1
|
Duarah A, Subedi S, Dayhoff GW, Uversky VN, Tripathi T. Proteome-wide identification and comprehensive profiling of intrinsic disorder in Fasciola gigantica. Int J Biol Macromol 2025:144158. [PMID: 40383327 DOI: 10.1016/j.ijbiomac.2025.144158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 05/09/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025]
Abstract
Despite the wealth of proteome sequences from multicellular parasitic helminths, studies on intrinsically disordered proteins (IDPs) in these organisms remain limited, particularly compared to viruses, bacteria, and unicellular parasites. We provide a comprehensive analysis of intrinsic disorder within the proteome of Fasciola gigantica, a parasitic liver fluke, using multiple predictive tools. Out of 12,537 proteins analyzed, a significant portion exhibited a distinct amino acid composition, characterized by an enrichment of polar and charged residues and a relative depletion of hydrophobic and aromatic residues, which are hallmarks of IDPs. These compositional features likely confer structural flexibility and functional adaptability, facilitating the survival of the parasite in diverse and hostile environments within its host. The presence of IDPs was further supported by compositional profiling of experimentally validated proteins in the DisProt database. Approximately 34.15 % of the F. gigantica proteome comprises highly disordered proteins, while 59.27 % is moderately disordered, as calculated from six well-established predictors integrated under the RIDAO platform. The consistent findings across various predictors, including PONDR® and IUPred, underscore the reliability of these results. Additionally, a detailed analysis of the distribution of charged residues in the proteome was performed. The high prevalence of IDPs in F. gigantica suggests their critical role in host-pathogen interactions, potentially providing functional advantages such as binding promiscuity and adaptability, which are essential for the survival of the parasite within the host. This study highlights the importance of IDPs in the biology of F. gigantica and provides insights into their potential roles in the parasite's pathogenesis and interactions with the host immune system.
Collapse
Affiliation(s)
- Anjelika Duarah
- Molecular and Structural Biophysics Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Sushma Subedi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Guy W Dayhoff
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
2
|
Mouhand A, Pissarra J, Barthe P, Roumestand C, Delbecq S. Structural and Functional Characterization of the 28 kDa Structured Core of BmSA1, the Major Surface Antigen of Babesia Microti. Proteins 2025. [PMID: 40345974 DOI: 10.1002/prot.26836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025]
Abstract
Babesiosis is a tick-borne disease that poses a significant threat to animal health worldwide. In addition, climate change and the risk of human-to-human transmission through blood transfusion have made babesiosis an emerging disease in humans. Babesiosis is caused by the intraerythrocytic development of protozoan parasites from the genus Babesia, which belongs to the apicomplexan phylum that notably includes the more-widely studied causative agent of malaria, Plasmodium falciparum. Of the several hundred Babesia species identified so far, only a few are known to infect humans, with B. microti being the most prevalent and responsible for most of the clinical cases reported to date. There is no licensed vaccine for B. microti, and the development of a reliable serological diagnostic test would contribute to ensuring the safety of blood transfusions. The identification and characterization of parasite surface proteins are important steps in achieving this aim. One such protein is the GPI-anchored Major Surface Antigen BmSA1 (also known as BmGPI12), which is expressed at high levels at the surface of the merozoite. We present here the high-resolution solution structure of the 28 kDa structured core of BmSA1 (∆∆BmSA1) obtained through NMR spectroscopy. The structure of BmSA1 appears unrelated to the previously published structures of the major surface antigens of B. divergens (Bd37) or of B. canis (Bc28.1), which are thought to play a similar role in parasite invasion. We also define the erythrocyte binding function of ∆∆BmSA1, using NMR spectroscopy to map the binding interface. Finally, we used bioinformatic tools to map the potential epitopes of antibodies at the surface of the structured core of BmSA1.
Collapse
Affiliation(s)
- Assia Mouhand
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Joana Pissarra
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Philippe Barthe
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Christian Roumestand
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Stéphane Delbecq
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, Montpellier, France
| |
Collapse
|
3
|
Uversky VN. On the Roles of Protein Intrinsic Disorder in the Origin of Life and Evolution. Life (Basel) 2024; 14:1307. [PMID: 39459607 PMCID: PMC11509291 DOI: 10.3390/life14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Obviously, the discussion of different factors that could have contributed to the origin of life and evolution is clear speculation, since there is no way of checking the validity of most of the related hypotheses in practice, as the corresponding events not only already happened, but took place in a very distant past. However, there are a few undisputable facts that are present at the moment, such as the existence of a wide variety of living forms and the abundant presence of intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs) in all living forms. Since it seems that the currently existing living forms originated from a common ancestor, their variety is a result of evolution. Therefore, one could ask a logical question of what role(s) the structureless and highly dynamic but vastly abundant and multifunctional IDPs/IDRs might have in evolution. This study represents an attempt to consider various ideas pertaining to the potential roles of protein intrinsic disorder in the origin of life and evolution.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Wilde ML, Ruparel U, Klemm T, Lee VV, Calleja DJ, Komander D, Tonkin CJ. Characterisation of the OTU domain deubiquitinase complement of Toxoplasma gondii. Life Sci Alliance 2023; 6:e202201710. [PMID: 36958824 PMCID: PMC10038098 DOI: 10.26508/lsa.202201710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023] Open
Abstract
The phylum Apicomplexa contains several parasitic species of medical and agricultural importance. The ubiquitination machinery remains, for the most part, uncharacterised in apicomplexan parasites, despite the important roles that it plays in eukaryotic biology. Bioinformatic analysis of the ubiquitination machinery in apicomplexan parasites revealed an expanded ovarian tumour domain-containing (OTU) deubiquitinase (DUB) family in Toxoplasma, potentially reflecting functional importance in apicomplexan parasites. This study presents comprehensive characterisation of Toxoplasma OTU DUBs. AlphaFold-guided structural analysis not only confirmed functional orthologues found across eukaryotes, but also identified apicomplexan-specific enzymes, subsequently enabling discovery of a cryptic OTU DUB in Plasmodium species. Comprehensive biochemical characterisation of 11 Toxoplasma OTU DUBs revealed activity against ubiquitin- and NEDD8-based substrates and revealed ubiquitin linkage preferences for Lys6-, Lys11-, Lys48-, and Lys63-linked chain types. We show that accessory domains in Toxoplasma OTU DUBs impose linkage preferences, and in case of apicomplexan-specific TgOTU9, we discover a cryptic ubiquitin-binding domain that is essential for TgOTU9 activity. Using the auxin-inducible degron (AID) to generate knockdown parasite lines, TgOTUD6B was found to be important for Toxoplasma growth.
