1
|
Catacalos-Goad C, Chakrabarti M, Salem DH, Camporeale C, Somalraju S, Tegowski M, Singh R, Reid RW, Janies DA, Meyer KD, Janga SC, Hunt AG, Chakrabarti K. Nucleotide-resolution Mapping of RNA N6-Methyladenosine (m6A) modifications and comprehensive analysis of global polyadenylation events in mRNA 3' end processing in malaria pathogen Plasmodium falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631827. [PMID: 39829786 PMCID: PMC11741415 DOI: 10.1101/2025.01.07.631827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Plasmodium falciparum is an obligate human parasite of the phylum Apicomplexa and is the causative agent of the most lethal form of human malaria. Although N6-methyladenosine modification is thought to be one of the major post-transcriptional regulatory mechanisms for stage-specific gene expression in apicomplexan parasites, the precise base position of m6A in mRNAs or noncoding RNAs in these parasites remains unknown. Here, we report global nucleotide-resolution mapping of m6A residues in P. falciparum using DART-seq technology, which quantitatively displayed a stage-specific, dynamic distribution pattern with enrichment near mRNA 3' ends. In this process we identified 894, 788, and 1,762 m6A-modified genes in Ring, Trophozoite and Schizont stages respectively, with an average of 5-7 m6A sites per-transcript at the individual gene level. Notably, several genes involved in malaria pathophysiology, such as KAHRP, ETRAMPs, SERA and stress response genes, such as members of Heat Shock Protein (HSP) family are highly enriched in m6A and therefore could be regulated by this RNA modification. Since we observed preferential methylation at the 3' ends of P. falciparum transcripts and because malaria polyadenylation specificity factor PfCPSF30 harbors an m6A reader 'YTH' domain, we reasoned that m6A might play an important role in 3'-end processing of malaria mRNAs. To investigate this, we used two complementary high-throughput RNA 3'-end mapping approaches, which provided an initial framework to explore potential roles of m6A in the regulation of alternative polyadenylation (APA) during malaria development in human hosts.
Collapse
Affiliation(s)
- Cassandra Catacalos-Goad
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA, United States of America
| | - Manohar Chakrabarti
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Edinburg, TX
| | - Doaa Hassan Salem
- Department of Biomedical Engineering and Informatics, Luddy School of Informatics, Computing and Engineering, Indiana University Indianapolis (IUI), Indianapolis, Indiana, United States of America
| | - Carli Camporeale
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA, United States of America
| | - Sahiti Somalraju
- Department of Biomedical Engineering and Informatics, Luddy School of Informatics, Computing and Engineering, Indiana University Indianapolis (IUI), Indianapolis, Indiana, United States of America
| | - Matthew Tegowski
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Ruchi Singh
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA, United States of America
| | - Robert W Reid
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Daniel A Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sarath Chandra Janga
- Department of Biomedical Engineering and Informatics, Luddy School of Informatics, Computing and Engineering, Indiana University Indianapolis (IUI), Indianapolis, Indiana, United States of America
| | - Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA, United States of America
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA, United States of America
| |
Collapse
|
2
|
Chawla J, Goldowitz I, Oberstaller J, Zhang M, Pires CV, Navarro F, Sollelis L, Wang CCQ, Seyfang A, Dvorin J, Otto TD, Rayner JC, Marti M, Adams JH. Phenotypic Screens Identify Genetic Factors Associated with Gametocyte Development in the Human Malaria Parasite Plasmodium falciparum. Microbiol Spectr 2023; 11:e0416422. [PMID: 37154686 PMCID: PMC10269797 DOI: 10.1128/spectrum.04164-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023] Open
Abstract
