, Porreca I, Caputi L, De Felice E, Schulte-Merker S, Zannini M, Sordino P. Thyroid development in zebrafish lacking Taz. Mech Dev 2015; 138 Pt 3:268-78. [PMID: 26478012 DOI: 10.1016/j.mod.2015.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
Abstract
Taz is a signal-responsive transcriptional coregulator implicated in several biological functions, from chondrogenesis to regulation of organ size. Less well studied, however, is its role in thyroid formation. Here, we explored the in vivo effects on thyroid development of morpholino (MO)-mediated knockdown of wwtr1, the gene encoding zebrafish Taz. The wwtr1 gene is expressed in the thyroid primordium and pharyngeal tissue of developing zebrafish. Compared to mammalian cells, in which Taz promotes expression of thyroid transcription factors and thyroid differentiation genes, wwtr1 MO injection in zebrafish had little or no effect on the expression of thyroid transcription factors, and differentially altered the expression of thyroid differentiation genes. Analysis of wwtr1 morphants at later stages of development revealed that the number and the lumen of thyroid follicles, and the number of thyroid follicle cells, were significantly smaller. In addition, Taz-depleted larvae displayed patterning defects in ventral cranial vessels that correlate with lateral displacement of thyroid follicles. These findings indicate that the zebrafish Taz protein is needed for the normal differentiation of the thyroid and are the first to suggest that Taz confers growth advantage to the endocrine gland.
Collapse
Affiliation(s)
- Andrea Pappalardo
- Institute of Experimental Endocrinology and Oncology 'G. Salvatore' - CNR, 80131 Naples, Italy; IRCCS Fondazione Stella Maris, 56018 Calambrone, Pisa, Italy
| | - Immacolata Porreca
- Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; IRGS, Biogem, 83031 Ariano Irpino, Avellino, Italy
| | - Luigi Caputi
- Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | | | | | - Mariastella Zannini
- Institute of Experimental Endocrinology and Oncology 'G. Salvatore' - CNR, 80131 Naples, Italy
| | - Paolo Sordino
- Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| |
Collapse
|
35
|
Cabochette P, Vega-Lopez G, Bitard J, Parain K, Chemouny R, Masson C, Borday C, Hedderich M, Henningfeld KA, Locker M, Bronchain O, Perron M. YAP controls retinal stem cell DNA replication timing and genomic stability. eLife 2015; 4:e08488. [PMID: 26393999 PMCID: PMC4578106 DOI: 10.7554/elife.08488] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/20/2015] [Indexed: 12/27/2022] Open
Abstract
The adult frog retina retains a reservoir of active neural stem cells that contribute to continuous eye growth throughout life. We found that Yap, a downstream effector of the Hippo pathway, is specifically expressed in these stem cells. Yap knock-down leads to an accelerated S-phase and an abnormal progression of DNA replication, a phenotype likely mediated by upregulation of c-Myc. This is associated with an increased occurrence of DNA damage and eventually p53-p21 pathway-mediated cell death. Finally, we identified PKNOX1, a transcription factor involved in the maintenance of genomic stability, as a functional and physical interactant of YAP. Altogether, we propose that YAP is required in adult retinal stem cells to regulate the temporal firing of replication origins and quality control of replicated DNA. Our data reinforce the view that specific mechanisms dedicated to S-phase control are at work in stem cells to protect them from genomic instability. DOI:http://dx.doi.org/10.7554/eLife.08488.001 In animals, stem cells divide to produce the new cells needed to grow and renew tissues and organs. Understanding the biology of these cells is of the utmost importance for developing new treatments for a wide range of human diseases, including neurodegenerative diseases and cancer. Before a stem cell divides, it copies its DNA and the two sets of genetic instructions are then separated so that the two daughter cells both have a complete set. This process needs to be as accurate as possible because any errors would result in incorrect genetic information being passed on to the daughter cells. Stem cells in the light-sensitive part of the eye—called the retina—divide to produce the cells that detect light and relay visual information to the brain. In many animals, these stem cells stop dividing soon after birth and the retina stops growing. However, the stem cells in frogs and fish continue to divide throughout the life of the animal, which enables the eye to keep on growing. A protein called YAP regulates the growth of organs in animal embryos, but it is not clear what role this protein plays in stem cells, particularly after birth. To address this question, Cabochette et al. studied YAP in the retina of frog tadpoles. The experiments show that YAP is produced in the stem cells of the retina after birth and is required for the retina to continue to grow. Cabochette et al. used tools called ‘photo-cleavable Morpholinos’ to alter the production of YAP in adult stem cells. The cells that produced less YAP copied their DNA more quickly and more of their DNA became damaged, which eventually led to the death of these cells. Further experiments revealed that YAP interacts with a protein called PKNOX1, which is involved in maintaining the integrity of DNA. Cabochette et al.'s findings provide the first insights into how YAP works in the stem cells of the retina and demonstrate that it plays a crucial role in regulating when DNA is copied. A future challenge is to find out whether YAP plays a similar role in the stem cells of other organs in adult animals. DOI:http://dx.doi.org/10.7554/eLife.08488.002
