1
|
Abou-El-Naga IF. Receptors for growth and development of Schistosoma mansoni. J Helminthol 2025; 99:e29. [PMID: 39949117 DOI: 10.1017/s0022149x24001020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
The growth and development of schistosomes are tightly regulated by various receptors throughout their life cycle. Each stage of the parasite inhabits a distinct habitat and responds to different factors that drive its growth and development. With two hosts involved in its life cycle (mammalian and snail), the parasite must go through additional free-living stages to transition between them. Moreover, communication between male and female worms is essential for the maturation of females. The ability of adult schistosomes to survive in human hosts for up to thirty years demonstrates their capacity to efficiently utilize host nutrients for metabolic processes and growth. In Schistosoma mansoni, receptors mediate the utilization of growth factors derived from both the parasite itself and the host. Nuclear receptors, in particular, collaborate with other proteins to regulate the expression of genes essential for various developmental functions. Receptors also play a pivotal role in RNA export, which is crucial for the parasite development. Additionally, neurotransmitter receptors are essential for the growth and development of larval stages. This review aims to elucidate the mechanisms by which these receptors regulate cell proliferation, differentiation, and maturation throughout the parasite life cycle. Understanding these processes could provide insights into the role of receptors in Schistosoma mansoni development and potentially lead to innovative therapeutic strategies to combat human schistosomiasis.
Collapse
Affiliation(s)
- Iman F Abou-El-Naga
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt
| |
Collapse
|
2
|
Schiedel M, McArdle DJB, Padalino G, Chan AKN, Forde-Thomas J, McDonough M, Whiteland H, Beckmann M, Cookson R, Hoffmann KF, Conway SJ. Small Molecule Ligands of the BET-like Bromodomain, SmBRD3, Affect Schistosoma mansoni Survival, Oviposition, and Development. J Med Chem 2023; 66:15801-15822. [PMID: 38048437 PMCID: PMC10726355 DOI: 10.1021/acs.jmedchem.3c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/15/2023] [Accepted: 11/01/2023] [Indexed: 12/06/2023]
Abstract
Schistosomiasis is a disease affecting >200 million people worldwide, but its treatment relies on a single agent, praziquantel. To investigate new avenues for schistosomiasis control, we have conducted the first systematic analysis of bromodomain-containing proteins (BCPs) in a causative species, Schistosoma mansoni. Having identified 29 putative bromodomains (BRDs) in 22 S. mansoni proteins, we selected SmBRD3, a tandem BRD-containing BCP that shows high similarity to the human bromodomain and extra terminal domain (BET) family, for further studies. Screening 697 small molecules identified the human BET BRD inhibitor I-BET726 as a ligand for SmBRD3. An X-ray crystal structure of I-BET726 bound to the second BRD of SmBRD3 [SmBRD3(2)] enabled rational design of a quinoline-based ligand (15) with an ITC Kd = 364 ± 26.3 nM for SmBRD3(2). The ethyl ester pro-drug of compound 15 (compound 22) shows substantial effects on sexually immature larval schistosomula, sexually mature adult worms, and snail-infective miracidia in ex vivo assays.
Collapse
Affiliation(s)
- Matthias Schiedel
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Darius J. B. McArdle
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Gilda Padalino
- The
Department of Life Sciences (DLS), Aberystwyth
University, Wales SY23 3DA, U.K.
| | - Anthony K. N. Chan
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | | | - Michael McDonough
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Helen Whiteland
- The
Department of Life Sciences (DLS), Aberystwyth
University, Wales SY23 3DA, U.K.
| | - Manfred Beckmann
- The
Department of Life Sciences (DLS), Aberystwyth
University, Wales SY23 3DA, U.K.
| | - Rosa Cookson
- GlaxoSmithKline
R&D, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Karl F. Hoffmann
- The
Department of Life Sciences (DLS), Aberystwyth
University, Wales SY23 3DA, U.K.
| | - Stuart J. Conway
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Department
of Chemistry & Biochemistry, University
of California Los Angeles, 607 Charles E. Young Drive East, P.O. Box 951569, Los Angeles, California 90095-1569, United States
| |
Collapse
|
3
|
Stelman CR, Smith BM, Chandra B, Roberts-Galbraith RH. CBP/p300 homologs CBP2 and CBP3 play distinct roles in planarian stem cell function. Dev Biol 2021; 473:130-143. [PMID: 33607113 DOI: 10.1016/j.ydbio.2021.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/19/2022]
Abstract
Chromatin modifications function as critical regulators of gene expression and cellular identity, especially in the regulation and maintenance of the pluripotent state. However, many studies of chromatin modification in stem cells-and pluripotent stem cells in particular-are performed in mammalian stem cell culture, an in vitro condition mimicking a very transient state during mammalian development. Thus, new models for studying pluripotent stem cells in vivo could be helpful for understanding the roles of chromatin modification, for confirming prior in vitro studies, and for exploring evolution of the pluripotent state. The freshwater flatworm, Schmidtea mediterranea, is an excellent model for studying adult pluripotent stem cells, particularly in the context of robust, whole-body regeneration. To identify chromatin modifying and remodeling enzymes critical for planarian regeneration and stem cell maintenance, we took a candidate approach and screened planarian homologs of 25 genes known to regulate chromatin biology in other organisms. Through our study, we identified six genes with novel functions in planarian homeostasis, regeneration, and behavior. Of the list of genes characterized, we identified five planarian homologs of the mammalian CREB-Binding Protein (CBP) and p300 family of histone acetyltransferases, representing an expansion of this family in planarians. We find that two planarian CBP family members are required for planarian survival, with knockdown of Smed-CBP2 and Smed-CBP3 causing distinct defects in stem cell maintenance or function. Loss of CBP2 causes a quick, dramatic loss of stem cells, while knockdown of CBP3 affects stem cells more narrowly, influencing differentiation of several cell types that include neuronal subtypes and cells of the eye. Further, we find that Smed-CBP1 is required for planarian fissioning behavior. We propose that the division of labor among a diversified CBP family in planarians presents an opportunity to dissect specific functions of a broadly important histone acetyltransferase family.