Transmission of the deadly malaria parasite Plasmodium falciparum from humans to mosquitoes is achieved by specialized intraerythrocytic sexual forms called gametocytes. Though the crucial regulatory mechanisms leading to gametocyte commitment have recently come to light, networks of genes that control sexual development remain to be elucidated. Here, we report a pooled-mutant screen to identify genes associated with gametocyte development in P. falciparum. Our results categorized genes that modulate gametocyte progression as hypoproducers or hyperproducers of gametocytes, and the in-depth analysis of individual clones confirmed phenotypes in sexual commitment rates and putative functions in gametocyte development. We present a new set of genes that have not been implicated in gametocytogenesis before and demonstrate the potential of forward genetic screens in isolating genes impacting parasite sexual biology, an exciting step toward the discovery of new antimalarials for a globally significant pathogen. IMPORTANCE Blocking human-to-vector transmission is an essential step toward malaria elimination. Gametocytes are solely responsible for achieving this transmission and represent an opportunity for therapeutic intervention. While these falciform-shaped parasite stages were first discovered in the 1880s, our understanding of the genetic determinants responsible for their formation and molecular mechanisms that drive their development is limited. In this work, we developed a scalable screening methodology with piggyBac mutants to identify genes that influence the development of gametocytes in the most lethal human malaria parasite, P. falciparum. By doing so, we lay the foundation for large-scale functional genomic studies specifically designed to address remaining questions about sexual commitment, maturation, and mosquito infection in P. falciparum. Such functional genetic screens will serve to expedite the identification of essential pathways and processes for the development of novel transmission-blocking agents.
Collapse
Affiliation(s)
- Jyotsna Chawla
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Ilana Goldowitz
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Jenna Oberstaller
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Min Zhang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Camilla Valente Pires
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Francesca Navarro
- Boston Children’s Hospital and Harvard Medical School, Harvard Medical School, Boston, Massachusetts, USA
| | - Lauriane Sollelis
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology Zurich, VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Chengqi C. Q. Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Andreas Seyfang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Jeffrey Dvorin
- Boston Children’s Hospital and Harvard Medical School, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas D. Otto
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology Zurich, VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - John H. Adams
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
3
|
Bilodeau DY, Sheridan RM, Balan B, Jex AR, Rissland OS. Precise gene models using long-read sequencing reveal a unique poly(A) signal in Giardia lamblia. RNA (NEW YORK, N.Y.) 2022; 28:668-682. [PMID: 35110372 PMCID: PMC9014877 DOI: 10.1261/rna.078793.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
During pre-mRNA processing, the poly(A) signal is recognized by a protein complex that ensures precise cleavage and polyadenylation of the nascent transcript. The location of this cleavage event establishes the length and sequence of the 3' UTR of an mRNA, thus determining much of its post-transcriptional fate. Using long-read sequencing, we characterize the polyadenylation signal and related sequences surrounding Giardia lamblia cleavage sites for over 2600 genes. We find that G. lamblia uses an AGURAA poly(A) signal, which differs from the mammalian AAUAAA. We also describe how G. lamblia lacks common auxiliary elements found in other eukaryotes, along with the proteins that recognize them. Further, we identify 133 genes with evidence of alternative polyadenylation. These results suggest that despite pared-down cleavage and polyadenylation machinery, 3' end formation still appears to be an important regulatory step for gene expression in G. lamblia.