Collapse
Affiliation(s)
- Mary-Louise Wilde
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Ushma Ruparel
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Theresa Klemm
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - V Vern Lee
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia; and Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Australia
| | - Dale J Calleja
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - David Komander
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Christopher J Tonkin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
5
|
Ullah I, Afridi SG, Israr M, Khan H, Shams S, Zaib K, Le HG, Kang JM, Na BK, Khan A. Population genetic analyses inferred a limited genetic diversity across the pvama-1 DI domain among Plasmodium vivax isolates from Khyber Pakhtunkhwa regions of Pakistan. BMC Infect Dis 2022; 22:807. [PMID: 36310166 PMCID: PMC9620592 DOI: 10.1186/s12879-022-07798-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
Background Plasmodium vivax apical membrane antigen-1 (pvama-1) is an important vaccine candidate against Malaria. The genetic composition assessment of pvama-1 from wide-range geography is vital to plan the antigen based vaccine designing against Malaria. Methods The blood samples were collected from 84 P. vivax positive malaria patients from different districts of Khyber Pakhtunkhwa (KP) province of Pakistan. The highly polymorphic and immunogenic domain-I (DI) region of pvama-1 was PCR amplified and DNA sequenced. The QC based sequences raw data filtration was done using DNASTAR package. The downstream population genetic analyses were performed using MEGA4, DnaSP, Arlequin v3.5 and Network.5 resources. Results The analyses unveiled total 57 haplotypes of pvama-1 (DI) in KP samples with majorly prevalent H-14 and H-5 haplotypes. Pairwise comparative population genetics analyses identified limited to moderate genetic distinctions among the samples collected from different districts of KP, Pakistan. In context of worldwide available data, the KP samples depicted major genetic differentiation against the Korean samples with Fst = 0.40915 (P-value = 0.0001), while least distinction was observed against Indian and Iranian samples. The statistically significant negative values of Fu and Li’s D* and F* tests indicate the evidence of population expansion and directional positive selection signature. The slow LD decay across the nucleotide distance in KP isolates indicates low nucleotide diversity. In context of reference pvama-1 sequence, the KP samples were identified to have 09 novel non-synonymous single nucleotide polymorphisms (nsSNPs), including several trimorphic and tetramorphic substitutions. Few of these nsSNPs are mapped within the B-cell predicted epitopic motifs of the pvama-1, and possibly modulate the immune response mechanism. Conclusion Low genetic differentiation was observed across the pvama-1 DI among the P. vivax isolates acquired from widespread regions of KP province of Pakistan. The information may implicate in future vaccine designing strategies based on antigenic features of pvama-1. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07798-1.
Collapse
|
6
|
Murphy RD, Chen T, Lin J, He R, Wu L, Pearson CR, Sharma S, Vander Kooi CD, Sinai AP, Zhang ZY, Vander Kooi CW, Gentry MS. The Toxoplasma glucan phosphatase TgLaforin utilizes a distinct functional mechanism that can be exploited by therapeutic inhibitors. J Biol Chem 2022; 298:102089. [PMID: 35640720 PMCID: PMC9254107 DOI: 10.1016/j.jbc.2022.102089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 01/19/2023] Open
Abstract
Toxoplasma gondii is an intracellular parasite that generates amylopectin granules (AGs), a polysaccharide associated with bradyzoites that define chronic T. gondii infection. AGs are postulated to act as an essential energy storage molecule that enable bradyzoite persistence, transmission, and reactivation. Importantly, reactivation can result in the life-threatening symptoms of toxoplasmosis. T. gondii encodes glucan dikinase and glucan phosphatase enzymes that are homologous to the plant and animal enzymes involved in reversible glucan phosphorylation and which are required for efficient polysaccharide degradation and utilization. However, the structural determinants that regulate reversible glucan phosphorylation in T. gondii are unclear. Herein, we define key functional aspects of the T. gondii glucan phosphatase TgLaforin (TGME49_205290). We demonstrate that TgLaforin possesses an atypical split carbohydrate-binding-module domain. AlphaFold2 modeling combined with hydrogen-deuterium exchange mass spectrometry and differential scanning fluorimetry also demonstrate the unique structural dynamics of TgLaforin with regard to glucan binding. Moreover, we show that TgLaforin forms a dual specificity phosphatase domain-mediated dimer. Finally, the distinct properties of the glucan phosphatase catalytic domain were exploited to identify a small molecule inhibitor of TgLaforin catalytic activity. Together, these studies define a distinct mechanism of TgLaforin activity, opening up a new avenue of T. gondii bradyzoite biology as a therapeutic target.
