1
|
Dix TC, Haussmann IU, Brivio S, Nallasivan MP, HadzHiev Y, Müller F, Müller B, Pettitt J, Soller M. CMTr mediated 2'- O-ribose methylation status of cap-adjacent nucleotides across animals. RNA (NEW YORK, N.Y.) 2022; 28:1377-1390. [PMID: 35970556 PMCID: PMC9479742 DOI: 10.1261/rna.079317.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Cap methyltransferases (CMTrs) O methylate the 2' position of the ribose (cOMe) of cap-adjacent nucleotides of animal, protist, and viral mRNAs. Animals generally have two CMTrs, whereas trypanosomes have three, and many viruses encode one in their genome. In the splice leader of mRNAs in trypanosomes, the first four nucleotides contain cOMe, but little is known about the status of cOMe in animals. Here, we show that cOMe is prominently present on the first two cap-adjacent nucleotides with species- and tissue-specific variations in Caenorhabditis elegans, honeybees, zebrafish, mouse, and human cell lines. In contrast, Drosophila contains cOMe primarily on the first cap-adjacent nucleotide. De novo RoseTTA modeling of CMTrs reveals close similarities of the overall structure and near identity for the catalytic tetrad, and for cap and cofactor binding for human, Drosophila and C. elegans CMTrs. Although viral CMTrs maintain the overall structure and catalytic tetrad, they have diverged in cap and cofactor binding. Consistent with the structural similarity, both CMTrs from Drosophila and humans methylate the first cap-adjacent nucleotide of an AGU consensus start. Because the second nucleotide is also methylated upon heat stress in Drosophila, these findings argue for regulated cOMe important for gene expression regulation.
Collapse
Affiliation(s)
- Thomas C Dix
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Irmgard U Haussmann
- Department of Life Science, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, B15 3TN, United Kingdom
| | - Sarah Brivio
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Mohannakarthik P Nallasivan
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Yavor HadzHiev
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
| | - Ferenc Müller
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
| | - Berndt Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Jonathan Pettitt
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
2
|
Skelly PJ, Da'dara AA. Schistosome secretomes. Acta Trop 2022; 236:106676. [PMID: 36113567 DOI: 10.1016/j.actatropica.2022.106676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Schistosomes are intravascular parasitic platyhelminths (blood flukes) that infect over 200 million people globally. Biomolecules secreted by the worms likely contribute to their ability to survive in the bloodstreams of immunocompetent hosts for many years. Here we review what is known about the protein composition of material released by the worms. Prominent among cercarial excretions/secretions (ES) is a ∼ 30 kDa serine protease called cercarial elastase (SmCE in Schistosoma mansoni), likely important in host invasion. Also prominent is a 117 amino acid non-glycosylated polypeptide (Sm16) that can impact several host cell-types to impinge on immunological outcomes. Similarly, components of the egg secretome (notably the 134 amino acid homodimeric glycoprotein "IL-4 inducing principle of schistosome eggs", IPSE, and the 225-amino acid monomeric T2 ribonuclease - omega-1) are capable of driving Th2-biased immune responses. A ∼36kDa chemokine binding glycoprotein SmCKBP, secreted by eggs, can negate the impact of several cytokines and can impede neutrophil migration. Of special interest is a disparate collection of classically cytosolic proteins that are surprisingly often identified in schistosome ES across life stages. These proteins, perhaps released as components of extracellular vesicles (EVs), include glycolytic enzymes, redox proteins, proteases and protease inhibitors, heat shock proteins, proteins involved in translation/turnover, histones, and others. Some such proteins may display "moonlighting" functions and, for example, impede blood clot formation around the worms. More prosaically, since several are particularly abundant soluble proteins, their appearance in the ES fraction may be indicative of worm damage ex vivo leading to protein leakage. Some bioactive schistosome ES proteins are in development as novel therapeutics against autoimmune, inflammatory, and other, non-parasitic, diseases.
