1
|
Bigot S, Ouameur AA, Roy G, Fakhfakh R, Ritt JF, Légaré D, Ouellette M. Studies of the FBT family transporters in Leishmania infantum by gene deletion and protein localization. Exp Parasitol 2024; 268:108880. [PMID: 39709015 DOI: 10.1016/j.exppara.2024.108880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
The protozoan parasite Leishmania has a large family of major facilitator membrane proteins part of the Folate Biopterin Transporter (FBT) family. The chromosome 10 of Leishmania has a cluster of 7 FBT genes including the S-Adenosyl methionine (AdoMet) transporter and the functionally characterized folate transporters FT1 and FT5. Six of the 7 FBT proteins coded by this locus are located at the plasma membrane as determined by gene fusions with the green fluorescent protein. We deleted the whole locus of 7 genes (>30 kb) using CRISPR-Cas9 genome editing as a first step in studying the potential function of the four uncharacterized FBT genes from the locus. This knock out strain was viable, highly resistant to sinefungin (an AdoMet analogue) and to methotrexate (a folate analogue) but not to allopurinol, pentamidine or 5-fluorouracil. We similarly studied another FBT family member whose gene is encoded on chromosome 19. The protein was also located at the plasma membrane and its gene was dispensable for growth and not associated to any of the drug tested. Our work has indicated that large diploid deletion is achievable in Leishmania and the cell lines produced here will serve to better understand the function and putative substrates of these FBT proteins yet to be characterized.
Collapse
Affiliation(s)
- Sophia Bigot
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Amin Ahmed Ouameur
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Gaétan Roy
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Raouia Fakhfakh
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Jean-François Ritt
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Danielle Légaré
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada.
| |
Collapse
|
2
|
Bigot S, Leprohon P, Ouellette M. Delving in folate metabolism in the parasite Leishmania major through a chemogenomic screen and methotrexate selection. PLoS Negl Trop Dis 2023; 17:e0011458. [PMID: 37384801 DOI: 10.1371/journal.pntd.0011458] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023] Open
Abstract
Most of our understanding of folate metabolism in the parasite Leishmania is derived from studies of resistance to the antifolate methotrexate (MTX). A chemical mutagenesis screen of L. major Friedlin and selection for resistance to MTX led to twenty mutants with a 2- to 400-fold decrease in MTX susceptibility in comparison to wild-type cells. The genome sequence of the twenty mutants highlighted recurrent mutations (SNPs, gene deletion) in genes known to be involved in folate metabolism but also in novel genes. The most frequent events occurred at the level of the locus coding for the folate transporter FT1 and included gene deletion and gene conversion events, as well as single nucleotide changes. The role of some of these FT1 point mutations in MTX resistance was validated by gene editing. The gene DHFR-TS coding for the dihydrofolate reductase-thymidylate synthase was the second locus with the most mutations and gene editing confirmed a role in resistance for some of these. The pteridine reductase gene PTR1 was mutated in two mutants. The episomal overexpression of the mutated versions of this gene, but also of DHFR-TS, led to parasites several fold more resistant to MTX than those overexpressing the wild-type versions. Genes with no known link with folate metabolism and coding for a L-galactolactone oxidase or for a methyltransferase were mutated in specific mutants. Overexpression of the wild-type versions of these genes in the appropriate mutants reverted their resistance. Our Mut-seq approach provided a holistic view and a long list of candidate genes potentially involved in folate and antifolate metabolism in Leishmania.
Collapse
Affiliation(s)
- Sophia Bigot
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| |
Collapse
|
3
|
Potvin JE, Leprohon P, Queffeulou M, Sundar S, Ouellette M. Mutations in an Aquaglyceroporin as a Proven Marker of Antimony Clinical Resistance in the Parasite Leishmania donovani. Clin Infect Dis 2021; 72:e526-e532. [PMID: 32827255 DOI: 10.1093/cid/ciaa1236] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/17/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Antimonial drugs have long been the mainstay to treat visceral leishmaniasis. Their use has been discontinued in the Indian subcontinent because of drug resistance, but they are still clinically useful elsewhere. The goal of this study was to find markers of antimony resistance in Leishmania donovani clinical isolates and validate experimentally their role in resistance. METHODS The genomes of sensitive and antimony-resistant clinical isolates were sequenced. The role of a specific gene in contributing to resistance was studied by CRISPR-Cas9-mediated gene editing and intracellular drug sensitivity assays. RESULTS Both gene copy number variations and single nucleotide variants were associated with antimony resistance. A homozygous insertion of 2 nucleotides was found in the gene coding for the aquaglyceroporin AQP1 in both resistant isolates. Restoring the wild-type AQP1 open reading frame re-sensitized the 2 independent resistant isolates to antimonials. Alternatively, editing the genome of a sensitive isolate by incorporating the 2-nucleotide insertion in its AQP1 gene led to antimony-resistant parasites. CONCLUSIONS Through genomic analysis and CRISPR-Cas9-mediated genome editing we have proven the role of the AQP1 mutations in antimony clinical resistance in L. donovani.