Collapse
Affiliation(s)
- Pauline Cabochette
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Orsay, France
| | - Guillermo Vega-Lopez
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Orsay, France
| | - Juliette Bitard
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Orsay, France
| | - Karine Parain
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Institute of Developmental Biochemistry, University of Goettingen, Goettingen, Germany
| | - Romain Chemouny
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Orsay, France
| | - Christel Masson
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Orsay, France
| | - Caroline Borday
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Orsay, France
| | - Marie Hedderich
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Institute of Developmental Biochemistry, University of Goettingen, Goettingen, Germany
| | - Kristine A Henningfeld
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Institute of Developmental Biochemistry, University of Goettingen, Goettingen, Germany
| | - Morgane Locker
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Orsay, France
| | - Odile Bronchain
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Orsay, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Orsay, France
| |
Collapse
|
36
|
Miesfeld JB, Gestri G, Clark BS, Flinn MA, Poole RJ, Bader JR, Besharse JC, Wilson SW, Link BA. Yap and Taz regulate retinal pigment epithelial cell fate. Development 2015; 142:3021-32. [PMID: 26209646 PMCID: PMC4582179 DOI: 10.1242/dev.119008] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 07/10/2015] [Indexed: 12/20/2022]
Abstract
The optic vesicle comprises a pool of bi-potential progenitor cells from which the retinal pigment epithelium (RPE) and neural retina fates segregate during ocular morphogenesis. Several transcription factors and signaling pathways have been shown to be important for RPE maintenance and differentiation, but an understanding of the initial fate specification and determination of this ocular cell type is lacking. We show that Yap/Taz-Tead activity is necessary and sufficient for optic vesicle progenitors to adopt RPE identity in zebrafish. A Tead-responsive transgene is expressed within the domain of the optic cup from which RPE arises, and Yap immunoreactivity localizes to the nuclei of prospective RPE cells. yap (yap1) mutants lack a subset of RPE cells and/or exhibit coloboma. Loss of RPE in yap mutants is exacerbated in combination with taz (wwtr1) mutant alleles such that, when Yap and Taz are both absent, optic vesicle progenitor cells completely lose their ability to form RPE. The mechanism of Yap-dependent RPE cell type determination is reliant on both nuclear localization of Yap and interaction with a Tead co-factor. In contrast to loss of Yap and Taz, overexpression of either protein within optic vesicle progenitors leads to ectopic pigmentation in a dosage-dependent manner. Overall, this study identifies Yap and Taz as key early regulators of RPE genesis and provides a mechanistic framework for understanding the congenital ocular defects of Sveinsson's chorioretinal atrophy and congenital retinal coloboma.
Collapse
Affiliation(s)
- Joel B Miesfeld
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gaia Gestri
- Department of Cell and Developmental Biology, UCL, London WC1E 6BT, UK
| | - Brian S Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael A Flinn
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Richard J Poole
- Department of Cell and Developmental Biology, UCL, London WC1E 6BT, UK
| | - Jason R Bader
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Joseph C Besharse
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, UCL, London WC1E 6BT, UK
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
37
|
Mateus R, Lourenço R, Fang Y, Brito G, Farinho A, Valério F, Jacinto A. Control of tissue growth by Yap relies on cell density and F-actin in zebrafish fin regeneration. Development 2015. [PMID: 26209644 DOI: 10.1242/dev.119701] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Caudal fin regeneration is characterized by a proliferation boost in the mesenchymal blastema that is controlled precisely in time and space. This allows a gradual and robust restoration of original fin size. However, how this is established and regulated is not well understood. Here, we report that Yap, the Hippo pathway effector, is a chief player in this process: functionally manipulating Yap during regeneration dramatically affects cell proliferation and expression of key signaling pathways, impacting regenerative growth. The intracellular location of Yap is tightly associated with different cell densities along the blastema proximal-distal axis, which correlate with alterations in cell morphology, cytoskeleton and cell-cell contacts in a gradient-like manner. Importantly, Yap inactivation occurs in high cell density areas, conditional to F-actin distribution and polymerization. We propose that Yap is essential for fin regeneration and that its function is dependent on mechanical tension, conferred by a balancing act of cell density and cytoskeleton activity.