Collapse
Affiliation(s)
- Danielle Y Bilodeau
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Ryan M Sheridan
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Balu Balan
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC 3052, Australia
| | - Aaron R Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC 3052, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Olivia S Rissland
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
4
|
Characterization of mRNA polyadenylation in the apicomplexa. PLoS One 2018; 13:e0203317. [PMID: 30161237 PMCID: PMC6117058 DOI: 10.1371/journal.pone.0203317] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/18/2018] [Indexed: 11/19/2022] Open
Abstract
Messenger RNA polyadenylation is a universal aspect of gene expression in eukaryotes. In well-established model organisms, this process is mediated by a conserved complex of 15–20 subunits. To better understand this process in apicomplexans, a group of unicellular parasites that causes serious disease in humans and livestock, a computational and high throughput sequencing study of the polyadenylation complex and poly(A) sites in several species was conducted. BLAST-based searches for orthologs of the human polyadenylation complex yielded clear matches to only two—poly(A) polymerase and CPSF73—of the 19 proteins used as queries in this analysis. As the human subunits that recognize the AAUAAA polyadenylation signal (PAS) were not immediately obvious, a computational analysis of sequences adjacent to experimentally-determined apicomplexan poly(A) sites was conducted. The results of this study showed that there exists in apicomplexans an A-rich region that corresponds in position to the AAUAAA PAS. The set of experimentally-determined sites in one species, Sarcocystis neurona, was further analyzed to evaluate the extent and significance of alternative poly(A) site choice in this organism. The results showed that almost 80% of S. neurona genes possess more than one poly(A) site, and that more than 780 sites showed differential usage in the two developmental stages–extracellular merozoites and intracellular schizonts–studied. These sites affected more than 450 genes, and included a disproportionate number of genes that encode membrane transporters and ribosomal proteins. Taken together, these results reveal that apicomplexan species seem to possess a poly(A) signal analogous to AAUAAA even though genes that may encode obvious counterparts of the AAUAAA-recognizing proteins are absent in these organisms. They also indicate that, as is the case in other eukaryotes, alternative polyadenylation is a widespread phenomenon in S. neurona that has the potential to impact growth and development.
Collapse
|
5
|
Rao PN, Santos JM, Pain A, Templeton TJ, Mair GR. Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium. Parasitol Int 2016; 65:463-71. [PMID: 27312996 DOI: 10.1016/j.parint.2016.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
The technical challenges of working with the sexual stages of the malaria parasite Plasmodium have hindered the characterization of sexual stage antigens in the quest for a successful malaria transmission-blocking vaccine. One such predicted and largely uncharacterized group of sexual stage candidate antigens is the CPW-WPC family of proteins. CPW-WPC proteins are named for a characteristic domain that contains two conserved motifs, CPxxW and WPC. Conserved across Apicomplexa, this family is also present earlier in the Alveolata in the free-living, non-parasitophorous, photosynthetic chromerids, Chromera and Vitrella. In Plasmodium falciparum and Plasmodium berghei blood stage parasites, the transcripts of all nine cpw-wpc genes have been detected in gametocytes. RNA immunoprecipitation followed by reverse transcriptase-PCR reveals all P. berghei cpw-wpc transcripts to be bound by the translational repressors DOZI and CITH, and thus are likely under translational control prior to transmission from the rodent host to the mosquito vector in P. berghei. The GFP tagging of two endogenous P. berghei genes confirmed translational silencing in the gametocyte and translation in ookinetes. By establishing a luciferase transgene assay, we show that the 3' untranslated region of PF3D7_1331400 controls protein expression of this reporter in P. falciparum gametocytes. Our analyses suggest that cpw-wpc genes are translationally silenced in gametocytes across Plasmodium spp. and activated during ookinete formation and thus may have a role in transmission to the mosquito.
Collapse
Affiliation(s)
- Pavitra N Rao
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - Jorge M Santos
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Saudi Arabia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20 W10 Kita-ku, Sapporo 001-0020, Japan
| | - Thomas J Templeton
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki 852-8523, Japan.