Collapse
Affiliation(s)
- Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA.
| | - Akram A Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| |
Collapse
|
3
|
Inclan-Rico JM, Rossi HL, Herbert DR. "Every cell is an immune cell; contributions of non-hematopoietic cells to anti-helminth immunity". Mucosal Immunol 2022; 15:1199-1211. [PMID: 35538230 PMCID: PMC9646929 DOI: 10.1038/s41385-022-00518-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023]
Abstract
Helminths are remarkably successful parasites that can invade various mammalian hosts and establish chronic infections that can go unnoticed for years despite causing severe tissue damage. To complete their life cycles, helminths migrate through multiple barrier sites that are densely populated by a complex array of hematopoietic and non-hematopoietic cells. While it is clear that type 2 cytokine responses elicited by immune cells promote worm clearance and tissue healing, the actions of non-hematopoietic cells are increasingly recognized as initiators, effectors and regulators of anti-helminth immunity. This review will highlight the collective actions of specialized epithelial cells, stromal niches, stem, muscle and neuroendocrine cells as well as peripheral neurons in the detection and elimination of helminths at mucosal sites. Studies dissecting the interactions between immune and non-hematopoietic cells will truly provide a better understanding of the mechanisms that ensure homeostasis in the context of helminth infections.
Collapse
Affiliation(s)
- Juan M Inclan-Rico
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather L Rossi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Abstract
Schistosomes are long lived, intravascular parasitic platyhelminths that infect >200 million people globally. The molecular mechanisms used by these blood flukes to dampen host immune responses are described in this review. Adult worms express a collection of host-interactive tegumental ectoenzymes that can cleave host signaling molecules such as the "alarmin" ATP (cleaved by SmATPDase1), the platelet activator ADP (SmATPDase1, SmNPP5), and can convert AMP into the anti-inflammatory mediator adenosine (SmAP). SmAP can additionally cleave the lipid immunomodulator sphingosine-1-phosphate and the proinflammatory anionic polymer, polyP. In addition, the worms release a barrage of proteins (e.g., SmCB1, SjHSP70, cyclophilin A) that can impinge on immune cell function. Parasite eggs also release their own immunoregulatory proteins (e.g., IPSE/α1, omega1, SmCKBP) as do invasive cercariae (e.g., Sm16, Sj16). Some schistosome glycans (e.g., LNFPIII, LNnT) and lipids (e.g., Lyso-PS, LPC), produced by several life stages, likewise affect immune cell responses. The parasites not only produce eicosanoids (e.g., PGE2, PGD2-that can be anti-inflammatory) but can also induce host cells to release these metabolites. Finally, the worms release extracellular vesicles (EVs) containing microRNAs, and these too have been shown to skew host cell metabolism. Thus, schistosomes employ an array of biomolecules-protein, lipid, glycan, nucleic acid, and more, to bend host biochemistry to their liking. Many of the listed molecules have been individually shown capable of inducing aspects of the polarized Th2 response seen following infection (with the generation of regulatory T cells (Tregs), regulatory B cells (Bregs) and anti-inflammatory, alternatively activated (M2) macrophages). Precisely how host cells integrate the impact of these myriad parasite products following natural infection is not known. Several of the schistosome immunomodulators described here are in development as novel therapeutics against autoimmune, inflammatory, and other, nonparasitic, diseases.