Collapse
Affiliation(s)
- Robert D Murphy
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA; Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Tiantian Chen
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Jianping Lin
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA
| | - Rongjun He
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA
| | - Li Wu
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA
| | - Caden R Pearson
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Savita Sharma
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Carl D Vander Kooi
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Anthony P Sinai
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Zhong-Yin Zhang
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA.
| | - Craig W Vander Kooi
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
7
|
Kulkarni P, Salgia R, Uversky VN. Intrinsic disorder, extraterrestrial peptides, and prebiotic life on the earth. J Biomol Struct Dyn 2022:1-5. [PMID: 35723592 DOI: 10.1080/07391102.2022.2088619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The discovery of mechanisms for the synthesis of homo-polymeric oligopeptides, such as polyglycine under conditions relevant to the astrophysical environment as well as in scenarios resembling primordial conditions that prevailed soon after Earth was formed, raises hopes in the search of extraterrestrial life. It also raises the possibility of extraterrestrial contribution to origin of life on Earth in the form of simple polypeptides. Bioinformatics analyses strongly predict such homo-polymeric peptides to be intrinsically disordered underscoring the potential involvement of IDPs in the origin of life which, even in its simplest form, could emerge spontaneously by autocatalysis of the primordial IDPs in self-organizing systems that evolved over time following natural selection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA.,Department of Systems Biology, City of Hope National Medical Center, Duarte, CA, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
8
|
Macià D, Campo JJ, Moncunill G, Jairoce C, Nhabomba AJ, Mpina M, Sorgho H, Dosoo D, Traore O, Kusi KA, Williams NA, Oberai A, Randall A, Sanz H, Valim C, Asante KP, Owusu-Agyei S, Tinto H, Agnandji ST, Kariuki S, Gyan B, Daubenberger C, Mordmüller B, Petrone P, Dobaño C. Strong off-target antibody reactivity to malarial antigens induced by RTS,S/AS01E vaccination is associated with protection. JCI Insight 2022; 7:158030. [PMID: 35446785 PMCID: PMC9220828 DOI: 10.1172/jci.insight.158030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
The RTS,S/AS01E vaccine targets the circumsporozoite protein (CSP) of the Plasmodium falciparum (P. falciparum) parasite. Protein microarrays were used to measure levels of IgG against 1000 P. falciparum antigens in 2138 infants (age 6–12 weeks) and children (age 5–17 months) from 6 African sites of the phase III trial, sampled before and at 4 longitudinal visits after vaccination. One month postvaccination, IgG responses to 17% of all probed antigens showed differences between RTS,S/AS01E and comparator vaccination groups, whereas no prevaccination differences were found. A small subset of antigens presented IgG levels reaching 4- to 8-fold increases in the RTS,S/AS01E group, comparable in magnitude to anti-CSP IgG levels (~11-fold increase). They were strongly cross-correlated and correlated with anti-CSP levels, waning similarly over time and reincreasing with the booster dose. Such an intriguing phenomenon may be due to cross-reactivity of anti-CSP antibodies with these antigens. RTS,S/AS01E vaccinees with strong off-target IgG responses had an estimated lower clinical malaria incidence after adjusting for age group, site, and postvaccination anti-CSP levels. RTS,S/AS01E-induced IgG may bind strongly not only to CSP, but also to unrelated malaria antigens, and this seems to either confer, or at least be a marker of, increased protection from clinical malaria.
Collapse
Affiliation(s)
- Dídac Macià
- Department of Data Science, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Joseph J Campo
- Department of Malaria, Antigen Discovery Inc., Irving, United States of America
| | - Gemma Moncunill
- Department of Malaria, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Chenjerai Jairoce
- Department of Malaria, Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Augusto J Nhabomba
- Department of Malaria, Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Maximilian Mpina
- Department of Malaria, Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania, United Republic of
| | - Hermann Sorgho
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de, Bobo-Dioulasso, Burkina Faso
| | - David Dosoo
- Laboratory, Kintampo Health Research Centre, Kintampo, Ghana
| | - Ousmane Traore
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de, Bobo-Dioulasso, Burkina Faso
| | - Kwadwo A Kusi
- Department of Electron Microscopy & Histopathology, NMIMR, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Nana Aba Williams
- Department of Malaria, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Amit Oberai
- Department of Research, Antigen Discovery Inc., Irvine, United States of America
| | - Arlo Randall
- Department of Bioinformatics, Antigen Discovery Inc., Irvine, United States of America
| | - Hector Sanz
- Department of Malaria, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Clarissa Valim
- Department of Immunology and Infectious Diseases, Harvard T.H. Chen School of Public Health, Boston, United States of America
| | - Kwaku P Asante
- Department of Malaria, Kintampo Health Research Centre, Kintampo, Ghana
| | | | - Halidou Tinto
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de, Bobo-Dioulasso, Burkina Faso
| | - Selidji T Agnandji
- Department of Clinical Research, Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Spain
| | - Simon Kariuki
- Kenya Medical Research Institute/Centre for Global Health, Kisumu, Kenya
| | - Ben Gyan
- Kintampo Health Research Centre, Kintampo, Ghana
| | - Claudia Daubenberger
- Department of Clinical Immunology, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Benjamin Mordmüller
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Paula Petrone
- Department of Data Science, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Carlota Dobaño
- Department of Malaria, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Badaya A, Sasidhar YU. The role of temperature in the binding of the disordered epitope region of human thrombopoietin to antibody: A molecular dynamics simulations study. J Mol Graph Model 2021; 111:108098. [PMID: 34871981 DOI: 10.1016/j.jmgm.2021.108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 12/01/2022]
Abstract
The N-terminal domain (163 residues) of Human thrombopoietin (hTPO) is highly conserved and responsible for the receptor-binding. The crystal structure of free hTPO is not yet available, but the crystal structure of its receptor-binding domain (hTPO163) is available in complex with the TN1-Fab antibody. According to a thermodynamic study of hTPO163 binding to TN1-Fab Ab, the ΔH value for binding becomes more negative with an increase in temperature from 283 K to 303 K. The objective of our study is to understand how the free hTPO163 behaves dynamically and to study the effect of temperature on the association of hTPO163 to TN1-Fab antibody through molecular dynamics simulations. We studied the Ag-Ab interactions at two different temperatures 298 K and 303 K. The discontinuous epitope region (residues 98-115) of free hTPO163 displays a conformational switch and it gets stabilized upon binding to the Ab at 303 K. Based on our results, it may be surmised that the epitope region 98-115 is behaving like a disordered epitope. The disordered epitopes are known to be more efficient in binding with the antibody. We also find that, there is an increase in number of hydrogen-bonding interactions and hydrophobic contacts with an increase in the temperature from 298 K to 303 K. Thus, this observation explains a possible reason behind the more negative value of ΔH at the higher temperature 303 K as compared to 298 K.