Collapse
Affiliation(s)
- Jade-Eva Potvin
- Division of Infectious Disease and Immunity, CHU de Quebec Research Center and Department of Microbiology, Infectious Disease, and Immunology, University Laval, Quebec, Canada
| | - Philippe Leprohon
- Division of Infectious Disease and Immunity, CHU de Quebec Research Center and Department of Microbiology, Infectious Disease, and Immunology, University Laval, Quebec, Canada
| | - Marine Queffeulou
- Division of Infectious Disease and Immunity, CHU de Quebec Research Center and Department of Microbiology, Infectious Disease, and Immunology, University Laval, Quebec, Canada
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Marc Ouellette
- Division of Infectious Disease and Immunity, CHU de Quebec Research Center and Department of Microbiology, Infectious Disease, and Immunology, University Laval, Quebec, Canada
| |
Collapse
|
4
|
The Uptake and Metabolism of Amino Acids, and Their Unique Role in the Biology of Pathogenic Trypanosomatids. Pathogens 2018; 7:pathogens7020036. [PMID: 29614775 PMCID: PMC6027508 DOI: 10.3390/pathogens7020036] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/24/2023] Open
Abstract
Trypanosoma brucei, as well as Trypanosoma cruzi and more than 20 species of the genus Leishmania, form a group of flagellated protists that threaten human health. These organisms are transmitted by insects that, together with mammals, are their natural hosts. This implies that during their life cycles each of them faces environments with different physical, chemical, biochemical, and biological characteristics. In this work we review how amino acids are obtained from such environments, how they are metabolized, and how they and some of their intermediate metabolites are used as a survival toolbox to cope with the different conditions in which these parasites should establish the infections in the insects and mammalian hosts.
Collapse
|
5
|
Roy G, Ouellette M. Inactivation of the cytosolic and mitochondrial serine hydroxymethyl transferase genes in Leishmania major. Mol Biochem Parasitol 2016; 204:106-110. [PMID: 26868981 DOI: 10.1016/j.molbiopara.2016.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 01/11/2016] [Accepted: 02/05/2016] [Indexed: 11/28/2022]
Abstract
Leishmania has two serine hydroxylmethyl transferase (SHMT) genes, one coding for a cytosolic and the other for a mitochondrial enzyme. Trypanosoma cruzi has only the gene coding for the cytosolic enzyme and Trypanosoma brucei has no SHMT. We tested whether these genes were dispensable for growth in Leishmania major. By gene inactivation we succeeded in generating three cells lines one without the cytosolic cSHMT, one without the mitochondrial mSHMT, and finally one L. major line without any SHMT. SHMT is thus dispensable for growth of Leishmania in rich medium. The ability of the various shmt null mutants to grow in defined medium was tested and the growth of the shmt null mutant was dependent on the presence of serine. Overall this work has shown that SHMT is dispensable for Leishmania growth but it may be necessary when growing in environments poor in serine.
