1
|
Abstract
Parasitic diseases caused by protozoans are highly prevalent around the world, disproportionally affecting developing countries, where coinfection with other microorganisms is common. Control and treatment of parasitic infections are constrained by the lack of specific and effective drugs, plus the rapid emergence of resistance. Ion channels are main drug targets for numerous diseases, but their potential against protozoan parasites is still untapped. Ion channels are membrane proteins expressed in all types of cells, allowing for the flow of ions between compartments, and regulating cellular functions such as membrane potential, excitability, volume, signaling, and death. Channels and transporters reside at the interface between parasites and their hosts, controlling nutrient uptake, viability, replication, and infectivity. To understand how ion channels control protozoan parasites fate and to evaluate their suitability for therapeutics, we must deepen our knowledge of their structure, function, and modulation. However, methodological approaches commonly used in mammalian cells have proven difficult to apply in protozoans. This review focuses on ion channels described in protozoan parasites of clinical relevance, mainly apicomplexans and trypanosomatids, highlighting proteins for which molecular and functional evidence has been correlated with their physiological functions.
Collapse
|
2
|
Abstract
Acidocalcisomes are electron-dense organelles rich in polyphosphate and inorganic and organic cations that are acidified by proton pumps, and possess several channels, pumps, and transporters. They are present in bacteria and eukaryotes and have been studied in greater detail in trypanosomatids. Biogenesis studies of trypanosomatid acidocalcisomes found that they share properties with lysosome-related organelles of animal cells. In addition to their described roles in autophagy, cation and phosphorus storage, osmoregulation, pH homeostasis, and pathogenesis, recent studies have defined the role of these organelles in phosphate utilization, calcium ion (Ca2+ ) signaling, and bioenergetics, and will be the main subject of this review.
Collapse
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
The Histidine Ammonia Lyase of Trypanosoma cruzi Is Involved in Acidocalcisome Alkalinization and Is Essential for Survival under Starvation Conditions. mBio 2021; 12:e0198121. [PMID: 34724827 PMCID: PMC8561398 DOI: 10.1128/mbio.01981-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Trypanosoma cruzi, the agent of Chagas disease, accumulates polyphosphate (polyP) and Ca2+ inside acidocalcisomes. The alkalinization of this organelle stimulates polyP hydrolysis and Ca2+ release. Here, we report that histidine ammonia lyase (HAL), an enzyme that catalyzes histidine deamination with production of ammonia (NH3) and urocanate, is responsible for acidocalcisome alkalinization. Histidine addition to live parasites expressing HAL fused to the pH-sensitive emission biosensor green fluorescent protein (GFP) variant pHluorin induced alkalinization of acidocalcisomes. PolyP decreased HAL activity of epimastigote lysates or the recombinant protein but did not cause its polyphosphorylation, as determined by the lack of HAL electrophoretic shift on NuPAGE gels using both in vitro and in vivo conditions. We demonstrate that HAL binds strongly to polyP and localizes to the acidocalcisomes and cytosol of the parasite. Four lysine residues localized in the HAL C-terminal region are instrumental for its polyP binding, its inhibition by polyP, its function inside acidocalcisomes, and parasite survival under starvation conditions. Expression of HAL in yeast deficient in polyP degradation decreased cell fitness. This effect was enhanced by histidine and decreased when the lysine-rich C-terminal region was deleted. In conclusion, this study highlights a mechanism for stimulation of acidocalcisome alkalinization linked to amino acid metabolism.
Collapse
|
4
|
Lander N, Chiurillo MA, Docampo R. Signaling pathways involved in environmental sensing in Trypanosoma cruzi. Mol Microbiol 2021; 115:819-828. [PMID: 33034088 PMCID: PMC8032824 DOI: 10.1111/mmi.14621] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022]
Abstract
Trypanosoma cruzi is a unicellular parasite and the etiologic agent of Chagas disease. The parasite has a digenetic life cycle alternating between mammalian and insect hosts, where it faces a variety of environmental conditions to which it must adapt in order to survive. The adaptation to these changes is mediated by signaling pathways that coordinate the cellular responses to the new environmental settings. Major environmental changes include temperature, nutrient availability, ionic composition, pH, osmolarity, oxidative stress, contact with host cells and tissues, host immune response, and intracellular life. Some of the signaling pathways and second messengers potentially involved in the response to these changes have been elucidated in recent years and will be the subject of this review.