Collapse
Affiliation(s)
- Sreemoyee Acharya
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Akram A. Da’dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Patrick J. Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
5
|
Trypanosoma cruzi High Mobility Group B (TcHMGB) can act as an inflammatory mediator on mammalian cells. PLoS Negl Trop Dis 2017; 11:e0005350. [PMID: 28178282 PMCID: PMC5319819 DOI: 10.1371/journal.pntd.0005350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 02/21/2017] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
Background High Mobility Group B (HMGB) proteins are nuclear architectural factors involved in chromatin remodeling and important nuclear events. HMGBs also play key roles outside the cell acting as alarmins or Damage-associated Molecular Patterns (DAMPs). In response to a danger signal these proteins act as immune mediators in the extracellular milieu. Moreover, these molecules play a central role in the pathogenesis of many autoimmune and both infectious and sterile inflammatory chronic diseases. Principal findings We have previously identified a High mobility group B protein from Trypanosoma cruzi (TcHMGB) and showed that it has architectural properties interacting with DNA like HMGBs from other eukaryotes. Here we show that TcHMGB can be translocated to the cytoplasm and secreted out of the parasite, a process that seems to be stimulated by acetylation. We report that recombinant TcHMGB is able to induce an inflammatory response in vitro and in vivo, evidenced by the production of Nitric Oxide and induction of inflammatory cytokines like TNF-α, IL-1β and IFN-γ gene expression. Also, TGF-β and IL-10, which are not inflammatory cytokines but do play key roles in Chagas disease, were induced by rTcHMGB. Conclusions These preliminary results suggest that TcHMGB can act as an exogenous immune mediator that may be important for both the control of parasite replication as the pathogenesis of Chagas disease and can be envisioned as a pathogen associated molecular pattern (PAMP) partially overlapping in function with the host DAMPs. When an infection occurs, the innate immune cells recognize Pathogen Associated Molecular Patterns (PAMPs) through their Pattern Recognition Receptors. This triggers an inflammatory response intended to kill the foreign microbe. But inflammation can also be triggered by the recognition of endogenous molecules called “Danger (or Damage) Associated Molecular Patterns” (DAMPs) that are released by damaged or necrotic cells to “ring the alarm” of the immune system that repair is needed, so some of them are also known as “alarmins”. High Mobility group box 1 protein (HMGB1) is a prototypical alarmin molecule released by injured cells and it is also actively secreted by cells of the innate immune system in response to invasion as well as to sterile damage. Trypanosoma cruzi, the causal agent of Chagas Disease, has its own HMGB protein that we called TcHMGB. Using in vitro and in vivo experimental systems, we demonstrated for the first time that TcHMGB is able to mediate inflammation on mammalian cells, inducing the expression of both pro-inflammatory and anti-inflammatory cytokines. Our results suggest that the parasite´s protein could have a role in the immune response and the pathogenesis of Chagas disease, probably overlapping to some extent with the host cell DAMP molecules´ functions.
Collapse
|
6
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 731] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
7
|
A nuclear factor of high mobility group box protein in Toxoplasma gondii. PLoS One 2014; 9:e111993. [PMID: 25369210 PMCID: PMC4219823 DOI: 10.1371/journal.pone.0111993] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/08/2014] [Indexed: 01/28/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a nuclear factor that usually binds DNA and modulates gene expression in multicellular organisms. Three HMGB1 orthologs were predicted in the genome of Toxoplasma gondii, an obligate intracellular protozoan pathogen, termed TgHMGB1a, b and c. Phylogenetic and bioinformatic analyses indicated that these proteins all contain a single HMG box and which shared in three genotypes. We cloned TgHMGB1a, a 33.9 kDa protein that can stimulates macrophages to release TNF-α, and, we demonstrated that the TgHMGB1a binds distorted DNA structures such as cruciform DNA in electrophoretic mobility shift assays (EMSA). Immunofluorescence assay indicated TgHMGB1a concentrated in the nucleus of intracellular tachyzoites but translocated into the cytoplasm while the parasites release to extracellular. There were no significant phenotypic changes when the TgHMGB1a B box was deleted, while transgenic parasites that overexpressed TgHMGB1a showed slower intracellular growth and caused delayed death in mouse, further quantitative RT-PCR analyses showed that the expression levels of many important genes, including virulence factors, increased when TgHMGB1a was overexpressed, but no significant changes were observed in TgHMGB1a B box-deficient parasites. Our findings demonstrated that TgHMGB1a is indeed a nuclear protein that maintains HMG box architectural functions and is a potential proinflammatory factor during the T.gondii infection. Further studies that clarify the functions of TgHMGB1s will increase our knowledge of transcriptional regulation and parasite virulence, and might provide new insight into host-parasite interactions for T. gondii infection.