Collapse
Affiliation(s)
- Rita Mateus
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Raquel Lourenço
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Yi Fang
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Gonçalo Brito
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Ana Farinho
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Fábio Valério
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Antonio Jacinto
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal Instituto Gulbenkian Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| |
Collapse
|
38
|
Abstract
The heart is the first organ formed during mammalian development. A properly sized and functional heart is vital throughout the entire lifespan. Loss of cardiomyocytes because of injury or diseases leads to heart failure, which is a major cause of human morbidity and mortality. Unfortunately, regenerative potential of the adult heart is limited. The Hippo pathway is a recently identified signaling cascade that plays an evolutionarily conserved role in organ size control by inhibiting cell proliferation, promoting apoptosis, regulating fates of stem/progenitor cells, and in some circumstances, limiting cell size. Interestingly, research indicates a key role of this pathway in regulation of cardiomyocyte proliferation and heart size. Inactivation of the Hippo pathway or activation of its downstream effector, the Yes-associated protein transcription coactivator, improves cardiac regeneration. Several known upstream signals of the Hippo pathway such as mechanical stress, G-protein-coupled receptor signaling, and oxidative stress are known to play critical roles in cardiac physiology. In addition, Yes-associated protein has been shown to regulate cardiomyocyte fate through multiple transcriptional mechanisms. In this review, we summarize and discuss current findings on the roles and mechanisms of the Hippo pathway in heart development, injury, and regeneration.
Collapse
Affiliation(s)
- Qi Zhou
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China (Q.Z., B.Z.); Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China (L.L.); and Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla (K.-L.G.)
| | - Li Li
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China (Q.Z., B.Z.); Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China (L.L.); and Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla (K.-L.G.)
| | - Bin Zhao
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China (Q.Z., B.Z.); Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China (L.L.); and Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla (K.-L.G.).
| | - Kun-Liang Guan
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China (Q.Z., B.Z.); Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China (L.L.); and Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla (K.-L.G.).
| |
Collapse
|
39
|
Porazinski S, Wang H, Asaoka Y, Behrndt M, Miyamoto T, Morita H, Hata S, Sasaki T, Krens SG, Osada Y, Asaka S, Momoi A, Linton S, Miesfeld JB, Link BA, Senga T, Shimizu N, Nagase H, Matsuura S, Bagby S, Kondoh H, Nishina H, Heisenberg CP, Furutani-Seiki M. YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature 2015; 521:217-221. [PMID: 25778702 PMCID: PMC4720436 DOI: 10.1038/nature14215] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/29/2014] [Indexed: 01/08/2023]
Abstract
Vertebrates have a unique 3D body shape in which correct tissue and organ shape and alignment are essential for function. For example, vision requires the lens to be centred in the eye cup which must in turn be correctly positioned in the head. Tissue morphogenesis depends on force generation, force transmission through the tissue, and response of tissues and extracellular matrix to force. Although a century ago D'Arcy Thompson postulated that terrestrial animal body shapes are conditioned by gravity, there has been no animal model directly demonstrating how the aforementioned mechano-morphogenetic processes are coordinated to generate a body shape that withstands gravity. Here we report a unique medaka fish (Oryzias latipes) mutant, hirame (hir), which is sensitive to deformation by gravity. hir embryos display a markedly flattened body caused by mutation of YAP, a nuclear executor of Hippo signalling that regulates organ size. We show that actomyosin-mediated tissue tension is reduced in hir embryos, leading to tissue flattening and tissue misalignment, both of which contribute to body flattening. By analysing YAP function in 3D spheroids of human cells, we identify the Rho GTPase activating protein ARHGAP18 as an effector of YAP in controlling tissue tension. Together, these findings reveal a previously unrecognised function of YAP in regulating tissue shape and alignment required for proper 3D body shape. Understanding this morphogenetic function of YAP could facilitate the use of embryonic stem cells to generate complex organs requiring correct alignment of multiple tissues.