Collapse
Affiliation(s)
- Noelia Lander
- Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Miguel A. Chiurillo
- Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
5
|
Molecular characterization and transcriptional regulation of two types of H +-pyrophosphatases in the scuticociliate parasite Philasterides dicentrarchi. Sci Rep 2021; 11:8519. [PMID: 33875762 PMCID: PMC8055999 DOI: 10.1038/s41598-021-88102-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/08/2021] [Indexed: 02/02/2023] Open
Abstract
Proton-translocating inorganic pyrophosphatases (H+-PPases) are an ancient family of membrane bound enzymes that couple pyrophosphate (PPi) hydrolysis to H+ translocation across membranes. In this study, we conducted a molecular characterization of two isoenzymes (PdVP1 and PdVP2) located in respectively the alveolar sacs and in the membranes of the intracellular vacuoles of a scuticociliate parasite (Philasterides dicentrarchi) of farmed turbot. We analyzed the genetic expression of the isoenzymes after administration of antiparasitic drugs and after infection in the host. PdVP1 and PdVP2 are encoded by two genes of 2485 and 3069 bp, which respectively contain 3 and 11 exons and express proteins of 746 and 810 aa of molecular mass 78.9 and 87.6 kDa. Topological predictions from isoenzyme sequences indicate the formation of thirteen transmembrane regions (TMRs) for PdVP1 and seventeen TMRs for PdVP2. Protein structure modelling indicated that both isoenzymes are homodimeric, with three Mg2+ binding sites and an additional K+ binding site in PdVP2. The levels of identity and similarity between the isoenzyme sequences are respectively 33.5 and 51.2%. The molecular weights of the native proteins are 158 kDa (PdVP1) and 178 kDa (PdVP2). The isoenzyme sequences are derived from paralogous genes that form a monophyletic grouping with other ciliate species. Genetic expression of the isoenzymes is closely related to the acidification of alveolar sacs (PdVP1) and intracellular vacuoles (PdVP2): antiparasitic drugs inhibit transcription, while infection increases transcription of both isoenzymes. The study findings show that P. dicentrarchi possesses two isoenzymes with H+-PPase activity which are located in acidophilic cell compartment membranes and which are activated during infection in the host and are sensitive to antiparasitic drugs. The findings open the way to using molecular modelling to design drugs for the treatment of scuticociliatosis.
Collapse
|
6
|
Denoncourt A, Downey M. Model systems for studying polyphosphate biology: a focus on microorganisms. Curr Genet 2021; 67:331-346. [PMID: 33420907 DOI: 10.1007/s00294-020-01148-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
Polyphosphates (polyP) are polymers of inorganic phosphates joined by high-energy bonds to form long chains. These chains are present in all forms of life but were once disregarded as 'molecular fossils'. PolyP has gained attention in recent years following new links to diverse biological roles ranging from energy storage to cell signaling. PolyP research in humans and other higher eukaryotes is limited by a lack of suitable tools and awaits the identification of enzymatic players that would enable more comprehensive studies. Therefore, many of the most important insights have come from single-cell model systems. Here, we review determinants of polyP metabolism, regulation, and function in major microbial systems, including bacteria, fungi, protozoa, and algae. We highlight key similarities and differences that may aid in our understanding of how polyP impacts cell physiology at a molecular level.