Collapse
|
8
|
HMGB in mollusk Crassostrea ariakensis Gould: structure, pro-inflammatory cytokine function characterization and anti-infection role of its antibody. PLoS One 2012; 7:e50789. [PMID: 23209826 PMCID: PMC3510179 DOI: 10.1371/journal.pone.0050789] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/23/2012] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Crassostrea ariakensis Gould is a representative bivalve species and an economically important oyster in China, but suffers severe mortalities in recent years that are caused by rickettsia-like organism (RLO). Prevention and control of this disease is a priority for the development of oyster aquaculture. It has been proven that mammalian HMGB (high mobility group box) can be released extracellularly and acts as an important pro-inflammatory cytokine and late mediator of inflammatory reactions. In vertebrates, HMGB's antibody (anti-HMGB) has been shown to confer significant protection against certain local and systemic inflammatory diseases. Therefore, we investigated the functions of Ca-HMGB (oyster HMGB) and anti-CaHMGB (Ca-HMGB's antibody) in oyster RLO/LPS (RLO or LPS)-induced disease or inflammation. METHODOLOGY/PRINCIPAL FINDINGS Sequencing analysis revealed Ca-HMGB shares conserved structures with mammalians. Tissue-specific expression indicates that Ca-HMGB has higher relative expression in hemocytes. Significant continuous up-regulation of Ca-HMGB was detected when the hemocytes were stimulated with RLO/LPS. Recombinant Ca-HMGB protein significantly up-regulated the expression levels of some cytokines. Indirect immunofluorescence study revealed that Ca-HMGB localized both in the hemocyte nucleus and cytoplasm before RLO challenge, but mainly in the cytoplasm 12 h after challenge. Western blot analysis demonstrated Ca-HMGB was released extracellularly 4-12 h after RLO challenge. Anti-CaHMGB was added to the RLO/LPS-challenged hemocyte monolayer and real-time RT-PCR showed that administration of anti-CaHMGB dramatically reduced the rate of RLO/LPS-induced up-regulation of LITAF at 4-12 h after treatment. Flow cytometry analysis indicated that administration of anti-CaHMGB reduced RLO/LPS-induced hemocyte apoptosis and necrosis rates. CONCLUSIONS/SIGNIFICANCE Ca-HMGB can be released extracellularly and its subcellular localization varies when stimulated with RLO. Ca-HMGB is involved in oyster immune reactions and functions as a pro-inflammatory cytokine. Anti-CaHMGB can significantly suppress RLO/LPS-induced inflammatory responses and hemocyte necrosis and apoptosis, suggesting that Ca-HMGB is a potential target to prevent and control RLO/LPS-induced disease or inflammation.
Collapse
|
9
|
Cloning and characterization of high mobility group box protein 1 (HMGB1) of Wuchereria bancrofti and Brugia malayi. Parasitol Res 2012; 111:619-27. [PMID: 22402610 DOI: 10.1007/s00436-012-2878-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
Abstract
A human homologue of high mobility group box 1 (HMGB1) protein was cloned and characterized from the human filarial parasites Wuchereria bancrofti and Brugia malayi. Sequence analysis showed that W. bancrofti HMGB1 (WbHMGB1) and B. malayi HMGB1 (BmHMGB1) proteins share 99 % sequence identity. Filarial HMGB1 showed typical architectural sequence characteristics of HMGB family of proteins and consisted of only a single HMG box domain that had significant sequence similarity to the pro-inflammatory B box domain of human HMGB1. When incubated with mouse peritoneal macrophages and human promyelocytic leukemia cells, rBmHMGB1 induced secretion of significant levels of pro-inflammatory cytokines such as TNF-α, GM-CSF, and IL-6. Functional analysis also showed that the filarial HMGB1 proteins can bind to supercoiled DNA similar to other HMG family of proteins. BmHMGB1 protein is expressed in the adult and microfilarial stages of the parasite and is found in the excretory secretions of the live parasites. These findings suggest that filarial HMGB1 may have a significant role in lymphatic pathology associated with lymphatic filariasis.