Collapse
Affiliation(s)
- Clara R Stelman
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Britessia M Smith
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Bidushi Chandra
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Rachel H Roberts-Galbraith
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Cellular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Epigenetic Markers Associated with Schistosomiasis. Helminthologia 2021; 58:28-40. [PMID: 33664616 PMCID: PMC7912237 DOI: 10.2478/helm-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/01/2020] [Indexed: 11/21/2022] Open
Abstract
It is important to consider the use of the epigenome as source of complementary data for genome knowledge, which is suitable for the diagnosis of schistosomiasis. Usually, a laboratory diagnosis of schistosomiasis is performed by means of 1. Egg detection in the stool or urine by microscopy remains with limited sensitivity; 2. Immunological screening, in which positivity persists after treatment, and 3. Molecular appraisals prevail over the disadvantages of the currently used methods. In this sense, molecular methodologies are being developed based on epigenetic biomarkers, aiming to improve the diagnosis of the disease and clinical treatment as early as possible to prevent the occurrence of serious liver damage.
Collapse
|
5
|
Pratx L, Rancurel C, Da Rocha M, Danchin EGJ, Castagnone-Sereno P, Abad P, Perfus-Barbeoch L. Genome-wide expert annotation of the epigenetic machinery of the plant-parasitic nematodes Meloidogyne spp., with a focus on the asexually reproducing species. BMC Genomics 2018; 19:321. [PMID: 29724186 PMCID: PMC5934874 DOI: 10.1186/s12864-018-4686-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/16/2018] [Indexed: 01/10/2023] Open
Abstract
Background The renewed interest in epigenetics has led to the understanding that both the environment and individual lifestyle can directly interact with the epigenome to influence its dynamics. Epigenetic phenomena are mediated by DNA methylation, stable chromatin modifications and non-coding RNA-associated gene silencing involving specific proteins called epigenetic factors. Multiple organisms, ranging from plants to yeast and mammals, have been used as model systems to study epigenetics. The interactions between parasites and their hosts are models of choice to study these mechanisms because the selective pressures are strong and the evolution is fast. The asexually reproducing root-knot nematodes (RKN) offer different advantages to study the processes and mechanisms involved in epigenetic regulation. RKN genomes sequencing and annotation have identified numerous genes, however, which of those are involved in the adaption to an environment and potentially relevant to the evolution of plant-parasitism is yet to be discovered. Results Here, we used a functional comparative annotation strategy combining orthology data, mining of curated genomics as well as protein domain databases and phylogenetic reconstructions. Overall, we show that (i) neither RKN, nor the model nematode Caenorhabditis elegans possess any DNA methyltransferases (DNMT) (ii) RKN do not possess the complete machinery for DNA methylation on the 6th position of adenine (6mA) (iii) histone (de)acetylation and (de)methylation pathways are conserved between C. elegans and RKN, and the corresponding genes are amplified in asexually reproducing RKN (iv) some specific non-coding RNA families found in plant-parasitic nematodes are dissimilar from those in C. elegans. In the asexually reproducing RKN Meloidogyne incognita, expression data from various developmental stages supported the putative role of these proteins in epigenetic regulations. Conclusions Our results refine previous predictions on the epigenetic machinery of model species and constitute the most comprehensive description of epigenetic factors relevant to the plant-parasitic lifestyle and/or asexual mode of reproduction of RKN. Providing an atlas of epigenetic factors in RKN is an informative resource that will enable researchers to explore their potential role in adaptation of these parasites to their environment. Electronic supplementary material The online version of this article (10.1186/s12864-018-4686-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Loris Pratx
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Corinne Rancurel
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Martine Da Rocha
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Etienne G J Danchin
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Philippe Castagnone-Sereno
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Pierre Abad
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Laetitia Perfus-Barbeoch
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France. .,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France.
| |
Collapse
|
6
|
Liu W. Epigenetics in Schistosomes: What We Know and What We Need Know. Front Cell Infect Microbiol 2016; 6:149. [PMID: 27891322 PMCID: PMC5104962 DOI: 10.3389/fcimb.2016.00149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/28/2016] [Indexed: 01/26/2023] Open
Abstract
Schistosomes are metazoan parasites and can cause schistosomiasis. Epigenetic modifications include DNA methylation, histone modifications and non-coding RNAs. Some enzymes involved in epigenetic modification and microRNA processes have been developed as drugs to treat the disease. Compared with humans and vertebrates, an in-depth understanding of epigenetic modifications in schistosomes is starting to be realized. DNA methylation, histone modifications and non-coding RNAs play important roles in the development and reproduction of schistosomes and in interactions between the host and schistosomes. Therefore, exploring and investigating the epigenetic modifications in schistosomes will facilitate drug development and therapy for schistosomiasis. Here, we review the role of epigenetic modifications in the development, growth and reproduction of schistosomes, and the interactions between the host and schistosome. We further discuss potential epigenetic targets for drug discovery for the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science Shanghai, China
| |
Collapse
|
7
|
Collins JNR, Collins JJ. Tissue Degeneration following Loss of Schistosoma mansoni cbp1 Is Associated with Increased Stem Cell Proliferation and Parasite Death In Vivo. PLoS Pathog 2016; 12:e1005963. [PMID: 27812220 PMCID: PMC5094730 DOI: 10.1371/journal.ppat.1005963] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/29/2016] [Indexed: 01/06/2023] Open
Abstract
Schistosomiasis is second only to malaria in terms of the global impact among diseases caused by parasites. A striking feature of schistosomes are their ability to thrive in their hosts for decades. We have previously demonstrated that stem cells, called neoblasts, promote homeostatic tissue maintenance in adult schistosomes and suggested these cells likely contribute to parasite longevity. Whether these schistosome neoblasts have functions independent of homeostatic tissue maintenance, for example in processes such as tissue regeneration following injury, remains unexplored. Here we characterize the schistosome CBP/p300 homolog, Sm-cbp1. We found that depleting cbp1 transcript levels with RNA interference (RNAi) resulted in increased neoblast proliferation and cell death, eventually leading to organ degeneration. Based on these observations we speculated this increased rate of neoblast proliferation may be a response to mitigate tissue damage due to increased cell death. Therefore, we tested if mechanical injury was sufficient to stimulate neoblast proliferation. We found that mechanical injury induced both cell death and neoblast proliferation at wound sites, suggesting that schistosome neoblasts are capable of mounting proliferative responses to injury. Furthermore, we observed that the health of cbp1(RNAi) parasites progressively declined during the course of our in vitro experiments. To determine the fate of cbp1(RNAi) parasites in the context of a mammalian host, we coupled RNAi with an established technique to transplant schistosomes into the mesenteric veins of uninfected mice. We found transplanted cbp1(RNAi) parasites were cleared from vasculature of recipient mice and were incapable of inducing measurable pathology in their recipient hosts. Together our data suggest that injury is sufficient to induce neoblast proliferation and that cbp1 is essential for parasite survival in vivo. These studies present a new methodology to study schistosome gene function in vivo and highlight a potential role for schistosome neoblasts in promoting tissue repair following injury.