Collapse
Affiliation(s)
- Alix Denoncourt
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, K1H 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada. .,Ottawa Institute of Systems Biology, Ottawa, K1H 8M5, Canada.
| |
Collapse
|
7
|
Potapenko E, Negrão NW, Huang G, Docampo R. The acidocalcisome inositol-1,4,5-trisphosphate receptor of Trypanosoma brucei is stimulated by luminal polyphosphate hydrolysis products. J Biol Chem 2019; 294:10628-10637. [PMID: 31138655 DOI: 10.1074/jbc.ra119.007906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/27/2019] [Indexed: 12/21/2022] Open
Abstract
Acidocalcisomes are acidic calcium stores rich in polyphosphate (polyP) and are present in trypanosomes and also in a diverse range of other organisms. Ca2+ is released from these organelles through a channel, inositol 1,4,5-trisphosphate receptor (TbIP3R), which is essential for growth and infectivity of the parasite Trypanosoma brucei However, the mechanism by which TbIP3R controls Ca2+ release is unclear. In this work, we expressed TbIP3R in a chicken B lymphocyte cell line in which the genes for all three vertebrate IP3Rs were stably ablated (DT40-3KO). We show that IP3-mediated Ca2+ release depends on Ca2+ but not on ATP concentration and is inhibited by heparin, caffeine, and 2-aminomethoxydiphenyl borate (2-APB). Excised patch clamp recordings from nuclear membranes of DT40 cells expressing only TbIP3R disclosed that luminal inorganic orthophosphate (Pi) or pyrophosphate (PPi), and neutral or alkaline pH can stimulate IP3-generated currents. In contrast, polyP or acidic pH did not induce these currents, and nuclear membranes obtained from cells expressing rat IP3R were unresponsive to polyP or its hydrolysis products. Our results are consistent with the notion that polyP hydrolysis products within acidocalcisomes or alkalinization of their luminal pH activate TbIP3R and Ca2+ release. We conclude that TbIP3R is well-adapted to its role as the major Ca2+ release channel of acidocalcisomes in T. brucei.
Collapse
Affiliation(s)
| | - Núria W Negrão
- From the Center for Tropical and Emerging Global Diseases and.,Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| | - Guozhong Huang
- From the Center for Tropical and Emerging Global Diseases and
| | - Roberto Docampo
- From the Center for Tropical and Emerging Global Diseases and .,Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
8
|
The Uptake and Metabolism of Amino Acids, and Their Unique Role in the Biology of Pathogenic Trypanosomatids. Pathogens 2018; 7:pathogens7020036. [PMID: 29614775 PMCID: PMC6027508 DOI: 10.3390/pathogens7020036] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/24/2023] Open
Abstract
Trypanosoma brucei, as well as Trypanosoma cruzi and more than 20 species of the genus Leishmania, form a group of flagellated protists that threaten human health. These organisms are transmitted by insects that, together with mammals, are their natural hosts. This implies that during their life cycles each of them faces environments with different physical, chemical, biochemical, and biological characteristics. In this work we review how amino acids are obtained from such environments, how they are metabolized, and how they and some of their intermediate metabolites are used as a survival toolbox to cope with the different conditions in which these parasites should establish the infections in the insects and mammalian hosts.
Collapse
|
9
|
An Intracellular Ammonium Transporter Is Necessary for Replication, Differentiation, and Resistance to Starvation and Osmotic Stress in Trypanosoma cruzi. mSphere 2018; 3:mSphere00377-17. [PMID: 29359189 PMCID: PMC5770540 DOI: 10.1128/msphere.00377-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/14/2017] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma cruzi, the etiologic agent of Chagas disease, undergoes drastic metabolic changes when it transits between a vector and mammalian hosts. Amino acid catabolism leads to the production of ammonium (NH4+), which needs to be detoxified. However, T. cruzi does not possess a urea cycle, and it is unknown how intracellular levels of ammonium are controlled. In this work, we identified an intracellular ammonium transporter of T. cruzi (TcAMT) that localizes to acidic compartments (reservosomes, lysosomes). TcAMT has 11 transmembrane domains and possesses all conserved and functionally important amino acid residues that form the pore in other ammonium transporters. Functional expression in Xenopus oocytes followed by a two-electrode voltage clamp showed an inward current that is NH4+ dependent at a resting membrane potential (Vh ) lower than -120 mV and is not pH dependent, suggesting that TcAMT is not an NH4+/H+ cotransporter but an NH4+ or NH3/H+ transporter. Ablation of TcAMT by clustered regularly interspaced short palindromic repeat analysis with Cas9 (CRISPR-Cas9) resulted in significant defects in epimastigote and amastigote replication, differentiation, and resistance to starvation and osmotic stress. IMPORTANCETrypanosoma cruzi is an important human and animal pathogen and the etiologic agent of Chagas disease. The parasite undergoes drastic changes in its metabolism during its life cycle. Amino acid consumption becomes important in the infective stages and leads to the production of ammonia (NH3), which needs to be detoxified. We report here the identification of an ammonium (NH4+) transporter that localizes to acidic compartments and is important for replication, differentiation, and resistance to starvation and osmotic stress.