Collapse
Affiliation(s)
- Apoorva Badaya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Yellamraju U Sasidhar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
10
|
Basu S, Bahadur RP. Conservation and coevolution determine evolvability of different classes of disordered residues in human intrinsically disordered proteins. Proteins 2021; 90:632-644. [PMID: 34626492 DOI: 10.1002/prot.26261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 12/19/2022]
Abstract
Structure, function, and evolution are interdependent properties of proteins. Diversity of protein functions arising from structural variations is a potential driving force behind protein evolvability. Intrinsically disordered proteins or regions (IDPs or IDRs) lack well-defined structure under normal physiological conditions, yet, they are highly functional. Increased occurrence of IDPs in eukaryotes compared to prokaryotes indicates strong correlation of protein evolution and disorderedness. IDPs generally have higher evolution rate compared to globular proteins. Structural pliability allows IDPs to accommodate multiple mutations without affecting their functional potential. Nevertheless, how evolutionary signals vary between different classes of disordered residues (DRs) in IDPs is poorly understood. This study addresses variation of evolutionary behavior in terms of residue conservation and intra-protein coevolution among structural and functional classes of DRs in IDPs. Analyses are performed on 579 human IDPs, which are classified based on length of IDRs, interacting partners and functional classes. We find short IDRs are less conserved than long IDRs or full IDPs. Functional classes which require flexibility and specificity to perform their activity comparatively evolve slower than others. Disorder promoting amino acids evolve faster than order promoting amino acids. Pro, Gly, Ile, and Phe have unique coevolving nature which further emphasizes on their roles in IDPs. This study sheds light on evolutionary footprints in different classes of DRs from human IDPs and enhances our understanding of the structural and functional potential of IDPs.
Collapse
Affiliation(s)
- Sushmita Basu
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
11
|
Guiding the Immune Response to a Conserved Epitope in MSP2, an Intrinsically Disordered Malaria Vaccine Candidate. Vaccines (Basel) 2021; 9:vaccines9080855. [PMID: 34451980 PMCID: PMC8402609 DOI: 10.3390/vaccines9080855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
The malaria vaccine candidate merozoite surface protein 2 (MSP2) has shown promise in clinical trials and is in part responsible for a reduction in parasite densities. However, strain-specific reductions in parasitaemia suggested that polymorphic regions of MSP2 are immuno-dominant. One strategy to bypass the hurdle of strain-specificity is to bias the immune response towards the conserved regions. Two mouse monoclonal antibodies, 4D11 and 9H4, recognise the conserved C-terminal region of MSP2. Although they bind overlapping epitopes, 4D11 reacts more strongly with native MSP2, suggesting that its epitope is more accessible on the parasite surface. In this study, a structure-based vaccine design approach was applied to the intrinsically disordered antigen, MSP2, using a crystal structure of 4D11 Fv in complex with its minimal binding epitope. Molecular dynamics simulations and surface plasmon resonance informed the design of a series of constrained peptides that mimicked the 4D11-bound epitope structure. These peptides were conjugated to keyhole limpet hemocyanin and used to immunise mice, with high to moderate antibody titres being generated in all groups. The specificities of antibody responses revealed that a single point mutation can focus the antibody response towards a more favourable epitope. This structure-based approach to peptide vaccine design may be useful not only for MSP2-based malaria vaccines, but also for other intrinsically disordered antigens.
Collapse
|
12
|
Saito A, Shofa M, Ode H, Yumiya M, Hirano J, Okamoto T, Yoshimura SH. How Do Flaviviruses Hijack Host Cell Functions by Phase Separation? Viruses 2021; 13:v13081479. [PMID: 34452345 PMCID: PMC8402827 DOI: 10.3390/v13081479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Viral proteins interact with different sets of host cell components throughout the viral life cycle and are known to localize to the intracellular membraneless organelles (MLOs) of the host cell, where formation/dissolution is regulated by phase separation of intrinsically disordered proteins and regions (IDPs/IDRs). Viral proteins are rich in IDRs, implying that viruses utilize IDRs to regulate phase separation of the host cell organelles and augment replication by commandeering the functions of the organelles and/or sneaking into the organelles to evade the host immune response. This review aims to integrate current knowledge of the structural properties and intracellular localizations of viral IDPs to understand viral strategies in the host cell. First, the properties of viral IDRs are reviewed and similarities and differences with those of eukaryotes are described. The higher IDR content in viruses with smaller genomes suggests that IDRs are essential characteristics of viral proteins. Then, the interactions of the IDRs of flaviviruses with the MLOs of the host cell are investigated with emphasis on the viral proteins localized in the nucleoli and stress granules. Finally, the possible roles of viral IDRs in regulation of the phase separation of organelles and future possibilities for antiviral drug development are discussed.