Collapse
Affiliation(s)
- Sean Porazinski
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Huijia Wang
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Yoichi Asaoka
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Martin Behrndt
- IST Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| | - Tatsuo Miyamoto
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hitoshi Morita
- IST Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| | - Shoji Hata
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Takashi Sasaki
- Department of Molecular Biology, School of Medicine, Keio University, Tokyo 160-8582 Japan
| | | | - Yumi Osada
- Japan Science and Technology Agency (JST), ERATO-SORST Kondoh Differentiation Signaling Project, Kyoto, 606-8305, Japan
| | - Satoshi Asaka
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Akihiro Momoi
- Japan Science and Technology Agency (JST), ERATO-SORST Kondoh Differentiation Signaling Project, Kyoto, 606-8305, Japan
| | - Sarah Linton
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Joel B. Miesfeld
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian A. Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Takeshi Senga
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Nobuyoshi Shimizu
- Department of Molecular Biology, School of Medicine, Keio University, Tokyo 160-8582 Japan
| | - Hideaki Nagase
- Matrix Biology Section, Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Shinya Matsuura
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Stefan Bagby
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Hisato Kondoh
- Japan Science and Technology Agency (JST), ERATO-SORST Kondoh Differentiation Signaling Project, Kyoto, 606-8305, Japan
- Graduate School of Frontier Bioscience, Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | | | - Makoto Furutani-Seiki
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
- Japan Science and Technology Agency (JST), ERATO-SORST Kondoh Differentiation Signaling Project, Kyoto, 606-8305, Japan
| |
Collapse
|
40
|
Phillips JB, Westerfield M. Zebrafish models in translational research: tipping the scales toward advancements in human health. Dis Model Mech 2015; 7:739-43. [PMID: 24973743 PMCID: PMC4073263 DOI: 10.1242/dmm.015545] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Advances in genomics and next-generation sequencing have provided clinical researchers with unprecedented opportunities to understand the molecular basis of human genetic disorders. This abundance of information places new requirements on traditional disease models, which have the potential to be used to confirm newly identified pathogenic mutations and test the efficacy of emerging therapies. The unique attributes of zebrafish are being increasingly leveraged to create functional disease models, facilitate drug discovery, and provide critical scientific bases for the development of new clinical tools for the diagnosis and treatment of human disease. In this short review and the accompanying poster, we highlight a few illustrative examples of the applications of the zebrafish model to the study of human health and disease.
Collapse
Affiliation(s)
- Jennifer B Phillips
- Institute of Neuroscience, 1254 University of Oregon, Eugene OR 97403-1254, USA
| | - Monte Westerfield
- Institute of Neuroscience, 1254 University of Oregon, Eugene OR 97403-1254, USA.
| |
Collapse
|
41
|
Burczyk M, Burkhalter MD, Blätte T, Matysik S, Caron MG, Barak LS, Philipp M. Phenotypic regulation of the sphingosine 1-phosphate receptor miles apart by G protein-coupled receptor kinase 2. Biochemistry 2015; 54:765-75. [PMID: 25555130 PMCID: PMC4310627 DOI: 10.1021/bi501061h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The evolutionarily conserved DRY
motif at the end of the third
helix of rhodopsin-like, class-A G protein-coupled receptors (GPCRs)
is a major regulator of receptor stability, signaling activity, and
β-arrestin-mediated internalization. Substitution of the DRY
arginine with histidine in the human vasopressin receptor results
in a loss-of-function phenotype associated with diabetes insipidus.
The analogous R150H substitution of the DRY motif in zebrafish sphingosine-1
phosphate receptor 2 (S1p2) produces a mutation, miles apart m93 (milm93), that not only disrupts signaling but
also impairs heart field migration. We hypothesized that constitutive
S1p2 desensitization is the underlying cause of this strong zebrafish
developmental defect. We observed in cell assays that the wild-type
S1p2 receptor is at the cell surface whereas in distinct contrast
the S1p2 R150H receptor is found in intracellular vesicles, blocking
G protein but not arrestin signaling activity. Surface S1p2 R150H
expression could be restored by inhibition of G protein-coupled receptor
kinase 2 (GRK2). Moreover, we observed that β-arrestin 2 and
GRK2 colocalize with S1p2 in developing zebrafish embryos and depletion
of GRK2 in the S1p2 R150H miles apart zebrafish partially rescued
cardia bifida. The ability of reduced GRK2 activity to reverse a developmental
phenotype associated with constitutive desensitization supports efforts
to genetically or pharmacologically target this kinase in diseases
involving biased GPCR signaling.
Collapse
Affiliation(s)
- Martina Burczyk
- Institute for Biochemistry and Molecular Biology, Ulm University , 89081 Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|