Collapse
|
10
|
Role of H(+)-pyrophosphatase activity in the regulation of intracellular pH in a scuticociliate parasite of turbot: Physiological effects. Exp Parasitol 2016; 169:59-68. [PMID: 27480055 DOI: 10.1016/j.exppara.2016.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 06/04/2016] [Accepted: 07/28/2016] [Indexed: 11/21/2022]
Abstract
The scuticociliatosis is a very serious disease that affects the cultured turbot, and whose causal agent is the anphizoic and marine euryhaline ciliate Philasterides dicentrarchi. Several protozoans possess acidic organelles that contain high concentrations of pyrophosphate (PPi), Ca(2+) and other elements with essential roles in vesicular trafficking, pH homeostasis and osmoregulation. P. dicentrarchi possesses a pyrophosphatase (H(+)-PPase) that pumps H(+) through the membranes of vacuolar and alveolar sacs. These compartments share common features with the acidocalcisomes described in other parasitic protozoa (e.g. acid content and Ca(2+) storage). We evaluated the effects of Ca(2+) and ATP on H (+)-PPase activity in this ciliate and analyzed their role in maintaining intracellular pH homeostasis and osmoregulation, by the addition of PPi and inorganic molecules that affect osmolarity. Addition of PPi led to acidification of the intracellular compartments, while the addition of ATP, CaCl2 and bisphosphonates analogous of PPi and Ca(2+) metabolism regulators led to alkalinization and a decrease in H(+)-PPase expression in trophozoites. Addition of NaCl led to proton release, intracellular Ca(2+) accumulation and downregulation of H(+)-PPase expression. We conclude that the regulation of the acidification of intracellular compartments may be essential for maintaining the intracellular pH homeostasis necessary for survival of ciliates and their adaptation to salt stress, which they will presumably face during the endoparasitic phase, in which the salinity levels are lower than in their natural environment.
Collapse
|
11
|
Mallo N, Lamas J, DeFelipe AP, Sueiro RA, Fontenla F, Leiro JM. Enzymes Involved in Pyrophosphate and Calcium Metabolism as Targets for Anti-scuticociliate Chemotherapy. J Eukaryot Microbiol 2016; 63:505-15. [DOI: 10.1111/jeu.12294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/18/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Natalia Mallo
- Departamento de Microbiología y Parasitología; Instituto de Investigación y Análisis Alimentarios; Universidad de Santiago de Compostela; Santiago de Compostela Spain
| | - Jesús Lamas
- Departamento de Biología Celular y Ecología; Facultad de Biología; Instituto de Acuicultura; Universidad de Santiago de Compostela; Santiago de Compostela Spain
| | - Ana-Paula DeFelipe
- Departamento de Microbiología y Parasitología; Instituto de Investigación y Análisis Alimentarios; Universidad de Santiago de Compostela; Santiago de Compostela Spain
| | - Rosa-Ana Sueiro
- Departamento de Microbiología y Parasitología; Instituto de Investigación y Análisis Alimentarios; Universidad de Santiago de Compostela; Santiago de Compostela Spain
- Departamento de Biología Celular y Ecología; Facultad de Biología; Instituto de Acuicultura; Universidad de Santiago de Compostela; Santiago de Compostela Spain
| | - Francisco Fontenla
- Departamento de Biología Celular y Ecología; Facultad de Biología; Instituto de Acuicultura; Universidad de Santiago de Compostela; Santiago de Compostela Spain
| | - José-Manuel Leiro
- Departamento de Microbiología y Parasitología; Instituto de Investigación y Análisis Alimentarios; Universidad de Santiago de Compostela; Santiago de Compostela Spain
| |
Collapse
|
12
|
Galizzi M, Bustamante JM, Fang J, Miranda K, Soares Medeiros LC, Tarleton RL, Docampo R. Evidence for the role of vacuolar soluble pyrophosphatase and inorganic polyphosphate in Trypanosoma cruzi persistence. Mol Microbiol 2013; 90:699-715. [PMID: 24033456 DOI: 10.1111/mmi.12392] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2013] [Indexed: 11/30/2022]