Collapse
Affiliation(s)
- Gaétan Roy
- Centre de Recherche en Infectiologie de l'Université Laval et Centre de Recherche du CHU de Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie de l'Université Laval et Centre de Recherche du CHU de Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
6
|
Santarém N, Racine G, Silvestre R, Cordeiro-da-Silva A, Ouellette M. Exoproteome dynamics in Leishmania infantum. J Proteomics 2013; 84:106-18. [DOI: 10.1016/j.jprot.2013.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/14/2013] [Accepted: 03/20/2013] [Indexed: 12/14/2022]
|
7
|
Pornthanakasem W, Kongkasuriyachai D, Uthaipibull C, Yuthavong Y, Leartsakulpanich U. Plasmodium serine hydroxymethyltransferase: indispensability and display of distinct localization. Malar J 2012; 11:387. [PMID: 23173711 PMCID: PMC3521198 DOI: 10.1186/1475-2875-11-387] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/20/2012] [Indexed: 12/21/2022] Open
Abstract
Background Serine hydroxymethyltransferase (SHMT), a pyridoxal phosphate-dependent enzyme, plays a vital role in the de novo pyrimidine biosynthesis pathway in malaria parasites. Two genes have been identified in Plasmodium spp. encoding a cytosolic SHMT (cSHMT) and putative mitochondria SHMT (mSHMT), but their roles have not been fully investigated. Methods The presence of Plasmodium SHMT isoforms in the intra-erythrocytic stage was assessed based on their gene expression using reverse transcription PCR (RT-PCR). Localization studies of Plasmodium SHMT isoforms were performed by transfection of fluorescent-tagged gene constructs into P. falciparum and expressions of fluorescent fusion proteins in parasites were observed using a laser scanning confocal microscope. Genetic targeting through homologous recombination was used to study the essentiality of SHMT in Plasmodium spp. Results Semi-quantitative RT-PCR revealed the expression of these two genes throughout intra-erythrocytic development. Localization studies using P. falciparum expressing fluorescent-tagged SHMT showed that PfcSHMT-red fluorescent fusion protein (PfcSHMT-DsRed) is localized in the cytoplasm, while PfmSHMT-green fluorescent fusion protein (PfmSHMT-GFP) co-localized with Mitotracker™-labelled mitochondria as predicted. The essentiality of plasmodial cSHMT was inferred from transfection experiments where recovery of viable knock-out parasites was not achieved, unless complemented with a functional equivalent copy of shmt. Conclusions Distinct compartment localizations of PfSHMT were observed between cytoplasmic and mitochondrial isoforms, and evidence was provided for the indispensable role of plasmodial cSHMT indicating it as a valid target for development of novel anti-malarials.
Collapse
Affiliation(s)
- Wichai Pornthanakasem
- National Center for Genetic Engineering and Biotechnology, 113 Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | | | | | | | | |
Collapse
|
8
|
Abstract
Trypanosomatid parasitic protozoans of the genus Leishmania are autotrophic for both folate and unconjugated pteridines. Leishmania salvage these metabolites from their mammalian hosts and insect vectors through multiple transporters. Within the parasite, folates are reduced by a bifunctional DHFR (dihydrofolate reductase)-TS (thymidylate synthase) and by a novel PTR1 (pteridine reductase 1), which reduces both folates and unconjugated pteridines. PTR1 can act as a metabolic bypass of DHFR inhibition, reducing the effectiveness of existing antifolate drugs. Leishmania possess a reduced set of folate-dependent metabolic reactions and can salvage many of the key products of folate metabolism from their hosts. For example, they lack purine synthesis, which normally requires 10-formyltetrahydrofolate, and instead rely on a network of purine salvage enzymes. Leishmania elaborate at least three pathways for the synthesis of the key metabolite 5,10-methylene-tetrahydrofolate, required for the synthesis of thymidylate, and for 10-formyltetrahydrofolate, whose presumptive function is for methionyl-tRNAMet formylation required for mitochondrial protein synthesis. Genetic studies have shown that the synthesis of methionine using 5-methyltetrahydrofolate is dispensable, as is the activity of the glycine cleavage complex, probably due to redundancy with serine hydroxymethyltransferase. Although not always essential, the loss of several folate metabolic enzymes results in attenuation or loss of virulence in animal models, and a null DHFR-TS mutant has been used to induce protective immunity. The folate metabolic pathway provides numerous opportunities for targeted chemotherapy, with strong potential for 'repurposing' of compounds developed originally for treatment of human cancers or other infectious agents.