| | - Gunnar R Mair
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal; Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
| |
Collapse
|
6
|
De Niz M, Stanway RR, Wacker R, Keller D, Heussler VT. An ultrasensitive NanoLuc-based luminescence system for monitoring Plasmodium berghei throughout its life cycle. Malar J 2016; 15:232. [PMID: 27102897 PMCID: PMC4840902 DOI: 10.1186/s12936-016-1291-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/13/2016] [Indexed: 01/08/2023] Open
Abstract
Background Bioluminescence imaging is widely used for cell-based assays and animal imaging studies, both in biomedical research and drug development. Its main advantages include its high-throughput applicability, affordability, high sensitivity, operational simplicity, and quantitative outputs. In malaria research, bioluminescence has been used for drug discovery in vivo and in vitro, exploring host-pathogen interactions, and studying multiple aspects of Plasmodium biology. While the number of fluorescent proteins available for imaging has undergone a great expansion over the last two decades, enabling simultaneous visualization of multiple molecular and cellular events, expansion of available luciferases has lagged behind. The most widely used bioluminescent probe in malaria research is the Photinus pyralis firefly luciferase, followed by the more recently introduced Click-beetle and Renilla luciferases. Ultra-sensitive imaging of Plasmodium at low parasite densities has not been previously achieved. With the purpose of overcoming these challenges, a Plasmodium berghei line expressing the novel ultra-bright luciferase enzyme NanoLuc, called PbNLuc has been generated, and is presented in this work. Results NanoLuc shows at least 150 times brighter signal than firefly luciferase in vitro, allowing single parasite detection in mosquito, liver, and sexual and asexual blood stages. As a proof-of-concept, the PbNLuc parasites were used to image parasite development in the mosquito, liver and blood stages of infection, and to specifically explore parasite liver stage egress, and pre-patency period in vivo. Conclusions PbNLuc is a suitable parasite line for sensitive imaging of the entire Plasmodium life cycle. Its sensitivity makes it a promising line to be used as a reference for drug candidate testing, as well as the characterization of mutant parasites to explore the function of parasite proteins, host-parasite interactions, and the better understanding of Plasmodium biology. Since the substrate requirements of NanoLuc are different from those of firefly luciferase, dual bioluminescence imaging for the simultaneous characterization of two lines, or two separate biological processes, is possible, as demonstrated in this work.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland.
| | - Rebecca R Stanway
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| | - Rahel Wacker
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| | - Derya Keller
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| | - Volker T Heussler
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
7
|
Siciliano G, Alano P. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research. Front Microbiol 2015; 6:391. [PMID: 26029172 PMCID: PMC4426725 DOI: 10.3389/fmicb.2015.00391] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/16/2015] [Indexed: 12/31/2022] Open
Abstract
The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite P. berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.
Collapse
Affiliation(s)
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di SanitàRome, Italy
| |
Collapse
|
8
|
Wong EH, Hasenkamp S, Horrocks P. Analysis of the molecular mechanisms governing the stage-specific expression of a prototypical housekeeping gene during intraerythrocytic development of P. falciparum. J Mol Biol 2011; 408:205-21. [PMID: 21354176 PMCID: PMC3081073 DOI: 10.1016/j.jmb.2011.02.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/10/2011] [Accepted: 02/17/2011] [Indexed: 01/22/2023]
Abstract
Gene expression during the intraerythrocytic development cycle of the human malarial parasite Plasmodium falciparum is subject to tight temporal control, resulting in a cascade of gene expression to meet the physiological demands of growth, replication, and reinvasion. The roles of the different molecular mechanisms that drive this temporal program of gene expression are poorly understood. Here we report the use of the bxb1 integrase system to reconstitute all aspects of the absolute and temporal control of the prototypical housekeeping gene encoding the proliferating cell nuclear antigen (Pfpcna) around an integrated luciferase reporter cassette. A quantitative analysis of the effect of the serial deletion of 5′ and 3′ genetic elements and sublethal doses of histone deacetylase inhibitors demonstrates that while the absolute control of gene expression could be perturbed, no effect on the temporal control of gene expression was observed. These data provide support for a novel model for the temporal control of potentially hundreds of genes during the intraerythrocytic development of this important human pathogen.