Abstract
Trypanosoma cruzi infection leads to development of a chronic disease but the mechanisms that the parasite utilizes to establish a persistent infection despite activation of a potent immune response by the host are currently unknown. Unusual characteristics of T. cruzi are that it possesses cellular levels of pyrophosphate (PPi ) at least 10 times higher than those of ATP and molar levels of inorganic polyphosphate (polyP) within acidocalcisomes. We characterized an inorganic soluble EF-hand containing pyrophosphatase from T. cruzi (TcVSP) that, depending on the pH and cofactors, can hydrolyse either pyrophosphate (PPi ) or polyphosphate (polyP). The enzyme is localized to both acidocalcisomes and cytosol. Overexpression of TcVSP (TcVSP-OE) resulted in a significant decrease in cytosolic PPi , and short and long-chain polyP levels. Additionally, the TcVSP-OE parasites showed a significant growth defect in fibroblasts, less responsiveness to hyperosmotic stress, and reduced persistence in tissues of mice, suggesting that PPi and polyP are essential for the parasite to resist the stressful conditions in the host and to maintain a persistent infection.
Collapse
Affiliation(s)
- Melina Galizzi
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
New insights into roles of acidocalcisomes and contractile vacuole complex in osmoregulation in protists. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:69-113. [PMID: 23890380 DOI: 10.1016/b978-0-12-407695-2.00002-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While free-living protists are usually subjected to hyposmotic environments, parasitic protists are also in contact with hyperosmotic habitats. Recent work in one of these parasites, Trypanosoma cruzi, has revealed that its contractile vacuole complex, which usually collects and expels excess water as a mechanism of regulatory volume decrease after hyposmotic stress, has also a role in cell shrinking when the cells are submitted to hyperosmotic stress. Trypanosomes also have an acidic calcium store rich in polyphosphate (polyP), named the acidocalcisome, which is involved in their response to osmotic stress. Here, we review newly emerging insights on the role of acidocalcisomes and the contractile vacuole complex in the cellular response to hyposmotic and hyperosmotic stresses. We also review the current state of knowledge on the composition of these organelles and their other roles in calcium homeostasis and protein trafficking.
Collapse
|
14
|
Docampo R, Jimenez V, King-Keller S, Li ZH, Moreno SNJ. The role of acidocalcisomes in the stress response of Trypanosoma cruzi. ADVANCES IN PARASITOLOGY 2011; 75:307-24. [PMID: 21820562 DOI: 10.1016/b978-0-12-385863-4.00014-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acidocalcisomes of Trypanosoma cruzi are acidic calcium-containing organelles rich in phosphorus in the form of pyrophosphate (PP(i)) and polyphosphate (poly P). Acidification of the organelles is driven by vacuolar proton pumps, one of which, the vacuolar-type proton pyrophosphatase, is absent in mammalian cells. A calcium ATPase is involved in calcium uptake, and an aquaporin is important for water transport. Enzymes involved in the synthesis and degradation of PPi and poly P are present within the organelle. Acidocalcisomes function as storage sites for cations and phosphorus, participate in PP(i) and poly P metabolism and volume regulation and are essential for virulence. A signalling pathway involving cyclic AMP generation is important for fusion of acidocalcisomes to the contractile vacuole complex, transference of aquaporin and volume regulation. This pathway is an excellent target for chemotherapy as shown by the effects of phosphodiesterase C inhibitors on parasite survival.