Collapse
Affiliation(s)
- Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan;
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Correspondence: (A.S.); (T.O.); (S.H.Y.)
| | - Maya Shofa
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan;
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya 460-0001, Japan;
| | - Maho Yumiya
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (M.Y.); (J.H.)
| | - Junki Hirano
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (M.Y.); (J.H.)
| | - Toru Okamoto
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (M.Y.); (J.H.)
- Center for Infectious Diseases Education and Research, Osaka University, Osaka 565-0871, Japan
- Correspondence: (A.S.); (T.O.); (S.H.Y.)
| | - Shige H. Yoshimura
- Laboratory of Plasma Membrane and Nuclear Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Correspondence: (A.S.); (T.O.); (S.H.Y.)
| |
Collapse
|
13
|
Molecular recognition of structurally disordered Pro/Ala-rich sequences (PAS) by antibodies involves an Ala residue at the hot spot of the epitope. J Mol Biol 2021; 433:167113. [PMID: 34161780 DOI: 10.1016/j.jmb.2021.167113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 11/20/2022]
Abstract
Pro/Ala-rich sequences (PAS) are polypeptides that were developed as a biological alternative to poly-ethylene glycol (PEG) to generate biopharmaceuticals with extended plasma half-life. Like PEG, PAS polypeptides are conformationally disordered and show high solubility in water. Devoid of any charged or prominent hydrophobic side chains, these biosynthetic polymers represent an extreme case of intrinsically disordered proteins. Despite lack of immunogenicity of PAS tags in numerous animal studies we now succeeded in generating monoclonal antibodies (MAbs) against three different PAS versions. To this end, mice were immunized with a PAS#1, P/A#1 or APSA 40mer peptide conjugated to keyhole limpet hemocyanin as highly immunogenic carrier protein. In each case, one MAb with high binding activity and specificity towards a particular PAS motif was obtained. The apparent affinity was strongly dependent on the avidity effect and most pronounced for the bivalent MAb when interacting with a long PAS repeat. X-ray structural analysis of four representative anti-PAS Fab fragments in complex with their cognate PAS epitope peptides revealed interactions dominated by hydrogen bond networks involving the peptide backbone as well as multiple Van der Waals contacts arising from intimate shape complementarity. Surprisingly, Ala, the L-amino acid with the smallest side chain, emerged as a crucial feature for epitope recognition, contributing specific contacts at the center of the paratope in several anti-PAS complexes. Apart from these insights into how antibodies can recognize feature-less peptides without secondary structure, the MAbs characterized in this study offer valuable reagents for the preclinical and clinical development of PASylated biologics.
Collapse
|
14
|
Ca 2+-regulated mitochondrial carriers of ATP-Mg 2+/Pi: Evolutionary insights in protozoans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119038. [PMID: 33839167 DOI: 10.1016/j.bbamcr.2021.119038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/23/2022]
Abstract
In addition to its uptake across the Ca2+ uniporter, intracellular calcium signals can stimulate mitochondrial metabolism activating metabolite exchangers of the inner mitochondrial membrane belonging to the mitochondrial carrier family (SLC25). One of these Ca2+-regulated mitochondrial carriers (CaMCs) are the reversible ATP-Mg2+/Pi transporters, or SCaMCs, required for maintaining optimal adenine nucleotide (AdN) levels in the mitochondrial matrix representing an alternative transporter to the ADP/ATP translocases (AAC). This CaMC has a distinctive Calmodulin-like (CaM-like) domain fused to the carrier domain that makes its transport activity strictly dependent on cytosolic Ca2+ signals. Here we investigate about its origin analysing its distribution and features in unicellular eukaryotes. Unexpectedly, we find two types of ATP-Mg2+/Pi carriers, the canonical ones and shortened variants lacking the CaM-like domain. Phylogenetic analysis shows that both SCaMC variants have a common origin, unrelated to AACs, suggesting in turn that recurrent losses of the regulatory module have occurred in the different phyla. They are excluding variants that show a more limited distribution and less conservation than AACs. Interestingly, these truncated variants of SCaMC are found almost exclusively in parasitic protists, such as apicomplexans, kinetoplastides or animal-patogenic oomycetes, and in green algae, suggesting that its lost could be related to certain life-styles. In addition, we find an intricate structural diversity in these variants that may be associated with their pathogenicity. The consequences on SCaMC functions of these new SCaMC-b variants are discussed.
Collapse
|
15
|
Wang Y, Yang HJ, Harrison PM. The relationship between protein domains and homopeptides in the Plasmodium falciparum proteome. PeerJ 2020; 8:e9940. [PMID: 33062426 PMCID: PMC7534687 DOI: 10.7717/peerj.9940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/24/2020] [Indexed: 12/03/2022] Open
Abstract
The proteome of the malaria parasite Plasmodium falciparum is notable for the pervasive occurrence of homopeptides or low-complexity regions (i.e., regions that are made from a small subset of amino-acid residue types). The most prevalent of these are made from residues encoded by adenine/thymidine (AT)-rich codons, in particular asparagine. We examined homopeptide occurrences within protein domains in P. falciparum. Homopeptide enrichments occur for hydrophobic (e.g., valine), or small residues (alanine or glycine) in short spans (<5 residues), but these enrichments disappear for longer lengths. We observe that short asparagine homopeptides (<10 residues long) have a dramatic relative depletion inside protein domains, indicating some selective constraint to keep them from forming. We surmise that this is possibly linked to co-translational protein folding, although there are specific protein domains that are enriched in longer asparagine homopeptides (≥10 residues) indicating a functional linkage for specific poly-asparagine tracts. Top gene ontology functional category enrichments for homopeptides associated with diverse protein domains include “vesicle-mediated transport”, and “DNA-directed 5′-3′ RNA polymerase activity”, with various categories linked to “binding” evidencing significant homopeptide depletions. Also, in general homopeptides are substantially enriched in the parts of protein domains that are near/in IDRs. The implications of these findings are discussed.