Collapse
Affiliation(s)
- Eleanor H. Wong
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Sandra Hasenkamp
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Paul Horrocks
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
- Corresponding author. Institute for Science and Technology in Medicine, Keele University, Huxley Building, Staffordshire ST5 5BG, UK.
| |
Collapse
|
9
|
Identification and characterization of a liver stage-specific promoter region of the malaria parasite Plasmodium. PLoS One 2010; 5:e13653. [PMID: 21048918 PMCID: PMC2965107 DOI: 10.1371/journal.pone.0013653] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 09/30/2010] [Indexed: 12/30/2022] Open
Abstract
During the blood meal of a Plasmodium-infected mosquito, 10 to 100 parasites are inoculated into the skin and a proportion of these migrate via the bloodstream to the liver where they infect hepatocytes. The Plasmodium liver stage, despite its clinical silence, represents a highly promising target for antimalarial drug and vaccine approaches. Successfully invaded parasites undergo a massive proliferation in hepatocytes, producing thousands of merozoites that are transported into a blood vessel to infect red blood cells. To successfully develop from the liver stage into infective merozoites, a tight regulation of gene expression is needed. Although this is a very interesting aspect in the biology of Plasmodium, little is known about gene regulation in Plasmodium parasites in general and in the liver stage in particular. We have functionally analyzed a novel promoter region of the rodent parasite Plasmodium berghei that is exclusively active during the liver stage of the parasite. To prove stage-specific activity of the promoter, GFP and luciferase reporter assays have been successfully established, allowing both qualitative and accurate quantitative analysis. To further characterize the promoter region, the transcription start site was mapped by rapid amplification of cDNA ends (5'-RACE). Using promoter truncation experiments and site-directed mutagenesis within potential transcription factor binding sites, we suggest that the minimal promoter contains more than one binding site for the recently identified parasite-specific ApiAP2 transcription factors. The identification of a liver stage-specific promoter in P. berghei confirms that the parasite is able to tightly regulate gene expression during its life cycle. The identified promoter region might now be used to study the biology of the Plasmodium liver stage, which has thus far proven problematic on a molecular level. Stage-specific expression of dominant-negative mutant proteins and overexpression of proteins normally active in other life cycle stages will help to understand the function of the proteins investigated.
Collapse
|
10
|
Clayton C, Michaeli S. 3' processing in protists. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:247-55. [PMID: 21957009 DOI: 10.1002/wrna.49] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Molecular biologists have traditionally focused on the very small corner of eukaryotic evolution that includes yeast and animals; even plants have been neglected. In this article, we describe the scant information that is available concerning RNA processing in the other four major eukaryotic groups, especially pathogenic protists. We focus mainly on polyadenylation and nuclear processing of stable RNAs. These processes have--where examined--been shown to be conserved, but there are many novel details. We also briefly mention other processing reactions such as splicing.
Collapse
Affiliation(s)
- Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany.
| | | |
Collapse
|
11
|
Gopalakrishnan AM, López-Estraño C. Role of cis-regulatory elements on the ring-specific hrp3 promoter in the human parasite Plasmodium falciparum. Parasitol Res 2010; 106:833-45. [PMID: 20127361 DOI: 10.1007/s00436-010-1738-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 01/04/2010] [Indexed: 11/30/2022]
Abstract
Identification of promoter elements responsible for regulation of gene expression has been hampered by the AT richness of P. falciparum intergenic regions. Nested deletions of histidine-rich protein 3 (hrp3) promoter suggested the presence of a multipartite ring-specific element. Linker scanning (LS) of this ring-specific promoter showed that the alteration of several promoter regions decreased the luciferase activity compared to the wild-type configuration, indicating that these regions played a role in gene expression. No homology was observed by comparison of putative regulatory elements of other genes identified by bioinformatic analysis with the hrp3 enhancer, implying a different mechanism of gene regulation by the hrp3 promoter. LS and deletion analysis of the 5' untranslated region (UTR) of the hrp3 suggested that this region contains elements which interact with promoter elements to regulate gene expression. Analysis of the intron in the UTR region suggested that this region does not play a role in stage specificity in the hrp3 promoter. Together, our results indicate the presence of multiple mechanisms of gene regulation in the parasite.