Collapse
Affiliation(s)
- Roberto Docampo
- Department of Cellular Biology and Center for Tropical and Global Emerging Diseases, University of Georgia, Athens, GA, USA
| | | | | | | | | |
Collapse
|
15
|
Li ZH, Alvarez VE, De Gaudenzi JG, Sant'Anna C, Frasch ACC, Cazzulo JJ, Docampo R. Hyperosmotic stress induces aquaporin-dependent cell shrinkage, polyphosphate synthesis, amino acid accumulation, and global gene expression changes in Trypanosoma cruzi. J Biol Chem 2011; 286:43959-43971. [PMID: 22039054 DOI: 10.1074/jbc.m111.311530] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The protist parasite Trypanosoma cruzi has evolved the ability to transit between completely different hosts and to replicate in adverse environments. In particular, the epimastigote form, the replicative stage inside the vector, is subjected to nutritional and osmotic stresses during its development. In this work, we describe the biochemical and global gene expression changes of epimastigotes under hyperosmotic conditions. Hyperosmotic stress resulted in cell shrinking within a few minutes. Depending on the medium osmolarity, this was followed by lack of volume recovery for at least 2 h or by slow recovery. Experiments with inhibitors, or with cells in which an aquaporin gene (TcAQP1) was knocked down or overexpressed, revealed its importance for the cellular response to hyperosmotic stress. Furthermore, the adaptation to this new environment was shown to involve the regulation of the polyphosphate polymerization state as well as changes in amino acid catabolism to generate compatible osmolytes. A genome-wide transcriptional analysis of stressed parasites revealed down-regulation of genes belonging to diverse functional categories and up-regulation of genes encoding trans-sialidase-like and ribosomal proteins. Several of these changes were confirmed by Northern blot analyses. Sequence analysis of the 3'UTRs of up- and down-regulated genes allowed the identification of conserved structural RNA motifs enriched in each group, suggesting that specific ribonucleoprotein complexes could be of great importance in the adaptation of this parasite to different environments through regulation of transcript abundance.
Collapse
Affiliation(s)
- Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| | - Vanina E Alvarez
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602; Instituto de Investigaciones Biotecnólogicas, Universidad Nacional de General San Martin/Consejo Nacional de Investigaciones Científicas y Técnicas, 1650 San Martin, Buenos Aires, Argentina
| | - Javier G De Gaudenzi
- Instituto de Investigaciones Biotecnólogicas, Universidad Nacional de General San Martin/Consejo Nacional de Investigaciones Científicas y Técnicas, 1650 San Martin, Buenos Aires, Argentina
| | - Celso Sant'Anna
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| | - Alberto C C Frasch
- Instituto de Investigaciones Biotecnólogicas, Universidad Nacional de General San Martin/Consejo Nacional de Investigaciones Científicas y Técnicas, 1650 San Martin, Buenos Aires, Argentina
| | - Juan J Cazzulo
- Instituto de Investigaciones Biotecnólogicas, Universidad Nacional de General San Martin/Consejo Nacional de Investigaciones Científicas y Técnicas, 1650 San Martin, Buenos Aires, Argentina
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
16
|
Docampo R, Ulrich P, Moreno SNJ. Evolution of acidocalcisomes and their role in polyphosphate storage and osmoregulation in eukaryotic microbes. Philos Trans R Soc Lond B Biol Sci 2010; 365:775-84. [PMID: 20124344 DOI: 10.1098/rstb.2009.0179] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acidocalcisomes are acidic electron-dense organelles, rich in polyphosphate (poly P) complexed with calcium and other cations. While its matrix contains enzymes related to poly P metabolism, the membrane of the acidocalcisomes has a number of pumps (Ca(2+)-ATPase, V-H(+)-ATPase, H(+)-PPase), exchangers (Na(+)/H(+), Ca(2+)/H(+)), and at least one channel (aquaporin). Acidocalcisomes are present in both prokaryotes and eukaryotes and are an important storage of cations and phosphorus. They also play an important role in osmoregulation and interact with the contractile vacuole complex in a number of eukaryotic microbes. Acidocalcisomes resemble lysosome-related organelles (LRO) from mammalian cells in many of their properties. They share similar morphological characteristics, acidic properties, phosphorus contents and a system for targeting of their membrane proteins through adaptor complex-3 (AP-3). Storage of phosphate and cations may represent the ancestral physiological function of acidocalcisomes, with cation and pH homeostasis and osmoregulatory functions derived following the divergence of prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Roberto Docampo
- Department of Cellular Biology and Center for Tropical and Global Emerging Diseases, University of Georgia, Athens, GA 30602, USA.