Collapse
|
9
|
Read M, Müller IB, Mitchell SL, Sims PFG, Hyde JE. Dynamic subcellular localization of isoforms of the folate pathway enzyme serine hydroxymethyltransferase (SHMT) through the erythrocytic cycle of Plasmodium falciparum. Malar J 2010; 9:351. [PMID: 21129192 PMCID: PMC3014972 DOI: 10.1186/1475-2875-9-351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 12/03/2010] [Indexed: 11/10/2022] Open
Abstract
Background The folate pathway enzyme serine hydroxymethyltransferase (SHMT) converts serine to glycine and 5,10-methylenetetrahydrofolate and is essential for the acquisition of one-carbon units for subsequent transfer reactions. 5,10-methylenetetrahydrofolate is used by thymidylate synthase to convert dUMP to dTMP for DNA synthesis. In Plasmodium falciparum an enzymatically functional SHMT (PfSHMTc) and a related, apparently inactive isoform (PfSHMTm) are found, encoded by different genes. Here, patterns of localization of the two isoforms during the parasite erythrocytic cycle are investigated. Methods Polyclonal antibodies were raised to PfSHMTc and PfSHMTm, and, together with specific markers for the mitochondrion and apicoplast, were employed in quantitative confocal fluorescence microscopy of blood-stage parasites. Results As well as the expected cytoplasmic occupancy of PfSHMTc during all stages, localization into the mitochondrion and apicoplast occurred in a stage-specific manner. Although early trophozoites lacked visible organellar PfSHMTc, a significant percentage of parasites showed such fluorescence during the mid-to-late trophozoite and schizont stages. In the case of the mitochondrion, the majority of parasites in these stages at any given time showed no marked PfSHMTc fluorescence, suggesting that its occupancy of this organelle is of limited duration. PfSHMTm showed a distinctly more pronounced mitochondrial location through most of the erythrocytic cycle and GFP-tagging of its N-terminal region confirmed the predicted presence of a mitochondrial signal sequence. Within the apicoplast, a majority of mitotic schizonts showed a marked concentration of PfSHMTc, whose localization in this organelle was less restricted than for the mitochondrion and persisted from the late trophozoite to the post-mitotic stages. PfSHMTm showed a broadly similar distribution across the cycle, but with a distinctive punctate accumulation towards the ends of elongating apicoplasts. In very late post-mitotic schizonts, both PfSHMTc and PfSHMTm were concentrated in the central region of the parasite that becomes the residual body on erythrocyte lysis and merozoite release. Conclusions Both PfSHMTc and PfSHMTm show dynamic, stage-dependent localization among the different compartments of the parasite and sequence analysis suggests they may also reversibly associate with each other, a factor that may be critical to folate cofactor function, given the apparent lack of enzymic activity of PfSHMTm.
Collapse
Affiliation(s)
- Martin Read
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | | | |
Collapse
|
10
|
Dridi L, Ahmed Ouameur A, Ouellette M. High affinity S-Adenosylmethionine plasma membrane transporter of Leishmania is a member of the folate biopterin transporter (FBT) family. J Biol Chem 2010; 285:19767-75. [PMID: 20406813 PMCID: PMC2888387 DOI: 10.1074/jbc.m110.114520] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/12/2010] [Indexed: 11/06/2022] Open
Abstract
S-Adenosylmethionine (AdoMet) is an important methyl group donor that plays a central role in many essential biochemical processes. The parasite Leishmania can both synthesize and transport AdoMet. Leishmania cells resistant to the antifolate methotrexate due to a rearrangement in folate biopterin transporter (FBT) genes were cross-resistant to sinefungin, an AdoMet analogue. FBT gene rearrangements were also observed in Leishmania major cells selected for sinefungin resistance. One of the rearranged FBT genes corresponded to the main AdoMet transporter (AdoMetT1) of Leishmania as determined by gene transfection and gene inactivation experiments. AdoMetT1 was determined to be a high affinity plasma membrane transporter expressed constitutively throughout the growth phases of the parasite. Leishmania cells selected for resistance or naturally insensitive to sinefungin had lower expression of AdoMetT1. A new function in one carbon metabolism, also a pathway of interest for chemotherapeutic interventions, is described for a novel class of membrane proteins found in diverse organisms.