Collapse
|
12
|
Huang R, Que X, Hirata K, Brinen LS, Lee JH, Hansell E, Engel J, Sajid M, Reed S. The cathepsin L of Toxoplasma gondii (TgCPL) and its endogenous macromolecular inhibitor, toxostatin. Mol Biochem Parasitol 2009; 164:86-94. [PMID: 19111576 PMCID: PMC2663568 DOI: 10.1016/j.molbiopara.2008.11.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 11/20/2008] [Accepted: 11/24/2008] [Indexed: 10/21/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite of all vertebrates, including man. Successful invasion and replication requires the synchronized release of parasite proteins, many of which require proteolytic processing. Unlike most parasites, T. gondii has a limited number of Clan CA, family C1 cysteine proteinases with one cathepsin B (TgCPB), one cathepsin L (TgCPL) and three cathepsin Cs (TgCPC1, 2, 3). Previously, we characterized toxopain, the only cathepsin B enzyme, which localizes to the rhoptry organelle. Two cathepsin Cs are trafficked through dense granules to the parasitophorous vacuole where they degrade peptides. We now report the cloning, expression, and modeling of the sole cathepsin L gene and the identification of two new endogenous inhibitors. TgCPL differs from human cathepsin L with a pH optimum of 6.5 and its substrate preference for leucine (vs. phenylalanine) in the P2 position. This distinct preference is explained by homology modeling, which reveals a non-canonical aspartic acid (Asp 216) at the base of the predicted active site S2 pocket, which limits substrate access. To further our understanding of the regulation of cathepsins in T. gondii, we identified two genes encoding endogenous cysteine proteinase inhibitors (ICPs or toxostatins), which are active against both TgCPB and TgCPL in the nanomolar range. Over expression of toxostatin-1 significantly decreased overall cysteine proteinase activity in parasite lysates, but had no detectable effect on invasion or intracellular multiplication. These findings provide important insights into the proteolytic cascades of T. gondii and their endogenous control.
Collapse
Affiliation(s)
- Robert Huang
- Department of Medicine, University of California, San Diego, San Diego, California 92103
| | - Xuchu Que
- Department of Medicine, University of California, San Diego, San Diego, California 92103
| | - Ken Hirata
- Department of Pathology, University of California, San Diego, San Diego, California 92103
| | - Linda S. Brinen
- Departments of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Ji Hyun Lee
- Departments of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Elizabeth Hansell
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94143
| | - Juan Engel
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94143
| | - Mohammed Sajid
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94143
| | - Sharon Reed
- Department of Medicine, University of California, San Diego, San Diego, California 92103
- Department of Pathology, University of California, San Diego, San Diego, California 92103
| |
Collapse
|
13
|
Epp C, Li F, Howitt CA, Chookajorn T, Deitsch KW. Chromatin associated sense and antisense noncoding RNAs are transcribed from the var gene family of virulence genes of the malaria parasite Plasmodium falciparum. RNA (NEW YORK, N.Y.) 2009; 15:116-27. [PMID: 19037012 PMCID: PMC2612763 DOI: 10.1261/rna.1080109] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Antigenic variation by the malaria parasite Plasmodium falciparum results from switches in expression between members of the multicopy var gene family. These genes encode the variant surface protein PfEMP-1, the primary determinant of the antigenic and cytoadherent properties of infected erythrocytes. Only a single var gene is expressed at a time while the remaining members of the family remain transcriptionally silent. How mutually exclusive var gene expression is regulated is poorly understood; however, it is generally thought to involve alterations in chromatin assembly and modification, resulting in a type of cellular memory. Recently, several aspects of the chromatin structure surrounding var genes have been described, in particular the histone modifications associated with the active and silent states of the genes as well as their subnuclear localization. Here, we demonstrate that this chromatin structure also includes the incorporation of long sense and antisense noncoding RNAs. These sterile transcripts initiate from a bidirectional promoter located within a conserved intron found in all var genes that was previously implicated in var gene silencing. Mapping of the 5' and 3' ends of the sterile transcripts indicates that they are nonpolyadenylated. RNA fluorescent in situ hybridization (RNA-FISH) analysis detects both the sense and antisense noncoding RNAs in distinct spots within the nucleus similar to the pattern described for the var genes themselves. Further, analysis by RNA chromatin immunoprecipitation (ChIP) indicates that the noncoding RNAs are physically associated with chromatin. These sterile transcripts therefore might act in a manner analogous to noncoding RNAs associated with silent, condensed chromatin found in other eukaryotic systems.