Collapse
|
16
|
Detection of Protein Aggregation in Live Plasmodium Parasites. Antimicrob Agents Chemother 2020; 64:AAC.02135-19. [PMID: 32284383 DOI: 10.1128/aac.02135-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/06/2020] [Indexed: 02/08/2023] Open
Abstract
The rapid evolution of resistance in the malaria parasite to every single drug developed against it calls for the urgent identification of new molecular targets. Using a stain specific for the detection of intracellular amyloid deposits in live cells, we have detected the presence of abundant protein aggregates in Plasmodium falciparum blood stages and female gametes cultured in vitro, in the blood stages of mice infected by Plasmodium yoelii, and in the mosquito stages of the murine malaria species Plasmodium berghei Aggregated proteins could not be detected in early rings, the parasite form that starts the intraerythrocytic cycle. A proteomics approach was used to pinpoint actual aggregating polypeptides in functional P. falciparum blood stages, which resulted in the identification of 369 proteins, with roles particularly enriched in nuclear import-related processes. Five aggregation-prone short peptides selected from this protein pool exhibited different aggregation propensity according to Thioflavin-T fluorescence measurements, and were observed to form amorphous aggregates and amyloid fibrils in transmission electron microscope images. The results presented suggest that generalized protein aggregation might have a functional role in malaria parasites. Future antimalarial strategies based on the upsetting of the pathogen's proteostasis and therefore affecting multiple gene products could represent the entry to new therapeutic approaches.
Collapse
|
17
|
Intrinsically disordered proteins of viruses: Involvement in the mechanism of cell regulation and pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:1-78. [PMID: 32828463 PMCID: PMC7129803 DOI: 10.1016/bs.pmbts.2020.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intrinsically disordered proteins (IDPs) possess the property of inherent flexibility and can be distinguished from other proteins in terms of lack of any fixed structure. Such dynamic behavior of IDPs earned the name "Dancing Proteins." The exploration of these dancing proteins in viruses has just started and crucial details such as correlation of rapid evolution, high rate of mutation and accumulation of disordered contents in viral proteome at least understood partially. In order to gain a complete understanding of this correlation, there is a need to decipher the complexity of viral mediated cell hijacking and pathogenesis in the host organism. Further there is necessity to identify the specific patterns within viral and host IDPs such as aggregation; Molecular recognition features (MoRFs) and their association to virulence, host range and rate of evolution of viruses in order to tackle the viral-mediated diseases. The current book chapter summarizes the aforementioned details and suggests the novel opportunities for further research of IDPs senses in viruses.
Collapse
|
18
|
Geiger KM, Guignard D, Yang C, Bikorimana JP, Correia BE, Houard S, Mkindi C, Daubenberger CA, Spertini F, Corradin G, Audran R. Epitope Mapping and Fine Specificity of Human T and B Cell Responses for Novel Candidate Blood-Stage Malaria Vaccine P27A. Front Immunol 2020; 11:412. [PMID: 32210975 PMCID: PMC7076177 DOI: 10.3389/fimmu.2020.00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/21/2020] [Indexed: 11/13/2022] Open
Abstract
P27A is a novel synthetic malaria vaccine candidate derived from the blood stage Plasmodium falciparum protein Trophozoite Exported Protein 1 (TEX1/PFF0165c). In phase 1a/1b clinical trials in malaria unexposed adults in Switzerland and in malaria pre-exposed adults in Tanzania, P27A formulated with Alhydrogel and GLA-SE adjuvants induced antigen-specific antibodies and T-cell activity. The GLA-SE adjuvant induced significantly stronger humoral responses than the Alhydrogel adjuvant. Groups of pre-exposed and unexposed subjects received identical vaccine formulations, which supported the comparison of the cellular and humoral response to P27A in terms of fine specificity and affinity for populations and adjuvants. Globally, fine specificity of the T and B cell responses exhibited preferred recognized sequences and did not highlight major differences between adjuvants or populations. Affinity of anti-P27A antibodies was around 10-8 M in all groups. Pre-exposed volunteers presented anti-P27A with higher affinity than unexposed volunteers. Increasing the dose of GLA-SE from 2.5 to 5 μg in pre-exposed volunteers improved anti-P27A affinity and decreased the number of recognized epitopes. These results indicate a higher maturation of the humoral response in pre-exposed volunteers, particularly when immunized with P27A formulated with 5 μg GLA-SE.