Collapse
Affiliation(s)
- Larbi Dridi
- From the Centre de Recherche en Infectiologie du CHUL, Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Amin Ahmed Ouameur
- From the Centre de Recherche en Infectiologie du CHUL, Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Marc Ouellette
- From the Centre de Recherche en Infectiologie du CHUL, Université Laval, Québec City, Québec G1V 4G2, Canada
| |
Collapse
|
11
|
Müller M, Papadopoulou B. Stage-specific expression of the glycine cleavage complex subunits in Leishmania infantum. Mol Biochem Parasitol 2009; 170:17-27. [PMID: 19961881 DOI: 10.1016/j.molbiopara.2009.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 01/21/2023]
Abstract
The mitochondrial glycine cleavage complex (GCC) is an important part of cellular metabolism due to its role in the maintenance and balance of activated one-carbon units for a wide range of biosynthetic processes. In the protozoan parasite Leishmania, little is known about these metabolic processes. However, the importance of amino acid catabolism, especially for the clinically relevant amastigote form of this parasite, is becoming increasingly clear. Using a bioinformatics approach, we have identified orthologs of the genes encoding the four loosely associated GCC subunits (GCVP, GCVT, GCVH, and GCVL) in the visceral species Leishmania infantum. We report here that all GCC genes are expressed in L. infantum and that several are enriched in the intracellular amastigote stage. To further assess the regulation of GCC components throughout the life cycle of Leishmania, we focused on the T-protein component GCVT. GCVT is encoded by two almost identical tandemly arranged gene copies that have very divergent 3'UTRs. Using two different reporter gene systems, we demonstrate that the divergent GCVT 3'UTRs are responsible for the differential regulation of GCVT-1 and GCVT-2 isogenes at the protein level in both developmental forms of L. infantum. The GCVT-1 3'UTR is responsive to heat stress, resulting in higher expression of GCVT-1 in promastigotes, whereas the GCVT-2 3'UTR harbors a SIDER2 retroposon, which contributes to the amastigote-specific expression of GCVT-2 protein. Interestingly, our data indicate that expression of most GCC genes is inducible upon excess glycine and that this regulation is not conferred by 5'- or 3'-untranslated regions. Altogether, these data suggest a complex and multilayered regulation of the GCC both at the mRNA and protein levels throughout the L. infantum life cycle.
Collapse
Affiliation(s)
- Michaela Müller
- Infectious Diseases Research Center, CHUL Research Center and Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Québec, Canada G1V 4G2
| | | |
Collapse
|
12
|
Ubeda JM, Légaré D, Raymond F, Ouameur AA, Boisvert S, Rigault P, Corbeil J, Tremblay MJ, Olivier M, Papadopoulou B, Ouellette M. Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy. Genome Biol 2008; 9:R115. [PMID: 18638379 PMCID: PMC2530873 DOI: 10.1186/gb-2008-9-7-r115] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 06/06/2008] [Accepted: 07/18/2008] [Indexed: 12/02/2022] Open
Abstract
Gene expression and DNA copy number analyses using full genome oligonucleotide microarrays of Leishmania reveal molecular mechanisms of methotrexate resistance. Background Drug resistance can be complex, and several mutations responsible for it can co-exist in a resistant cell. Transcriptional profiling is ideally suited for studying complex resistance genotypes and has the potential to lead to novel discoveries. We generated full genome 70-mer oligonucleotide microarrays for all protein coding genes of the human protozoan parasites Leishmania major and Leishmania infantum. These arrays were used to monitor gene expression in methotrexate resistant parasites. Results Leishmania is a eukaryotic organism with minimal control at the level of transcription initiation and few genes were differentially expressed without concomitant changes in DNA copy number. One exception was found in Leishmania major, where the expression of whole chromosomes was down-regulated. The microarrays highlighted several mechanisms by which the copy number of genes involved in resistance was altered; these include gene deletion, formation of extrachromosomal circular or linear amplicons, and the presence of supernumerary chromosomes. In the case of gene deletion or gene amplification, the rearrangements have occurred at the sites of repeated (direct or inverted) sequences. These repeats appear highly conserved in both species to facilitate the amplification of key genes during environmental changes. When direct or inverted repeats are absent in the vicinity of a gene conferring a selective advantage, Leishmania will resort to supernumerary chromosomes to increase the levels of a gene product. Conclusion Aneuploidy has been suggested as an important cause of drug resistance in several organisms and additional studies should reveal the potential importance of this phenomenon in drug resistance in Leishmania.