Collapse
Affiliation(s)
| | - James J. Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
8
|
Cabezas-Cruz A, Lancelot J, Caby S, Oliveira G, Pierce RJ. Epigenetic control of gene function in schistosomes: a source of therapeutic targets? Front Genet 2014; 5:317. [PMID: 25309576 PMCID: PMC4159997 DOI: 10.3389/fgene.2014.00317] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/24/2014] [Indexed: 12/31/2022] Open
Abstract
The discovery of the epigenetic regulation of gene expression has revolutionized both our understanding of how genomes function and approaches to the therapy of numerous pathologies. Schistosomes are metazoan parasites and as such utilize most, if not all the epigenetic mechanisms in play in their vertebrate hosts: histone variants, histone tail modifications, non-coding RNA and, perhaps, DNA methylation. Moreover, we are acquiring an increasing understanding of the ways in which these mechanisms come into play during the complex schistosome developmental program. In turn, interest in the actors involved in epigenetic mechanisms, particularly the enzymes that carry out epigenetic modifications of histones or nucleic acid, as therapeutic targets has been stimulated by the finding that their inhibitors exert profound effects, not only on survival, but also on the reproductive function of Schistosoma mansoni. Here, we review our current knowledge, and what we can infer, about the role of epigenetic mechanisms in schistosome development, differentiation and survival. We will consider which epigenetic actors can be targeted for drug discovery and what strategies can be employed to develop potent, selective inhibitors as drugs to cure schistosomiasis.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- Institut National de la Santé et de la Recherche Médicale U1019 – Centre National de la Recherche Scientifique UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de LilleLille, France
| | - Julien Lancelot
- Institut National de la Santé et de la Recherche Médicale U1019 – Centre National de la Recherche Scientifique UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de LilleLille, France
| | - Stéphanie Caby
- Institut National de la Santé et de la Recherche Médicale U1019 – Centre National de la Recherche Scientifique UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de LilleLille, France
| | - Guilherme Oliveira
- Genomics and Computational Biology Group, Fundação Oswaldo Cruz, Center for Excellence in Bioinformatics, Centro de Pesquisas René Rachou, National Institute of Science and Technology in Tropical DiseasesBelo Horizonte, Brazil
| | - Raymond J. Pierce
- Institut National de la Santé et de la Recherche Médicale U1019 – Centre National de la Recherche Scientifique UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de LilleLille, France
| |
Collapse
|
9
|
Carneiro VC, de Abreu da Silva IC, Torres EJL, Caby S, Lancelot J, Vanderstraete M, Furdas SD, Jung M, Pierce RJ, Fantappié MR. Epigenetic changes modulate schistosome egg formation and are a novel target for reducing transmission of schistosomiasis. PLoS Pathog 2014; 10:e1004116. [PMID: 24809504 PMCID: PMC4014452 DOI: 10.1371/journal.ppat.1004116] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 03/30/2014] [Indexed: 01/23/2023] Open
Abstract
Treatment and control of schistosomiasis relies on the only available drug, praziquantel, and the search for alternative chemotherapeutic agents is therefore urgent. Egg production is required for the transmission and immunopathology of schistosomiasis and females of S. mansoni lay 300 eggs daily. A large fraction of the total mRNA in the mature female worm encodes one eggshell protein, Smp14. We report that the nuclear receptors SmRXR1 and SmNR1 regulate Smp14 transcription through the recruitment of two histone acetyltransferases (HATs), SmGCN5 and SmCBP1. The treatment of HEK293 cells with histone deacetylase (HDAC) inhibitors (NaB or TSA) produced an 8-fold activation of the SmRXR1/SmNR1-mediated Smp14 promoter activity. Incubation with synthetic HAT inhibitors, including PU139, significantly impaired the Smp14 promoter activity in these cells. Worm pairs cultivated in the presence of PU139 exhibited limited expression of Smp14 mRNA and protein. ChIP analysis demonstrated chromatin condensation at the Smp14 promoter site in worms treated with PU139. ChIP also revealed the presence of H3K27me3 and the absence of RNA Pol II at the Smp14 promoter region in the PU139-treated worms. Most significantly, the PU139-mediated inhibition of Smp14 expression resulted in a significant number of abnormal eggs as well as defective eggs within the ootype. In addition, scanning electron microscopy revealed structural defects and unformed eggshells, and vitelline cell leakage was apparent. The dsRNAi-targeting of SmGCN5 or SmCBP1 significantly decreased Smp14 transcription and protein synthesis, which compromised the reproductive system of mature female worms, egg-laying and egg morphology. Our data strongly suggest that the inhibition of Smp14 expression targeting SmGCN5 and/or SmCBP1 represents a novel and effective strategy to control S. mansoni egg development. Schistosoma mansoni is a parasitic worm that causes schistosomiasis, a debilitating disease in Africa and South America. Female worms mated with males produce hundreds of eggs that can reach the environment to propagate the biological cycle, or become trapped in host tissues, triggering inflammation and pathology. Because eggshell formation is a key step in egg development and viability, we have studied the molecular mechanisms of S. mansoni eggshell development, focusing on a major eggshell gene, Smp14. Using a variety of technical and biological approaches, we obtained strong evidence that eggshell formation depends on nuclear receptors and coactivators with chromatin modifying activities, mainly histone acetylation. Inhibition or partial deletion of S. mansoni histone acetyltransferases impaired the expression of Smp14, culminating in a severe negative effect on eggshell formation. Our findings will contribute not only to a better understanding of sex and tissue-specific gene regulation in S. mansoni but also provide an alternative strategy for interfering with the egg production, which might be targeted in novel therapeutics directed against this parasite.