Collapse
|
10
|
de Abreu da Silva IC, Carneiro VC, Maciel RDM, da Costa RFM, Furtado DR, de Oliveira FMB, da Silva-Neto MAC, Rumjanek FD, Fantappié MR. CK2 phosphorylation of Schistosoma mansoni HMGB1 protein regulates its cellular traffic and secretion but not its DNA transactions. PLoS One 2011; 6:e23572. [PMID: 21887276 PMCID: PMC3160966 DOI: 10.1371/journal.pone.0023572] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/20/2011] [Indexed: 11/18/2022] Open
Abstract
Background The helminth Schistosoma mansoni parasite resides in mesenteric veins where fecundated female worms lay hundred of eggs daily. Some of the egg antigens are trapped in the liver and induce a vigorous granulomatous response. High Mobility Group Box 1 (HMGB1), a nuclear factor, can also be secreted and act as a cytokine. Schistosome HMGB1 (SmHMGB1) is secreted by the eggs and stimulate the production of key cytokines involved in the pathology of schistosomiasis. Thus, understanding the mechanism of SmHMGB1 release becomes mandatory. Here, we addressed the question of how the nuclear SmHMGB1 can reach the extracellular space. Principal Findings We showed in vitro and in vivo that CK2 phosphorylation was involved in the nucleocytoplasmic shuttling of SmHMGB1. By site-directed mutagenesis we mapped the two serine residues of SmHMGB1 that were phosphorylated by CK2. By DNA bending and supercoiling assays we showed that CK2 phosphorylation of SmHMGB1 had no effect in the DNA binding activities of the protein. We showed by electron microscopy, as well as by cell transfection and fluorescence microscopy that SmHMGB1 was present in the nucleus and cytoplasm of adult schistosomes and mammalian cells. In addition, we showed that treatments of the cells with either a phosphatase or a CK2 inhibitor were able to enhance or block, respectively, the cellular traffic of SmHMGB1. Importantly, we showed by confocal microscopy and biochemically that SmHMGB1 is significantly secreted by S. mansoni eggs of infected animals and that SmHMGB1 that were localized in the periovular schistosomotic granuloma were phosphorylated. Conclusions We showed that secretion of SmHMGB1 is regulated by phosphorylation. Moreover, our results suggest that egg-secreted SmHMGB1 may represent a new egg antigen. Therefore, the identification of drugs that specifically target phosphorylation of SmHMGB1 might block its secretion and interfere with the pathogenesis of schistosomiasis.
Collapse
Affiliation(s)
- Isabel Caetano de Abreu da Silva
- Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brasil
| | - Vitor Coutinho Carneiro
- Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brasil
| | - Renata de Moraes Maciel
- Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brasil
| | - Rodrigo Furtado Madeiro da Costa
- Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brasil
| | - Daniel Rodrigues Furtado
- Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brasil
| | - Francisco Meirelles Bastos de Oliveira
- Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brasil
| | - Mário Alberto Cardoso da Silva-Neto
- Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brasil
| | - Franklin David Rumjanek
- Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brasil
| | - Marcelo Rosado Fantappié
- Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brasil
- * E-mail:
| |
Collapse
|
11
|
Robinson MW, Hutchinson AT, Donnelly S, Dalton JP. Worm secretory molecules are causing alarm. Trends Parasitol 2010; 26:371-2. [PMID: 20542734 DOI: 10.1016/j.pt.2010.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 11/17/2022]
|
12
|
Carneiro VC, de Moraes Maciel R, de Abreu da Silva IC, da Costa RFM, Paiva CN, Bozza MT, Fantappié MR. The extracellular release of Schistosoma mansoni HMGB1 nuclear protein is mediated by acetylation. Biochem Biophys Res Commun 2009; 390:1245-9. [DOI: 10.1016/j.bbrc.2009.10.129] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 11/16/2022]
|
13
|
Banerjee H, Palenchar JB, Lukaszewicz M, Bojarska E, Stepinski J, Jemielity J, Guranowski A, Ng S, Wah DA, Darzynkiewicz E, Bellofatto V. Identification of the HIT-45 protein from Trypanosoma brucei as an FHIT protein/dinucleoside triphosphatase: substrate specificity studies on the recombinant and endogenous proteins. RNA (NEW YORK, N.Y.) 2009; 15:1554-64. [PMID: 19541768 PMCID: PMC2714743 DOI: 10.1261/rna.1426609] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A new member of the FHIT protein family, designated HIT-45, has been identified in the African trypanosome Trypanosoma brucei. Recombinant HIT-45 proteins were purified from trypanosomal and bacterial protein expression systems and analyzed for substrate specificity using various dinucleoside polyphosphates, including those that contain the 5'-mRNA cap, i.e., m(7)GMP. This enzyme exhibited typical dinucleoside triphosphatase activity (EC 3.6.1.29), having its highest specificity for diadenosine triphosphate (ApppA). However, the trypanosome enzyme contains a unique amino-terminal extension, and hydrolysis of cap dinucleotides with monomethylated guanosine or dimethylated guanosine always yielded m(7)GMP (or m(2,7)GMP) as one of the reaction products. Interestingly, m(7)Gpppm(3)(N6, N6, 2'O)A was preferred among the methylated substrates. This hypermethylated dinucleotide is unique to trypanosomes and may be an intermediate in the decay of cap 4, i.e., m(7)Gpppm(3)(N6, N6, 2'O)Apm(2'O)Apm(2'O)Cpm(2)(N3, 2'O)U, that occurs in these organisms.