Collapse
Affiliation(s)
- Jean-Michel Ubeda
- Université Laval, Division de Microbiologie, Centre de Recherche en Infectiologie, boulevard Laurier, Québec, G1V 4G2, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Scott DA, Hickerson SM, Vickers TJ, Beverley SM. The role of the mitochondrial glycine cleavage complex in the metabolism and virulence of the protozoan parasite Leishmania major. J Biol Chem 2008; 283:155-165. [PMID: 17981801 PMCID: PMC2963101 DOI: 10.1074/jbc.m708014200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For the human pathogen Leishmania major, a key metabolic function is the synthesis of thymidylate, which requires 5,10-methylenetetrahydrofolate (5,10-CH(2)-THF). 5,10-CH(2)-THF can be synthesized from glycine by the mitochondrial glycine cleavage complex (GCC). Bioinformatic analysis revealed the four subunits of the GCC in the L. major genome, and the role of the GCC in parasite metabolism and virulence was assessed through studies of the P subunit (glycine decarboxylase (GCVP)). First, a tagged GCVP protein was expressed and localized to the parasite mitochondrion. Second, a gcvP(-) mutant was generated and shown to lack significant GCC activity using an indirect in vivo assay after incorporation of label from [2-(14)C]glycine into DNA. The gcvP(-) mutant grew poorly in the presence of excess glycine or minimal serine; these studies also established that L. major promastigotes require serine for optimal growth. Although gcvP(-) promastigotes and amastigotes showed normal virulence in macrophage infections in vitro, both forms of the parasite showed substantially delayed replication and lesion pathology in infections of both genetically susceptible or resistant mice. These data suggest that, as the physiology of the infection site changes during the course of infection, so do the metabolic constraints on parasite replication. This conclusion has great significance to the interpretation of metabolic requirements for virulence. Last, these studies call attention in trypanosomatid protozoa to the key metabolic intermediate 5,10-CH(2)-THF, situated at the junction of serine, glycine, and thymidylate metabolism. Notably, genome-based predictions suggest the related parasite Trypanosoma brucei is totally dependent on the GCC for 5,10-CH(2)-THF synthesis.
Collapse
Affiliation(s)
- David A Scott
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Suzanne M Hickerson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Tim J Vickers
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110.
| |
Collapse
|
14
|
Chang WN, Tsai JN, Chen BH, Huang HS, Fu TF. Serine hydroxymethyltransferase isoforms are differentially inhibited by leucovorin: characterization and comparison of recombinant zebrafish serine hydroxymethyltransferases. Drug Metab Dispos 2007; 35:2127-37. [PMID: 17664250 DOI: 10.1124/dmd.107.016840] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serine hydroxymethyltransferase (SHMT) provides activated one-carbon units required for the biosynthesis of nucleotides, protein, and methyl group by converting serine and tetrahydrofolate to glycine and N(5),N(10)-methylenetetrahydrofolate. It is postulated that SHMT activity is associated with the development of methotrexate resistance and the in vivo activity of SHMT is regulated by the binding of N(5)-CHO-THF, the rescue agent in high-dose methotrexate chemotherapy. The aim of this study is to advance our understanding of the folate-mediated one-carbon metabolism in zebrafish by characterizing zebrafish mitochondrial SHMT. The cDNA encoding zebrafish mitochondrial SHMT was cloned, overexpressed in Escherichia coli, and purified with a three-step purification protocol. Similarities in structural, physical, and kinetic properties were revealed between the recombinant zebrafish mitochondrial SHMT and its mammalian orthologs. Surprisingly, leucovorin significantly inhibits the aldol cleavage of serine catalyzed by zebrafish cytosolic SHMT but inhibits to a lesser extent the reaction catalyzed by the mitochondrial isozyme. This is, to our knowledge, the first report on zebrafish mitochondrial folate enzyme as well as the differential inhibition of leucovorin on these two SHMT isoforms. Western blot analysis revealed tissue-specific distribution with the highest enrichment present in liver for both cytosolic and mitochondrial SHMTs. Intracellular localization was confirmed by confocal microscopy for both mitochondrial and cytosolic SHMTs. Unexpectedly, the cytosolic isoform was observed in both nucleus and cytosol. Together with the previous report on zebrafish cytosolic SHMT, we suggest that zSHMTs can be used in in vitro assays for folate-related investigation and antifolate drug discovery.
Collapse
Affiliation(s)
- Wen-Ni Chang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan 701, Taiwan
| | | | | | | | | |
Collapse
|
15
|
Coelho AC, Messier N, Ouellette M, Cotrim PC. Role of the ABC transporter PRP1 (ABCC7) in pentamidine resistance in Leishmania amastigotes. Antimicrob Agents Chemother 2007; 51:3030-2. [PMID: 17452480 PMCID: PMC1932501 DOI: 10.1128/aac.00404-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pentamidine is a second-line agent in the treatment of leishmaniasis whose mode of action and resistance mechanism are not well understood. In this work, we show that the intracellular ABC protein PRP1 (pentamidine resistance protein 1) (ABCC7) can confer resistance to pentamidine in Leishmania sp. parasites in the intracellular stage.