Collapse
Affiliation(s)
- Vitor Coutinho Carneiro
- Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Isabel Caetano de Abreu da Silva
- Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Stephany Caby
- CIIL, INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Julien Lancelot
- CIIL, INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Mathieu Vanderstraete
- CIIL, INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Silviya D. Furdas
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University, Freiburg, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University, Freiburg, Germany
| | - Raymond J. Pierce
- CIIL, INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
- * E-mail: (RJP); (MRF)
| | - Marcelo Rosado Fantappié
- Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- * E-mail: (RJP); (MRF)
| |
Collapse
|
10
|
Stolfa DA, Marek M, Lancelot J, Hauser AT, Walter A, Leproult E, Melesina J, Rumpf T, Wurtz JM, Cavarelli J, Sippl W, Pierce RJ, Romier C, Jung M. Molecular basis for the antiparasitic activity of a mercaptoacetamide derivative that inhibits histone deacetylase 8 (HDAC8) from the human pathogen schistosoma mansoni. J Mol Biol 2014; 426:3442-53. [PMID: 24657767 DOI: 10.1016/j.jmb.2014.03.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
Abstract
Schistosomiasis, caused by the parasitic flatworm Schistosoma mansoni and related species, is a tropical disease that affects over 200 million people worldwide. A new approach for targeting eukaryotic parasites is to tackle their dynamic epigenetic machinery that is necessary for the extensive phenotypic changes during the life cycle of the parasite. Recently, we identified S. mansoni histone deacetylase 8 (smHDAC8) as a potential target for antiparasitic therapy. Here, we present results on the investigations of a focused set of HDAC (histone deacetylase) inhibitors on smHDAC8. Besides several active hydroxamates, we identified a thiol-based inhibitor that inhibited smHDAC8 activity in the micromolar range with unexpected selectivity over the human isotype, which has not been observed so far. The crystal structure of smHDAC8 complexed with the thiol derivative revealed that the inhibitor is accommodated in the catalytic pocket, where it interacts with both the catalytic zinc ion and the essential catalytic tyrosine (Y341) residue via its mercaptoacetamide warhead. To our knowledge, this is the first complex crystal structure of any HDAC inhibited by a mercaptoacetamide inhibitor, and therefore, this finding offers a rationale for further improvement. Finally, an ester prodrug of the thiol HDAC inhibitor exhibited antiparasitic activity on cultured schistosomes in a dose-dependent manner.
Collapse
Affiliation(s)
- Diana A Stolfa
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Martin Marek
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS, INSERM, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| | - Julien Lancelot
- Center for Infection and Immunity of Lille, INSERM U1019-CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, 1 rue Professeur Calmette, F-59019 Lille Cedex, France
| | - Alexander-Thomas Hauser
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Alexandra Walter
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Emeline Leproult
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS, INSERM, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| | - Jelena Melesina
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle/Saale, Germany
| | - Tobias Rumpf
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Jean-Marie Wurtz
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS, INSERM, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| | - Jean Cavarelli
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS, INSERM, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle/Saale, Germany
| | - Raymond J Pierce
- Center for Infection and Immunity of Lille, INSERM U1019-CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, 1 rue Professeur Calmette, F-59019 Lille Cedex, France
| | - Christophe Romier
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS, INSERM, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France.
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany.
| |
Collapse
|
11
|
Lancelot J, Caby S, Dubois-Abdesselem F, Vanderstraete M, Trolet J, Oliveira G, Bracher F, Jung M, Pierce RJ. Schistosoma mansoni Sirtuins: characterization and potential as chemotherapeutic targets. PLoS Negl Trop Dis 2013; 7:e2428. [PMID: 24069483 PMCID: PMC3772001 DOI: 10.1371/journal.pntd.0002428] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/02/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The chemotherapy of schistosomiasis currently depends on the use of a single drug, praziquantel. In order to develop novel chemotherapeutic agents we are investigating enzymes involved in the epigenetic modification of chromatin. Sirtuins are NAD+ dependent lysine deacetylases that are involved in a wide variety of cellular processes including histone deacetylation, and have been demonstrated to be therapeutic targets in various pathologies, including cancer. METHODOLOGY PRINCIPAL FINDINGS In order to determine whether Schistosoma mansoni sirtuins are potential therapeutic targets we first identified and characterized their protein sequences. Five sirtuins (SmSirt) are encoded in the S. mansoni genome and phylogenetic analysis showed that they are orthologues of mammalian Sirt1, Sirt2, Sirt5, Sirt6 and Sirt7. Both SmSirt1 and SmSirt7 have large insertion in the catalytic domain compared to their mammalian orthologues. SmSirt5 is the only mitochondrial sirtuin encoded in the parasite genome (orthologues of Sirt3 and Sirt4 are absent) and transcripts corresponding to at least five splicing isoforms were identified. All five sirtuins are expressed throughout the parasite life-cycle, but with distinct patterns of expression. Sirtuin inhibitors were used to treat both schistosomula and adult worms maintained in culture. Three inhibitors in particular, Sirtinol, Salermide and MS3 induced apoptosis and death of schistosomula, the separation of adult worm pairs, and a reduction in egg laying. Moreover, Salermide treatment led to a marked disruption of the morphology of ovaries and testes. Transcriptional knockdown of SmSirt1 by RNA interference in adult worms led to morphological changes in the ovaries characterized by a marked increase in mature oocytes, reiterating the effects of sirtuin inhibitors and suggesting that SmSirt1 is their principal target. CONCLUSION SIGNIFICANCE Our data demonstrate the potential of schistosome sirtuins as therapeutic targets and validate screening for selective sirtuin inhibitors as a strategy for developing new drugs against schistosomiasis.