Collapse
Affiliation(s)
- Hiren Banerjee
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Adisakwattana P, Saunders SP, Nel HJ, Fallon PG. Helminth-Derived Immunomodulatory Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 666:95-107. [DOI: 10.1007/978-1-4419-1601-3_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Fantappíé MR, de Oliveira FMB, Santos RDMMD, Mansure JJ, Furtado DR, da Silva ICDA, Rumjanek FD. Control of transcription in Schistosoma mansoni: chromatin remodeling and other regulatory elements. Acta Trop 2008; 108:186-93. [PMID: 18191795 DOI: 10.1016/j.actatropica.2007.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
Abstract
The platyhelminth parasite Schistosoma mansoni, the causative agent of schistosomiasis, is a dioecious parasite with a complex life cycle that includes two different hosts and two free-living stages. Yet very little is known about the biochemical details connected to these different transitions. In the present work, results will be presented showing the most recent results in S. mansoni regarding the characterization of transcription factors and coactivators that act directly on the transcriptional machinery and those that are involved with chromatin remodeling. It is hoped that the information gathered here may contribute towards the understanding of crucial events in the parasite life cycle. Likewise, the development of new drugs that could interfere with oogenesis and sexual maturation may eventually profit from the information contained herein.
Collapse
|
16
|
Characterization of an Entamoeba histolytica high-mobility-group box protein induced during intestinal infection. EUKARYOTIC CELL 2008; 7:1565-72. [PMID: 18658254 DOI: 10.1128/ec.00123-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The unicellular eukaryote Entamoeba histolytica is a human parasite that causes amebic dysentery and liver abscess. A genome-wide analysis of gene expression modulated by intestinal colonization and invasion identified an upregulated transcript that encoded a putative high-mobility-group box (HMGB) protein, EhHMGB1. We tested if EhHMGB1 encoded a functional HMGB protein and determined its role in control of parasite gene expression. Recombinant EhHMGB1 was able to bend DNA in vitro, a characteristic of HMGB proteins. Core conserved residues required for DNA bending activity in other HMGB proteins were demonstrated by mutational analysis to be essential for EhHMGB1 activity. EhHMGB1 was also able to enhance the binding of human p53 to its cognate DNA sequence in vitro, which is expected for an HMGB1 protein. Confocal microscopy, using antibodies against the recombinant protein, confirmed its nuclear localization. Overexpression of EhHMGB1 in HM1:IMSS trophozoites led to modulation of 33 transcripts involved in a variety of cellular functions. Of these, 20 were also modulated at either day 1 or day 29 in the mouse model of intestinal amebiasis. Notably, four transcripts with known roles in virulence, including two encoding Gal/GalNAc lectin light chains, were modulated in response to EhHMGB1 overexpression. We concluded that EhHMGB1 was a bona fide HMGB protein with the capacity to recapitulate part of the modulation of parasite gene expression seen during adaptation to the host intestine.
Collapse
|
17
|
Cass CL, Johnson JR, Califf LL, Xu T, Hernandez HJ, Stadecker MJ, Yates JR, Williams DL. Proteomic analysis of Schistosoma mansoni egg secretions. Mol Biochem Parasitol 2007; 155:84-93. [PMID: 17644200 PMCID: PMC2077830 DOI: 10.1016/j.molbiopara.2007.06.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/08/2007] [Accepted: 06/11/2007] [Indexed: 01/06/2023]
Abstract
Schistosomiasis remains a largely neglected, global health problem. The morbid pathology of the disease stems from the host's inflammatory response to parasite eggs trapped in host tissues. Long term host/parasite survival is dependent upon the successful modulation of the acute pathological response, which is induced by egg antigens. In this study, using Multidimensional Protein Identification Technology, we identified the Schistosoma mansoni egg secretome consisting of 188 proteins. Notably we identified proteins involved in redox balance, molecular chaperoning and protein folding, development and signaling, scavenging and metabolic pathways, immune response modulation, and 32 novel, previously uncharacterized schistosome proteins. We localized a subset of previously characterized schistosome proteins identified in egg secretions in this study, to the surface of live S. mansoni eggs using the circumoval precipitin reaction. The identification of proteins actively secreted by live schistosome eggs provides important new information for understanding immune modulation and the pathology of schistosomiasis.