Collapse
Affiliation(s)
- Adriano C Coelho
- Instituto de Medicina Tropical, Universidade de São Paulo, Av Dr Enéas de Carvalho Aguiar, 470, 4 andar, São Paulo, Brazil
| | | | | | | |
Collapse
|
16
|
Opperdoes FR, Coombs GH. Metabolism of Leishmania: proven and predicted. Trends Parasitol 2007; 23:149-58. [PMID: 17320480 DOI: 10.1016/j.pt.2007.02.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 01/04/2007] [Accepted: 02/09/2007] [Indexed: 11/16/2022]
Abstract
The complete analysis of the genomes of three major trypanosomatid parasites has facilitated comparison of the metabolic capabilities of each, as predicted from gene sequences. Not surprisingly, there are differences but is it possible to correlate these with the lives of the parasites themselves and make further predictions of the meaning and physiological importance of the apparently parasite-specific metabolism? In this article, we relate gene predictions with the results from experimental studies. We also speculate on the key metabolic adaptations of Leishmania and reasons why it differs from Trypanosoma brucei and Trypanosoma cruzi.
Collapse
Affiliation(s)
- Fred R Opperdoes
- Research Unit for Tropical Diseases and Laboratory of Biochemistry, Christian de Duve Institute of Cellular Pathology and Catholic University of Louvain, Avenue Hippocrate 74-75, B-1200 Brussels, Belgium
| | | |
Collapse
|
17
|
Leprohon P, Légaré D, Girard I, Papadopoulou B, Ouellette M. Modulation of Leishmania ABC protein gene expression through life stages and among drug-resistant parasites. EUKARYOTIC CELL 2006; 5:1713-25. [PMID: 17030997 PMCID: PMC1595339 DOI: 10.1128/ec.00152-06] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ATP-binding cassette (ABC) protein superfamily is one of the largest evolutionarily conserved families and is found in all kingdoms of life. The recent completion of the Leishmania genome sequence allowed us to analyze and classify its encoded ABC proteins. The complete sequence predicts a data set of 42 open reading frames (ORFs) coding for proteins belonging to the ABC superfamily, with representative members of every major subfamily (from ABCA to ABCH) commonly found in eukaryotes. Comparative analysis showed that the same ABC data set is found between Leishmania major and Leishmania infantum and that some orthologues are found in the genome of the related parasites Trypanosoma brucei and Trypanosoma cruzi. Customized DNA microarrays were made to assess ABC gene expression profiling throughout the two main Leishmania life stages. Two ABC genes (ABCA3 and ABCG3) are preferentially expressed in the amastigote stage, whereas one ABC gene (ABCF3) is more abundantly expressed in promastigotes. Microarray-based expression profiling experiments also revealed that three ABC genes (ABCA3, ABCC3, and ABCH1) are overexpressed in two independent antimony-resistant strains compared to the parental sensitive strain. All microarray results were confirmed by real-time reverse transcription-PCR assays. The present study provides a thorough phylogenic classification of the Leishmania ABC proteins and sets the basis for further functional studies on this important class of proteins.
Collapse
Affiliation(s)
- Philippe Leprohon
- Centre de Recherche en Infectiologie, 2705 Boul. Laurier, Québec, Québec G1V 4G2, Canada
| | | | | | | | | |
Collapse
|
18
|
Vatsyayan R, Roy U. Molecular cloning and biochemical characterization of Leishmania donovani serine hydroxymethyltransferase. Protein Expr Purif 2006; 52:433-40. [PMID: 17142057 DOI: 10.1016/j.pep.2006.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 10/16/2006] [Accepted: 10/18/2006] [Indexed: 10/24/2022]
Abstract
Serine hydroxymethyltransferase (SHMT) catalyzes the inter conversion of serine and tetrahydrofolate (H(4)-folate) to form glycine and 5,10-methylene H(4)-folate and generates one-carbon fragments for the synthesis of nucleotides, methionine, thymidylate, choline, etc. In spite of being an indispensable enzyme of the thymidylate cycle, SHMT in Leishmania donovani remains uncharacterized. The study of L. donovani SHMT (ldSHMT) becomes important as this gene is preferentially expressed in the amastigote stage of parasite, which resides in human macrophages. Here we report cloning, expression and purification of a catalytically active ldSHMT. The homogeneity of recombinant protein was analyzed by denaturing gel electrophoresis and protein was found to be 95% pure having yield of 1mg/l. The recombinant protein is a tetramer of 216kDa as evidenced by gel filtration chromatography and uses serine and tetrahydrofolate as substrates with Km of 1.6 and 2.4mM, respectively. Further biochemical studies revealed that pH optimum of ldSHMT is 7.8 and enzyme is thermally stable up to 45 degrees C. ldSHMT was found sensitive towards denaturants as manifested by loss of enzyme activity at the concentration of 1M urea or 0.25M guanidine hydrochloride. This is the first report of purification and characterization of recombinant SHMT from any protozoan source. Studies on recombinant ldSHMT will help in evaluating this enzyme as potential drug target.