| | | | | |
Collapse
|
17
|
Rohloff P, Docampo R. A contractile vacuole complex is involved in osmoregulation in Trypanosoma cruzi. Exp Parasitol 2008; 118:17-24. [PMID: 17574552 PMCID: PMC2243178 DOI: 10.1016/j.exppara.2007.04.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
Acidocalcisomes are dense, acidic organelles with a high concentration of phosphorus present as pyrophosphate and polyphosphate complexed with calcium and other cations. Acidocalcisomes have been linked to the contractile vacuole complex in Chlamydomonas reinhardtii, Dictyostelium discoideum, and Trypanosoma cruzi. A microtubule- and cyclic AMP-mediated fusion of acidocalcisomes to the contractile vacuole complex in T. cruzi results in translocation of aquaporin and the resulting water movement which, in addition to swelling of acidocalcisomes, is responsible for the volume reversal not accounted for by efflux of osmolytes. Polyphosphate hydrolysis occurs during hyposmotic stress, probably increasing the osmotic pressure of the contractile vacuole and facilitating water movement.
Collapse
Affiliation(s)
- Peter Rohloff
- Department of Pathobiology and Medical Scholars Program, University of Illinos at Urbana-Champaign, Urbana, IL 61801
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, Paul D. Coverdell Center, University of Georgia, Athens, GA 30602
| |
Collapse
|
18
|
Fang J, Ruiz FA, Docampo M, Luo S, Rodrigues JCF, Motta LS, Rohloff P, Docampo R. Overexpression of a Zn2+-sensitive soluble exopolyphosphatase from Trypanosoma cruzi depletes polyphosphate and affects osmoregulation. J Biol Chem 2007; 282:32501-10. [PMID: 17827150 DOI: 10.1074/jbc.m704841200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the cloning, expression, purification, and characterization of the Trypanosoma cruzi exopolyphosphatase (TcPPX). The product of this gene (TcPPX), has 383 amino acids and a molecular mass of 43.1 kDa. TcPPX differs from most exopolyphosphatases in its preference for short-chain polyphosphate (poly P). Heterologous expression of TcPPX in Escherichia coli produced a functional enzyme that had a neutral optimum pH and was dramatically inhibited by low concentrations of Zn2+, high concentrations of basic amino acids (lysine and arginine), and heparin. TcPPX is a processive enzyme and does not hydrolyze ATP, pyrophosphate, or p-nitrophenyl phosphate, although it hydrolyzes guanosine 5'-tetraphosphate very efficiently. Overexpression of TcPPX resulted in a dramatic decrease in total short-chain poly P and partial decrease in long-chain poly P. This was accompanied by a delayed regulatory volume decrease after hyposmotic stress. These results support the role of poly P in T. cruzi osmoregulation.
Collapse
Affiliation(s)
- Jianmin Fang
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Paul D. Coverdell Biomedical and Health Sciences Center, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|