Collapse
Affiliation(s)
- Cynthia L Cass
- Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, United States
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Tkacz ID, Lustig Y, Stern MZ, Biton M, Salmon-Divon M, Das A, Bellofatto V, Michaeli S. Identification of novel snRNA-specific Sm proteins that bind selectively to U2 and U4 snRNAs in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2007; 13:30-43. [PMID: 17105994 PMCID: PMC1705756 DOI: 10.1261/rna.174307] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 09/28/2006] [Indexed: 05/12/2023]
Abstract
In eukaryotes the seven Sm core proteins bind to U1, U2, U4, and U5 snRNAs. In Trypanosoma brucei, Sm proteins have been implicated in binding both spliced leader (SL) and U snRNAs. In this study, we examined the function of these Sm proteins using RNAi silencing and protein purification. RNAi silencing of each of the seven Sm genes resulted in accumulation of SL RNA as well as reduction of several U snRNAs. Interestingly, U2 was unaffected by the loss of SmB, and both U2 and U4 snRNAs were unaffected by the loss of SmD3, suggesting that these snRNAs are not bound by the heptameric Sm complex that binds to U1, U5, and SL RNA. RNAi silencing and protein purification showed that U2 and U4 snRNAs were bound by a unique set of Sm proteins that we termed SSm (specific spliceosomal Sm proteins). This is the first study that identifies specific core Sm proteins that bind only to a subset of spliceosomal snRNAs.
Collapse
Affiliation(s)
- Itai Dov Tkacz
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Briquet S, Boschet C, Gissot M, Tissandié E, Sevilla E, Franetich JF, Thiery I, Hamid Z, Bourgouin C, Vaquero C. High-mobility-group box nuclear factors of Plasmodium falciparum. EUKARYOTIC CELL 2006; 5:672-82. [PMID: 16607015 PMCID: PMC1459676 DOI: 10.1128/ec.5.4.672-682.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In eukaryotes, the high-mobility-group (HMG) nuclear factors are highly conserved throughout evolution and are divided into three families, including HGMB, characterized by an HMG box domain. Some HMGB factors are DNA structure specific and preferentially interact with distorted DNA sequences, trigger DNA bending, and hence facilitate the binding of nucleoprotein complexes that in turn activate or repress transcription. In Plasmodium falciparum, two HMGB factors were predicted: PfHMGB1 and PfHMGB2. They are small proteins, under 100 amino acids long, encompassing a characteristic HMG box domain closely related to box B of metazoan factors, which comprises two HMG box domains, A and B, in tandem. Computational analyses supported the conclusion that the Plasmodium proteins were genuine architectural HMGB factors, and in vitro analyses performed with both recombinant proteins established that they were able to interact with distorted DNA structures and bend linear DNA with different affinities. These proteins were detected in both asexual- and gametocyte-stage cells in Western blotting experiments and mainly in the parasite nuclei. PfHMGB1 is preferentially expressed in asexual erythrocytic stages and PfHMGB2 in gametocytes, in good correlation with transcript levels of expression. Finally, immunofluorescence studies revealed differential subcellular localizations: both factors were observed in the nucleus of asexual- and sexual-stage cells, and PfHMGB2 was also detected in the cytoplasm of gametocytes. In conclusion, in light of differences in their levels of expression, subcellular localizations, and capacities for binding and bending DNA, these factors are likely to play nonredundant roles in transcriptional regulation of Plasmodium development in erythrocytes.