Collapse
Affiliation(s)
- Kristina M Geiger
- Biochemistry Department, University of Lausanne, Epalinges, Switzerland.,Department of Infectious Diseases and Immunity, University of California, Berkeley, Berkeley, CA, United States
| | - Daniel Guignard
- Biochemistry Department, University of Lausanne, Epalinges, Switzerland
| | - Che Yang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jean-Pierre Bikorimana
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Bruno E Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Catherine Mkindi
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Department of Intervention and Clinical Trials, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Claudia A Daubenberger
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - François Spertini
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | - Régine Audran
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
19
|
Tiendrebeogo RW, Spallek R, Oehlmann W, Singh M, Theisen M, Nebie I, Moret R, Roussilhon C, Corradin G. Immunogenicity of a recombinant fusion construct composed of intrinsically unstructured, low polymorphic segments derived from merozoite surface protein 2 and trophozoite exported protein 1. Vaccine 2019; 37:5332-5340. [PMID: 31358409 DOI: 10.1016/j.vaccine.2019.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/20/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Abstract
To overcome the extensive polymorphism found in human Plasmodium antigens and to avoid the lengthy characterization of their 3 dimensional structure and subsequent production of the native proteins we have been concentrated in large unstructured, non-or low-polymorphic fragments present in the blood stage of P. falciparum. Three fragments derived from the 2 family-specific and constant regions of merozoite surface protein (MSP2) and PFF0165c protein were previously selected for evaluation as potential single vaccine candidates. In order to increase and optimize their potential efficacy against P. falciparum infection the 3 antigens were combined in a single DNA recombinant product (FusN) and compared its antigenicity with that of single antigens in sera of volunteers living in endemic countries. Immunogenicity of the FusN was then compared with that of the mixture of 3 antigens in 3 strains of mice. Antigen specific, affinity purified human antibodies were then tested in antibody dependent cellular inhibition and merozoite opsonization assays. In addition, the antigen specific antibody response and its association with protection from malaria infection were determined. The data collected indicate that the recombinant product is an equal or better antigen /immunogen than fragments used either alone or as a mixture for vaccination in combination with adjuvant. In addition, antibody response to FusN shows a stronger association with protection than single fragments. The use of a single construct as vaccine would drastically reduce the cost of manufacturing and development of the GMP product.
Collapse
Affiliation(s)
- Regis Wendpayangde Tiendrebeogo
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Ralf Spallek
- LIONEX Diagnostics & Therapeutics GmbH, 38126 Braunschweig, Germany
| | - Wulf Oehlmann
- LIONEX Diagnostics & Therapeutics GmbH, 38126 Braunschweig, Germany
| | - Mahavir Singh
- LIONEX Diagnostics & Therapeutics GmbH, 38126 Braunschweig, Germany
| | - Michael Theisen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Issa Nebie
- Centre National de Recherche et de Formation sur le Paludisme, BP 2208, Ouagadougou 01, Burkina Faso
| | - Remy Moret
- ASAREN 01BP3916, Ouagadougou 01, Burkina Faso
| | | | - Giampietro Corradin
- Biochemistry Department, University of Lausanne, 1066 Epalinges, Switzerland.
| |
Collapse
|
20
|
Characterization of a novel glycosylated glutathione transferase of Onchocerca ochengi, closest relative of the human river blindness parasite. Parasitology 2019; 146:1773-1784. [PMID: 31190665 PMCID: PMC6939172 DOI: 10.1017/s0031182019000763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Filarial nematodes possess glutathione transferases (GSTs), ubiquitous enzymes with the potential to detoxify xenobiotic and endogenous substrates, and modulate the host immune system, which may aid worm infection establishment, maintenance and survival in the host. Here we have identified and characterized a σ class glycosylated GST (OoGST1), from the cattle-infective filarial nematode Onchocerca ochengi, which is homologous (99% amino acid identity) with an immunodominant GST and potential vaccine candidate from the human parasite, O. volvulus, (OvGST1b). Onchocerca ochengi native GSTs were purified using a two-step affinity chromatography approach, resolved by 2D and 1D SDS-PAGE and subjected to enzymic deglycosylation revealing the existence of at least four glycoforms. A combination of lectin-blotting and mass spectrometry (MS) analyses of the released N-glycans indicated that OoGST1 contained mainly oligomannose Man5GlcNAc2 structure, but also hybrid- and larger oligommanose-type glycans in a lower proportion. Furthermore, purified OoGST1 showed prostaglandin synthase activity as confirmed by Liquid Chromatography (LC)/MS following a coupled-enzyme assay. This is only the second reported and characterized glycosylated GST and our study highlights its potential role in host-parasite interactions and use in the study of human onchocerciasis.
Collapse
|
21
|
Modulation of the aggregation of an amyloidogenic sequence by flanking-disordered region in the intrinsically disordered antigen merozoite surface protein 2. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 48:99-110. [PMID: 30443712 DOI: 10.1007/s00249-018-1337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/31/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
The abundant Plasmodium falciparum merozoite surface protein MSP2, a potential malaria vaccine candidate, is an intrinsically disordered protein with some nascent secondary structure present in its conserved N-terminal region. This relatively ordered region has been implicated in both membrane interactions and amyloid-like aggregation of the protein, while the significance of the flanking-disordered region is unclear. In this study, we show that aggregation of the N-terminal conserved region of MSP2 is influenced in a length- and sequence-dependent fashion by the disordered central variable sequences. Intriguingly, MSP2 peptides containing the conserved region and the first five residues of the variable disordered regions aggregated more rapidly than a peptide corresponding to the conserved region alone. In contrast, MSP2 peptides extending 8 or 12 residues into the disordered region aggregated more slowly, consistent with the expected inhibitory effect of flanking-disordered sequences on the aggregation of amyloidogenic ordered sequences. Computational analyses indicated that the helical propensity of the ordered region of MSP2 was modulated by the adjacent disordered five residues in a sequence-dependent manner. Nuclear magnetic resonance and circular dichroism spectroscopic studies with synthetic peptides confirmed the computational predictions, emphasizing the correlation between aggregation propensity and conformation of the ordered region and the effects thereon of the adjacent disordered region. These results show that the effects of flanking-disordered sequences on a more ordered sequence may include enhancement of aggregation through modulation of the conformational properties of the more ordered sequence.