Collapse
Affiliation(s)
- Rit Vatsyayan
- Biochemistry Division, Central Drug Research Institute, Lucknow 226001, India
| | | |
Collapse
|
19
|
Vergnes B, Gourbal B, Girard I, Sundar S, Drummelsmith J, Ouellette M. A proteomics screen implicates HSP83 and a small kinetoplastid calpain-related protein in drug resistance in Leishmania donovani clinical field isolates by modulating drug-induced programmed cell death. Mol Cell Proteomics 2006; 6:88-101. [PMID: 17050524 DOI: 10.1074/mcp.m600319-mcp200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The therapeutic mainstay against the protozoan parasite Leishmania is still based on the antiquated pentavalent antimonials (Sb(V)), but resistance is increasing in several parts of the world. Resistance is now partly understood in laboratory isolates, but our understanding of resistance in field isolates is lagging behind. We describe here a comparative analysis of a genetically related pair of Sb(V)-sensitive and -resistant Leishmania donovani strains isolated from kala-azar patients. The resistant isolate exhibited cross-resistance to other unrelated Leishmania drugs including miltefosine and amphotericin B. A comparative proteomics screen has highlighted a number of proteins differentially expressed suggesting that programmed cell death (PCD) is modified in the resistant parasite. Indeed drug-induced PCD progression was altered in the Sb(V)-resistant strain as determined using early and late markers of apoptosis. Two proteins, the heat shock protein HSP83 and the small kinetoplastid calpain-related protein (SKCRP14.1) were shown to be intimately implicated in the drug-induced PCD phenotype. HSP83 increased drug resistance and reduced drug-mediated PCD activation by interfering with the mitochondrial membrane potential, whereas SKCRP14.1 promoted antimonial-induced PCD but protected against miltefosine-induced PCD. This study highlights the important role of PCD in drug susceptibility/resistance in the protozoan parasite Leishmania.
Collapse
Affiliation(s)
- Baptiste Vergnes
- Centre de recherche en Infectiologie du Centre de recherche du CHUL and Division de Microbiologie, Faculté de Médecine, Université Laval, Québec G1V 4G2, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Mukherjee M, Sievers SA, Brown MT, Johnson PJ. Identification and biochemical characterization of serine hydroxymethyl transferase in the hydrogenosome of Trichomonas vaginalis. EUKARYOTIC CELL 2006; 5:2072-8. [PMID: 16980404 PMCID: PMC1694819 DOI: 10.1128/ec.00249-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Serine hydroxymethyl transferase (SHMT) is a pyridoxal phosphate (PLP)-dependent enzyme that catalyzes the reversible conversion of serine and tetrahydrofolate to glycine and methylenetetrahydrofolate. We have identified a single gene encoding SHMT in the genome of Trichomonas vaginalis, an amitochondriate, deep-branching unicellular protist. The protein possesses a putative N-terminal hydrogenosomal presequence and was shown to localize to hydrogensomes by immunofluorescence analysis, providing evidence of amino acid metabolism in this unusual organelle. In contrast to the tetrameric SHMT that exists in the mammalian host, we found that the T. vaginalis SHMT is a homodimer, as found in prokaryotes. All examined SHMT contain an 8-amino-acid conserved sequence, VTTTTHKT, containing the active-site lysyl residue (Lys 251 in TvSHMT) that forms an internal aldimine with PLP. We mutated this Lys residue to Arg and Gln and examined structural and catalytic properties of the wild-type and mutant enzymes in comparison to that reported for the mammalian protein. The oligomeric structure of the mutant K251R and K251Q TvSHMT was not affected, in contrast to that observed for comparable mutations in the mammalian enzyme. Likewise, contrary to that observed for mammalian SHMT, the catalytic activity of K251R TvSHMT was unaffected in the presence of PLP. The K251Q TvSHMT, however, was found to be inactive. These studies indicate that the active site of the parasite enzyme is distinct from its prokaryotic and eukaryotic counterparts and identify TvSHMT as a potential drug target.
Collapse
Affiliation(s)
- Mandira Mukherjee
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, 609 Charles E. Young Drive East, Los Angeles, CA 90095-1489, USA
| | | | | | | |
Collapse
|