Collapse
Affiliation(s)
- Sylvie Briquet
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
- Corresponding author. Mailing address: INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, 91 boulevard de l'Hôpital, 75013 Paris, France. Phone: 33 (0) 1 40 77 81 14. Fax: 33 (0) 1 45 83 88 58. E-mail for Sylvie Briquet: . E-mail for Catherine Vaquero:
| | - Charlotte Boschet
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Mathieu Gissot
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Emilie Tissandié
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Elisa Sevilla
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Jean-François Franetich
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Isabelle Thiery
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Zuhal Hamid
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Catherine Bourgouin
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Catherine Vaquero
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
- Corresponding author. Mailing address: INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, 91 boulevard de l'Hôpital, 75013 Paris, France. Phone: 33 (0) 1 40 77 81 14. Fax: 33 (0) 1 45 83 88 58. E-mail for Sylvie Briquet: . E-mail for Catherine Vaquero:
| |
Collapse
|
20
|
de Oliveira FMB, de Abreu da Silva IC, Rumjanek FD, Dias-Neto E, Guimarães PEM, Verjovski-Almeida S, Stros M, Fantappié MR. Cloning the genes and DNA binding properties of High Mobility Group B1 (HMGB1) proteins from the human blood flukes Schistosoma mansoni and Schistosoma japonicum. Gene 2006; 377:33-45. [PMID: 16644144 DOI: 10.1016/j.gene.2006.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 03/02/2006] [Accepted: 03/03/2006] [Indexed: 11/18/2022]
Abstract
The parasitic helminth Schistosoma mansoni contains three HMGB proteins, HMGB1, HMGB2 and HMGB3, of primary amino acid sequences highly similar to vertebrate proteins. In this report we describe the characterization of the HMGB1 proteins and their genes from S. mansoni and Schistosoma japonicum. The deduced amino acid sequences of HMGB1 proteins from both schistosome species are identical, and comprise 176 residues. The proteins contain the two evolutionarily highly conserved HMG-box domains, A and B, exhibiting 60% similarity to mammalian HMGB1. Unlike the human HMGB1 which contains an unbroken run of 30 glutamic or aspartic residues, the SmHMGB1 or SjHMGB1 proteins possess unusually short acidic C-terminal tails (5 acidic residues interrupted by 2 serines). Southern hybridization and DNA sequencing revealed a single copy HMGB1 gene, composed of 3 exons and two introns, in S. mansoni. The exon/intron boundaries are identical to those of the human HMGB1 gene, with the exception that the second exon of the SmHMGB1 gene which is not split into two exons as in the human HMGB1 gene. RNA blot analysis revealed that the SmHMGB1 gene is constitutively expressed in similar levels both in male and female worms. The single-sized mRNA for SmHMGB1 is consistent with the size derived from the cDNA. Although DNA binding properties of SmHMGB1 (or SjHMGB1) protein seem to be similar to those previously reported with human HMGB1, i.e., preferential binding to supercoiled DNA over linear DNA, specific recognition of DNA four-way junctions, DNA-induced supercoiling in the presence of topoisomerase I, and DNA bending, we have observed two important differences relative to those observed with the human HMGB1: (i) the inability of the isolated SmHMGB1 domain A to bend DNA (as revealed by T4 ligase-mediated circularization assay), and (ii) higher DNA supercoiling and bending potential of the SmHMGB1 protein as compared to its human counterpart. The latter finding may indicate that the long acidic C-tail of human HMGB1 has much stronger repressive role on DNA bending or DNA supercoiling by topoisomerase I at physiological ionic strength than the short C-tail of the SmHMGB1 protein. Considering the important role of HMGB1 in DNA replication, transcription, recombination, and in particularly, the mediation of inflammation responses in mammalian cells, further studies on schistosome HMGB proteins may provide valuable information related to schistosomiasis, where inflammation plays a critical role in this disease.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Helminth/chemistry
- DNA, Helminth/genetics
- DNA, Helminth/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- Genes, Helminth
- HMGB1 Protein/genetics
- HMGB1 Protein/metabolism
- Helminth Proteins/genetics
- Helminth Proteins/metabolism
- Humans
- Molecular Sequence Data
- Nucleic Acid Conformation
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Schistosoma japonicum/genetics
- Schistosoma japonicum/metabolism
- Schistosoma japonicum/pathogenicity
- Schistosoma mansoni/genetics
- Schistosoma mansoni/metabolism
- Schistosoma mansoni/pathogenicity
- Sequence Homology, Amino Acid
Collapse
|