Collapse
Affiliation(s)
- Julien Lancelot
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Stéphanie Caby
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Florence Dubois-Abdesselem
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Mathieu Vanderstraete
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Jacques Trolet
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Guilherme Oliveira
- Genomics and Computational Biology Group, Center for Excellence in Bioinformatics, National Institute of Science and Technology in Tropical Diseases, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Franz Bracher
- Department für Pharmazie, Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität, München, Germany
| | - Manfred Jung
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Raymond J. Pierce
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
- * E-mail:
| |
Collapse
|
12
|
Pierce RJ, Dubois-Abdesselem F, Caby S, Trolet J, Lancelot J, Oger F, Bertheaume N, Roger E. Chromatin regulation in schistosomes and histone modifying enzymes as drug targets. Mem Inst Oswaldo Cruz 2012; 106:794-801. [PMID: 22124550 DOI: 10.1590/s0074-02762011000700003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/29/2011] [Indexed: 11/22/2022] Open
Abstract
Only one drug is currently available for the treatment and control of schistosomiasis and the increasing risk of selecting strains of schistosome that are resistant to praziquantel means that the development of new drugs is urgent. With this objective we have chosen to target the enzymes modifying histones and in particular the histone acetyltransferases and histone deacetylases (HDAC). Inhibitors of HDACs (HDACi) are under intense study as potential anti-cancer drugs and act via the induction of cell cycle arrest and/or apoptosis. Schistosomes like other parasites can be considered as similar to tumours in that they maintain an intense metabolic activity and rate of cell division that is outside the control of the host. We have shown that HDACi can induce apoptosis and death of schistosomes maintained in culture and have set up a consortium (Schistosome Epigenetics: Targets, Regulation, New Drugs) funded by the European Commission with the aim of developing inhibitors specific for schistosome histone modifying enzymes as novel lead compounds for drug development.
Collapse
|
13
|
Mourão MM, Grunau C, LoVerde PT, Jones MK, Oliveira G. Recent advances in Schistosoma genomics. Parasite Immunol 2012; 34:151-62. [PMID: 22145587 DOI: 10.1111/j.1365-3024.2011.01349.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Schistosome research has entered the genomic era with the publications reporting the Schistosoma mansoni and Schistosoma japonicum genomes. Schistosome genomics is motivated by the need for new control tools. However, much can also be learned about the biology of Schistosoma, which is a tractable experimental model. In this article, we review the recent achievements in the field of schistosome research and discuss future perspectives on genomics and how it can be integrated in a usable format, on the genetic mapping and how it has improved the genome assembly and provided new research approaches, on how epigenetics provides interesting insights into the biology of the species and on new functional genomics tools that will contribute to the understanding of the function of genes, many of which are parasite- or taxon specific.
Collapse
Affiliation(s)
- M M Mourão
- Genomics and Computational Biology Group, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
14
|
Anderson L, Pierce RJ, Verjovski-Almeida S. Schistosoma mansoni histones: From transcription to chromatin regulation; an in silico analysis. Mol Biochem Parasitol 2012; 183:105-14. [DOI: 10.1016/j.molbiopara.2012.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 11/25/2022]
|
15
|
Oliveira KC, Carvalho MLP, Verjovski-Almeida S, LoVerde PT. Effect of human TGF-β on the gene expression profile of Schistosoma mansoni adult worms. Mol Biochem Parasitol 2012; 183:132-9. [PMID: 22387759 DOI: 10.1016/j.molbiopara.2012.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 01/09/2012] [Accepted: 02/18/2012] [Indexed: 10/28/2022]
Abstract
Schistosoma mansoni is responsible for schistosomiasis, a parasitic disease that affects 200 million people worldwide. Molecular mechanisms of host-parasite interaction are complex and involve a crosstalk between host signals and parasite receptors. TGF-β signaling pathway has been shown to play an important role in S. mansoni development and embryogenesis. In particular human (h) TGF-β has been shown to bind to a S. mansoni receptor, transduce a signal that regulates the expression of a schistosome target gene. Here we describe 381 parasite genes whose expression levels are affected by in vitro treatment with hTGF-β. Among these differentially expressed genes we highlight genes related to morphology, development and cell cycle that could be players of cytokine effects on the parasite. We confirm by qPCR the expression changes detected with microarrays for 5 out of 7 selected genes. We also highlight a set of non-coding RNAs transcribed from the same loci of protein-coding genes that are differentially expressed upon hTGF-β treatment. These datasets offer potential targets to be explored in order to understand the molecular mechanisms behind the possible role of hTGF-β effects on parasite biology.