Collapse
MESH Headings
- Animals
- Antigenic Variation
- Base Sequence
- Chromatin/genetics
- Chromatin/metabolism
- Genes, Protozoan/genetics
- In Situ Hybridization, Fluorescence
- Introns
- Molecular Sequence Data
- Plasmodium falciparum/genetics
- Plasmodium falciparum/pathogenicity
- Polyadenylation
- Promoter Regions, Genetic
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Proteins/metabolism
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Transcription, Genetic
- Virulence/genetics
- Virulence/immunology
Collapse
Affiliation(s)
- Christian Epp
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
14
|
Horrocks P, Wong E, Russell K, Emes RD. Control of gene expression in Plasmodium falciparum - ten years on. Mol Biochem Parasitol 2008; 164:9-25. [PMID: 19110008 DOI: 10.1016/j.molbiopara.2008.11.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 01/24/2023]
Abstract
Ten years ago this journal published a review with an almost identical title detailing how the then recent introduction of transfection technology had advanced our understanding of the molecular control of transcriptional processes in Plasmodium falciparum, particularly in terms of promoter structure and function. In the succeeding years, sequencing of several Plasmodium spp. genomes and application of high throughput global postgenomic technologies have proven as significant, if not more, as has the ability to genetically manipulate these parasites in dissecting the molecular control of gene expression. Here we aim to review our current understanding of the control of gene expression in P. falciparum, including evidence available from other Plasmodium spp. and apicomplexan parasites. Specifically, however, we will address the current polarised debate regarding the level at which control is mediated, and attempt to identify some of the challenges this field faces in the next 10 years.
Collapse
Affiliation(s)
- Paul Horrocks
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, United Kingdom.
| | | | | | | |
Collapse
|
15
|
Cui L, Miao J, Wang J, Li Q, Cui L. Plasmodium falciparum: development of a transgenic line for screening antimalarials using firefly luciferase as the reporter. Exp Parasitol 2008; 120:80-7. [PMID: 18579134 DOI: 10.1016/j.exppara.2008.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 05/20/2008] [Accepted: 05/22/2008] [Indexed: 10/22/2022]
Abstract
High-throughput screening (HTS) of small-molecule libraries against pharmacological targets is a key strategy of contemporary drug discovery. This study reports a simple, robust, and cell-based luminescent method for assaying antimalarial drugs. Using transfection technology, we generated a stable Plasmodium falciparum line with high levels of firefly luciferase expression. A luciferase assay based on this parasite line was optimized in a 96-well plate format and used to compare with the standard [(3)H] hypoxanthine radioisotope method. The 50% inhibitory concentrations (IC(50)s) of chloroquine, artesunate, artemether, dihydroartemisinin and curcumin obtained by these two methods were not significantly different (P>0.05, ANOVA). In addition, this assay could be performed conveniently with a luminescence plate reader using unsynchronized stages within as early as 12h. Furthermore, the luciferase assay is robust with a Z' score of 0.77-0.92, which suggests the feasibility for further miniaturization and automation.