Collapse
Affiliation(s)
- Katia C Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900 São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
16
|
Epping K, Brehm K. Echinococcus multilocularis: molecular characterization of EmSmadE, a novel BR-Smad involved in TGF-β and BMP signaling. Exp Parasitol 2011; 129:85-94. [PMID: 21802416 DOI: 10.1016/j.exppara.2011.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/08/2011] [Accepted: 07/14/2011] [Indexed: 12/11/2022]
Abstract
Smad transcription factors are central components of transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) signaling pathways in metazoans, and regulate key developmental processes such as body axis formation or regeneration. In the present study, we have identified and characterized a novel member of this protein family, EmSmadE, in the human parasitic cestode Echinococcus multilocularis, the causative agent of alveolar echinococcosis. The cDNA of the corresponding gene, emsmadE, was fully sequenced and shown to encode a protein with considerable homologies to known members of the receptor regulated Smad (R-Smad) family of a wide variety of organisms. EmSmadE contains highly conserved MH1- and MH2-domains and, on the basis of sequence features around the L3 loop region, could be assigned to the BR-Smad subfamily that typically transmits BMP signals. RT-PCR analyses indicated expression of emsmadE in all larval stages that are involved in the infection of the intermediate host. Yeast two-hybrid interaction studies demonstrated that EmSmadE can form homodimers, and is capable of heterodimer formation with the previously identified common Smad (Co-Smad) EmSmadD and the R-Smads, EmSmadA, and EmSmadB. In a heterologous expression system, EmSmadE was specifically phosphorylated at a conserved C-terminal SSVS motif by the human BMP type I receptor and, despite being structurally a BR-Smad, also by the human TGF-β type I receptor. Taken together, these data indicate that EmSmadE is a functionally active R-Smad that is involved in larval Echinococcus development. The data presented herein will be important for further analyses on the role of TGF-β/BMP signaling pathways in Echinococcus pattern formation and differentiation.
Collapse
Affiliation(s)
- Kerstin Epping
- University of Würzburg, Institute of Hygiene and Microbiology, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | | |
Collapse
|
17
|
Wu W, LoVerde PT. Nuclear hormone receptors in parasitic helminths. Mol Cell Endocrinol 2011; 334:56-66. [PMID: 20600585 PMCID: PMC2974807 DOI: 10.1016/j.mce.2010.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 04/23/2010] [Accepted: 06/10/2010] [Indexed: 11/29/2022]
Abstract
Nuclear receptors (NRs) belong to a large protein superfamily that are important transcriptional modulators in metazoans. Parasitic helminths include parasitic worms from the Lophotrochozoa (Platyhelminths) and Ecdysozoa (Nematoda). NRs in parasitic helminths diverged into two different evolutionary lineages. NRs in parasitic Platyhelminths have orthologues in Deuterostomes, in arthropods or both with a feature of extensive gene loss and gene duplication within different gene groups. NRs in parasitic Nematoda follow the nematode evolutionary lineage with a feature of multiple duplication of SupNRs and gene loss.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Biochemistry, School of Medicine and Biomedical Science, State University of New York, Buffalo, NY 14214, USA.
| | | |
Collapse
|
18
|
Taft AS, Norante FA, Yoshino TP. The identification of inhibitors of Schistosoma mansoni miracidial transformation by incorporating a medium-throughput small-molecule screen. Exp Parasitol 2010; 125:84-94. [PMID: 20060828 DOI: 10.1016/j.exppara.2009.12.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/21/2009] [Accepted: 12/30/2009] [Indexed: 10/20/2022]
Abstract
In Schistosoma mansoni, the miracidium-to-primary sporocyst transformation process is associated with many physiological, morphological, transcriptional and biochemical changes. In the present study, we use a medium-throughput small-molecule screen to identify chemical compounds inhibiting or delaying the in vitro transformation of miracidia to the sporocyst stage. The Sigma-Aldrich Library of Pharmacologically Active Compounds (LOPAC) contains 1280 well-characterized chemical compounds with various modes of action including enzyme inhibitors, antibiotics, cell-cycle regulators, apoptosis inducers and GPCR ligands. We identified 47 compounds that greatly reduce or delay this transformation process during a primary screen of live miracidia. The majority of compounds inhibiting larval transformation were from dopaminergic, serotonergic, ion channel and phosphorylation classes. Specifically, we found that dopamine D2-type antagonists, serotonin reuptake inhibitors, voltage-gated calcium channel antagonists and a PKC activator significantly reduced in vitro miracidial transformation rates. Many of the targets of these compounds regulate adenylyl cyclase activity, with the inhibition or activation of these targets resulting in increased cAMP levels in miracidia and concomitant blocking/delaying of larval transformation.
Collapse
Affiliation(s)
- Andrew S Taft
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
19
|
Cosseau C, Azzi A, Smith K, Freitag M, Mitta G, Grunau C. Native chromatin immunoprecipitation (N-ChIP) and ChIP-Seq of Schistosoma mansoni: Critical experimental parameters. Mol Biochem Parasitol 2009; 166:70-6. [PMID: 19428675 DOI: 10.1016/j.molbiopara.2009.02.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/20/2009] [Accepted: 02/25/2009] [Indexed: 11/26/2022]
Abstract
Histone modifications are important epigenetic marks that influence chromatin structure and consequently play a role in the control of eukaryotic transcription. Several histone modifying enzymes have been characterized in Schistosoma mansoni and it has been suggested that the regulation of gene transcription in schistosomes may require the action of these enzymes. However, the influence of chromatin structure on gene transcription in schistosomes has never been investigated. Chromatin immunoprecipitation (ChIP) is the technique of choice to study the relationship between histone modifications and gene expression. Although this technique has been widely used with cultured cells from model organisms and with many unicellular organisms, it remains challenging to apply this technique to non-conventional organisms that undergo complex life cycles. In this work, we describe a native ChIP procedure that is applicable to all the stages of the S. mansoni life cycle and does not require expensive equipment. Immunoprecipitated DNA was analysed on a whole-genome scale using massively parallel sequencing (ChIP-Sequencing or ChIP-Seq). We show that ChIP-Seq and conventional quantitative PCR deliver comparable results for a life-cycle regulated locus, smRHO, that encodes a guanine-protein coupled receptor. This is the first time that the ChIP-Seq procedure has been applied to a parasite. This technique opens new ways for analyzing epigenetic mechanisms in S. mansoni at a whole-genome scale and on the level of individual loci.
Collapse
Affiliation(s)
- Céline Cosseau
- Parasitologie Fonctionnelle et Evolutive, UMR 5244, CNRS EPHE Université de Perpignan, Perpignan Cedex, France
| | | | | | | | | | | |
Collapse
|
20
|
Quantitative chromatin immunoprecipitation (Q-ChIP) applied to Schistosoma mansoni. Mol Biochem Parasitol 2009; 166:77-80. [PMID: 19428676 DOI: 10.1016/j.molbiopara.2009.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 11/23/2022]
Abstract
The life-cycle of the platyhelminth parasite Schistosoma mansoni is characterized by marked morphological changes between the various stages that are the result of a complex developmental program. In order to study the role of epigenetic mechanisms in regulating this program, and more particularly the role of changes in histone modifications in the control of the transcription of key genes, we have adapted the technique of quantitative chromatin immunoprecipitation (Q-ChIP) to larval stages and adult worms. We have used the classical method involving formaldehyde-induced cross-linking of DNA-associated proteins, followed by ultrasonication to fragment the DNA before immunoprecipitation and have established a protocol for use with schistosomes. We show, using antibodies directed against acetylated histone H4, that the technique is applicable to the parasite and allows the quantification and comparison of the levels of modified histone at gene promoters at different life-cycle stages.
Collapse
|
21
|
Fantappíé MR, de Oliveira FMB, Santos RDMMD, Mansure JJ, Furtado DR, da Silva ICDA, Rumjanek FD. Control of transcription in Schistosoma mansoni: chromatin remodeling and other regulatory elements. Acta Trop 2008; 108:186-93. [PMID: 18191795 DOI: 10.1016/j.actatropica.2007.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
Abstract
The platyhelminth parasite Schistosoma mansoni, the causative agent of schistosomiasis, is a dioecious parasite with a complex life cycle that includes two different hosts and two free-living stages. Yet very little is known about the biochemical details connected to these different transitions. In the present work, results will be presented showing the most recent results in S. mansoni regarding the characterization of transcription factors and coactivators that act directly on the transcriptional machinery and those that are involved with chromatin remodeling. It is hoped that the information gathered here may contribute towards the understanding of crucial events in the parasite life cycle. Likewise, the development of new drugs that could interfere with oogenesis and sexual maturation may eventually profit from the information contained herein.
Collapse
|
22
|
The class I histone deacetylases of the platyhelminth parasite Schistosoma mansoni. Biochem Biophys Res Commun 2008; 377:1079-84. [PMID: 18977200 DOI: 10.1016/j.bbrc.2008.10.090] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 11/22/2022]
Abstract
Histone deacetylases (HDAC) form a conserved enzyme family that control gene expression via the removal of acetyl residues from histones and other proteins and are under increasing investigation as therapeutic targets, notably in cancer and parasitic diseases. To investigate the conservation of these enzymes in the platyhelminth parasite Schistosoma mansoni, we cloned and characterized three class I HDACs, orthologues of mammalian HDAC1, 3 and 8, and confirmed their identities by phylogenetic analysis. The identification of an HDAC8 orthologue showed that it is not vertebrate-specific as previously thought and insertions in its catalytic domain suggest specific enzymatic properties. SmHDAC1, 3, and 8 mRNAs are expressed at all schistosome life-cycle stages. SmHDAC1 repressed transcriptional activity in a mammalian cell line and this activity was dependent on its catalytic activity since transcription was partially restored by treatment with trichostatin A and a catalytic site mutant failed to repress transcription.
Collapse
|
23
|
Microarray based analysis of temperature and oxidative stress induced messenger RNA in Schistosoma mansoni. Mol Biochem Parasitol 2008; 162:134-41. [PMID: 18775750 DOI: 10.1016/j.molbiopara.2008.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 08/10/2008] [Accepted: 08/11/2008] [Indexed: 01/06/2023]
Abstract
The body's defense against schistosome infection can take many forms. For example, upon developing acute schistosomiasis, patients often have fever coinciding with larval maturation, migration and early oviposition. As the infection becomes established, the parasite comes under oxidative stress generated by the host immune system. The most common treatment for schistosomiasis is the anti-helminthic drug praziquantel. Its effectiveness, however, is limited due to its inability to kill schistosomes 2-4 weeks post-infection. Clearly there is a need for new anti-schistosomal drugs. We hypothesize that gene products expressed as part of a protective response against heat and/or oxidative stress are potential therapeutic targets for future drug development. Using a 12,166 element oligonucleotide microarray to characterize Schistosoma mansoni genes induced by heat and oxidative stress we found that 1878 S. mansoni elements were significantly induced by heat stress. These included previously reported heat-shock genes expressing homologs of HSP40, HSP70 and HSP86. One thousand and one elements were induced by oxidative stress including those expressing homologs of superoxide dismutase, glutathione peroxidase and aldehyde dehydrogenase. Seventy-two elements were common to both stressors and could potentially be exploited in the development of novel anti-schistosomal therapeutics.
Collapse
|
24
|
Fantappié MR, de Oliveira FMB, de Moraes Maciel R, Rumjanek FD, Wu W, LoVerde PT. Cloning of SmNCoA-62, a novel nuclear receptor co-activator from Schistosoma mansoni: Assembly of a complex with a SmRXR1/SmNR1 heterodimer, SmGCN5 and SmCBP1. Int J Parasitol 2008; 38:1133-47. [DOI: 10.1016/j.ijpara.2008.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 02/07/2008] [Accepted: 02/10/2008] [Indexed: 11/16/2022]
|
25
|
Fantappié MR, Furtado DR, Rumjanek FD, Loverde PT. A unique nuclear receptor direct repeat 17 (DR17) is present within the upstream region of Schistosoma mansoni female-specific p14 gene. Biochem Biophys Res Commun 2008; 371:689-93. [PMID: 18455507 DOI: 10.1016/j.bbrc.2008.04.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 04/19/2008] [Indexed: 10/22/2022]
Abstract
The eggs produced by sexually mature female Schistosma mansoni are responsible for the pathogenesis of the disease. The eggshell precursor gene p14 is expressed only in the vitelline cells of sexually mature female worms in response to a yet unidentified male stimulus. Herein, we report the identification of a novel nuclear receptor response element in the upstream region of the p14 gene. This element contains the canonical hexameric DNA core motif, 5'-PuGGTCA, composed of an atypically spaced direct repeat (DR17). Schistosome nuclear receptors SmRXR1 and SmNR1 specifically bound to the p14-DR17 element as a heterodimer. SmRXR1, but not SmNR1, bound to the motif as a monomer. Introduction of mutations in the TCA core sequence completely abolished the binding by SmRXR1/SmNR1 heterodimer. This finding supports our hypothesis that the expression of Schistosoma mansonip14 gene is regulated through the nuclear receptor signaling pathway.