Collapse
Affiliation(s)
- Long Cui
- Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
16
|
Olivieri A, Silvestrini F, Sanchez M, Alano P. A 140-bp AT-rich sequence mediates positive and negative transcriptional control of a Plasmodium falciparum developmentally regulated promoter. Int J Parasitol 2008; 38:299-312. [DOI: 10.1016/j.ijpara.2007.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/14/2007] [Accepted: 08/15/2007] [Indexed: 11/26/2022]
|
17
|
Shock JL, Fischer KF, DeRisi JL. Whole-genome analysis of mRNA decay in Plasmodium falciparum reveals a global lengthening of mRNA half-life during the intra-erythrocytic development cycle. Genome Biol 2008; 8:R134. [PMID: 17612404 PMCID: PMC2323219 DOI: 10.1186/gb-2007-8-7-r134] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 07/05/2007] [Indexed: 11/23/2022] Open
Abstract
A consistent bias in tree reconciliation methods is described that occurs when the inferred gene tree is not correct, casting doubt on previous conclusions about ancient duplications and losses in vertebrate genome history. Background: The rate of mRNA decay is an essential element of post-transcriptional regulation in all organisms. Previously, studies in several organisms found that the specific half-life of each mRNA is precisely related to its physiologic role, and plays an important role in determining levels of gene expression. Results: We used a genome-wide approach to characterize mRNA decay in Plasmodium falciparum. We found that, globally, rates of mRNA decay increase dramatically during the asexual intra-erythrocytic developmental cycle. During the ring stage of the cycle, the average mRNA half-life was 9.5 min, but this was extended to an average of 65 min during the late schizont stage of development. Thus, a major determinant of mRNA decay rate appears to be linked to the stage of intra-erythrocytic development. Furthermore, we found specific variations in decay patterns superimposed upon the dominant trend of progressive half-life lengthening. These variations in decay pattern were frequently enriched for genes with specific cellular functions or processes. Conclusion: Elucidation of Plasmodium mRNA decay rates provides a key element for deciphering mechanisms of genetic control in this parasite, by complementing and extending previous mRNA abundance studies. Our results indicate that progressive stage-dependent decreases in mRNA decay rate function are a major determinant of mRNA accumulation during the schizont stage of intra-erythrocytic development. This type of genome-wide change in mRNA decay rate has not been observed in any other organism to date, and indicates that post-transcriptional regulation may be the dominant mechanism of gene regulation in P. falciparum.
Collapse
Affiliation(s)
- Jennifer L Shock
- Department of Biochemistry and Biophysics, University of California San Francisco, 1700 4Street, San Francisco, California 94158-2330, USA
| | - Kael F Fischer
- Department of Biochemistry and Biophysics, University of California San Francisco, 1700 4Street, San Francisco, California 94158-2330, USA
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, 1700 4Street, San Francisco, California 94158-2330, USA
- Howard Hughes Medical Institute, Jones Bridge Road, Chevy Chase, Maryland 20815-6789, USA
| |
Collapse
|
18
|
Kooij TW, Matuschewski K. Triggers and tricks of Plasmodium sexual development. Curr Opin Microbiol 2007; 10:547-53. [PMID: 18006365 DOI: 10.1016/j.mib.2007.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 09/27/2007] [Accepted: 09/28/2007] [Indexed: 11/27/2022]
Abstract
Irrespective of the tremendous suffering caused by malaria, a Plasmodium infection by pathogenic blood stages is only transient and an obligate step toward the Anopheles vector where sexual reproduction and genetic recombination of the unicellular parasite takes place. Recent expression profiling studies identified the molecular make-up of female and male gametocytes. Differential promoters and translational repression through mRNA binding by a female-specific helicase help to fine-tune the expression of these sexual stage-specific genes. However, we are only just beginning to discover the triggers that initiate gametocytogenesis and the developmental programs that drive sexual development.
Collapse
Affiliation(s)
- Taco Wa Kooij
- Department of Parasitology, Heidelberg University School of Medicine, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | | |
Collapse
|