Collapse
Affiliation(s)
- Marcelo Rosado Fantappié
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil.
| | | | | | | |
Collapse
|
26
|
Carlo JM, Osman A, Niles EG, Wu W, Fantappie MR, Oliveira FMB, LoVerde PT. Identification and characterization of an R-Smad ortholog (SmSmad1B) fromSchistosoma mansoni. FEBS J 2007; 274:4075-93. [PMID: 17635586 DOI: 10.1111/j.1742-4658.2007.05930.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Smad proteins are the cellular mediators of the transforming growth factor-beta superfamily signals. Herein, we describe the isolation of a fourth Smad gene from the helminth Schistosoma mansoni, a receptor-regulated Smad (R-Smad) gene termed SmSmad1B. The SmSmad1B protein is composed of 380 amino acids, and contains conserved MH1 and MH2 domains separated by a short 42 amino acid linker region. The SmSmad1B gene (> 10.7 kb) is composed of five exons separated by four introns. On the basis of phylogenetic analysis, SmSmad1B demonstrates homology to Smad proteins involved in the bone morphogenetic protein pathway. SmSmad1B transcript is expressed in all stages of schistosome development, and exhibits the highest expression level in the cercariae stage. By immunolocalization experiments, the SmSmad1B protein was detected in the cells of the parenchyma of adult schistosomes as well as in female reproductive tissues. Yeast two-hybrid experiments revealed an interaction between SmSmad1B and the common Smad, SmSmad4. As determined by yeast three-hybrid assays and pull-down assays, the presence of the wild-type or mutated SmTbetaRI receptor resulted in a decreased interaction between SmSmad1B and SmSmad4. These results suggest the presence of a nonfunctional interaction between SmSmad1B and SmTbetaRI that does not give rise to the phosphorylation and the release of SmSmad1B to form a heterodimer with SmSmad4. SmSmad1B, as well as the schistosome bone morphogenetic protein-related Smad SmSmad1 and the transforming growth factor-beta-related SmSmad2, interacted with the schistosome coactivator proteins SmGCN5 and SmCBP1 in pull-down assays. In all, these data suggest the involvement of SmSmad1B in critical biological processes such as schistosome reproductive development.
Collapse
Affiliation(s)
- Joelle M Carlo
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Loverde PT, Osman A, Hinck A. Schistosoma mansoni: TGF-beta signaling pathways. Exp Parasitol 2007; 117:304-17. [PMID: 17643432 PMCID: PMC2149906 DOI: 10.1016/j.exppara.2007.06.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 05/25/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
Schistosome parasites have co-evolved an intricate relationship with their human and snail hosts as well as a novel interplay between the adult male and female parasites. We review the role of the TGF-beta signaling pathway in parasite development, host-parasite interactions and male-female interactions. The data to date support multiple roles for the TGF-beta signaling pathway throughout schistosome development, in particular, in the tegument which is at the interface with the host and between the male and female schistosome, development of vitelline cells in female worms whose genes and development are regulated by a stimulus from the male schistosome and embryogenesis of the egg. The human ligand TGF-beta1 has been demonstrated to regulate the expression of a schistosome target gene that encodes a gynecophoric canal protein in the schistosome worm itself. Studies on signaling in schistosomes opens a new era for investigation of host-parasite and male-female interactions.
Collapse
Affiliation(s)
- Philip T Loverde
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
28
|
Wu W, Niles EG, Hirai H, LoVerde PT. Identification and characterization of a nuclear receptor subfamily I member in the Platyhelminth Schistosoma mansoni (SmNR1). FEBS J 2006; 274:390-405. [PMID: 17173548 DOI: 10.1111/j.1742-4658.2006.05587.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A cDNA encoding a nuclear receptor subfamily I member in the platyhelminth Schistosoma mansoni (SmNR1) was identified and characterized. SmNR1 cDNA is 2406 bp long and contains an open reading frame encoding a 715 residue protein. Phylogenetic analysis demonstrates that SmNR1 is a divergent member of nuclear receptor subfamily I with no known orthologue. SmNR1 was localized to S. mansoni chromosome 1 by fluorescent in situ hybridization. Gene structure of SmNR1 was determined showing it to consist of eight exons spanning more than 14 kb. Quantitative real-time RT-PCR showed that SmNR1 was expressed throughout schistosome development with a higher expression in eggs, sporocysts and 21-day worms. SmNR1 contains an autonomous transactivation function (AF1) in the A/B domain as demonstrated in a yeast one-hybrid assay; it interacts with SmRXR1 in a yeast two-hybrid assay and in a glutathione S-transferase pull-down assay. Electrophoretic mobility shift assay showed that SmNR1 could form a heterodimer with SmRXR1 to bind to DNA elements containing the half-site AGGTCA, a direct repeat of the half-site separated by 0-5 nucleotides (DR1-DR5) and a palindrome repeat of the half-site not separated by nucleic acids (Pal0). Transient transfection in mammalian COS-7 cells showed that SmNR1/SmRXR1 could enhance the transcriptional activation of a DR2-dependent reporter gene. Our results demonstrate that SmNR1 is a partner of SmRXR1.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Microbiology and Immunology, School of Medicine and Biomedical Science, State University of New York, Buffalo, NY, USA
| | | | | | | |
Collapse
|