Collapse
|
22
|
Large-Scale Analyses of Site-Specific Evolutionary Rates across Eukaryote Proteomes Reveal Confounding Interactions between Intrinsic Disorder, Secondary Structure, and Functional Domains. Genes (Basel) 2018; 9:genes9110553. [PMID: 30441862 PMCID: PMC6265720 DOI: 10.3390/genes9110553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
Various structural and functional constraints govern the evolution of protein sequences. As a result, the relative rates of amino acid replacement among sites within a protein can vary significantly. Previous large-scale work on Metazoan (Animal) protein sequence alignments indicated that amino acid replacement rates are partially driven by a complex interaction among three factors: intrinsic disorder propensity; secondary structure; and functional domain involvement. Here, we use sequence-based predictors to evaluate the effects of these factors on site-specific sequence evolutionary rates within four eukaryotic lineages: Metazoans; Plants; Saccharomycete Fungi; and Alveolate Protists. Our results show broad, consistent trends across all four Eukaryote groups. In all four lineages, there is a significant increase in amino acid replacement rates when comparing: (i) disordered vs. ordered sites; (ii) random coil sites vs. sites in secondary structures; and (iii) inter-domain linker sites vs. sites in functional domains. Additionally, within Metazoans, Plants, and Saccharomycetes, there is a strong confounding interaction between intrinsic disorder and secondary structure-alignment sites exhibiting both high disorder propensity and involvement in secondary structures have very low average rates of sequence evolution. Analysis of gene ontology (GO) terms revealed that in all four lineages, a high fraction of sequences containing these conserved, disordered-structured sites are involved in nucleic acid binding. We also observe notable differences in the statistical trends of Alveolates, where intrinsically disordered sites are more variable than in other Eukaryotes and the statistical interactions between disorder and other factors are less pronounced.
Collapse
|
23
|
Ghosh M, Sangwan N, Chakravarti S, Banerjee S, Ghosh A, Kumar R, Sangwan AK. Molecular Characterization and Immunogenicity Analysis of 4D8 Protective Antigen of Hyalomma anatolicum Ticks Collected from Western India. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9776-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Sturlese M, Manta B, Bertarello A, Bonilla M, Lelli M, Zambelli B, Grunberg K, Mammi S, Comini MA, Bellanda M. The lineage-specific, intrinsically disordered N-terminal extension of monothiol glutaredoxin 1 from trypanosomes contains a regulatory region. Sci Rep 2018; 8:13716. [PMID: 30209332 PMCID: PMC6135854 DOI: 10.1038/s41598-018-31817-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022] Open
Abstract
Glutaredoxins (Grx) are small proteins conserved throughout all the kingdoms of life that are engaged in a wide variety of biological processes and share a common thioredoxin-fold. Among them, class II Grx are redox-inactive proteins involved in iron-sulfur (FeS) metabolism. They contain a single thiol group in their active site and use low molecular mass thiols such as glutathione as ligand for binding FeS-clusters. In this study, we investigated molecular aspects of 1CGrx1 from the pathogenic parasite Trypanosoma brucei brucei, a mitochondrial class II Grx that fulfills an indispensable role in vivo. Mitochondrial 1CGrx1 from trypanosomes differs from orthologues in several features including the presence of a parasite-specific N-terminal extension (NTE) whose role has yet to be elucidated. Previously we have solved the structure of a truncated form of 1CGrx1 containing only the conserved glutaredoxin domain but lacking the NTE. Our aim here is to investigate the effect of the NTE on the conformation of the protein. We therefore solved the NMR structure of the full-length protein, which reveals subtle but significant differences with the structure of the NTE-less form. By means of different experimental approaches, the NTE proved to be intrinsically disordered and not involved in the non-redox dependent protein dimerization, as previously suggested. Interestingly, the portion comprising residues 65–76 of the NTE modulates the conformational dynamics of the glutathione-binding pocket, which may play a role in iron-sulfur cluster assembly and delivery. Furthermore, we disclosed that the class II-strictly conserved loop that precedes the active site is critical for stabilizing the protein structure. So far, this represents the first communication of a Grx containing an intrinsically disordered region that defines a new protein subgroup within class II Grx.
Collapse
Affiliation(s)
- Mattia Sturlese
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.,Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova, Italy
| | - Bruno Manta
- Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay.,Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Igua 4425, 11400, Montevideo, Uruguay.,New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Andrea Bertarello
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Mariana Bonilla
- Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Moreno Lelli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy.,Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Barbara Zambelli
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Giuseppe Fanin 40, 40127, Bologna, Italy
| | - Karin Grunberg
- Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Stefano Mammi
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Marcelo A Comini
- Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Massimo Bellanda
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| |
Collapse
|
25
|
MacRaild CA, Seow J, Das SC, Norton RS. Disordered epitopes as peptide vaccines. Pept Sci (Hoboken) 2018; 110:e24067. [PMID: 32328540 PMCID: PMC7167742 DOI: 10.1002/pep2.24067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 01/23/2023]
Abstract
The development of clinically useful peptide-based vaccines remains a long-standing goal. This review highlights that intrinsically disordered protein antigens, which lack an ordered three-dimensional structure, represent excellent starting points for the development of such vaccines. Disordered proteins represent an important class of antigen in a wide range of human pathogens, and, contrary to widespread belief, they are frequently targets of protective antibody responses. Importantly, disordered epitopes appear invariably to be linear epitopes, rendering them ideally suited to incorporation into a peptide vaccine. Nonetheless, the conformational properties of disordered antigens, and hence their recognition by antibodies, frequently depend on the interactions they make and the context in which they are presented to the immune system. These effects must be considered in the design of an effective vaccine. Here we discuss these issues and propose design principles that may facilitate the development of peptide vaccines targeting disordered antigens.
Collapse
Affiliation(s)
- Christopher A. MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville3052Australia
| | - Jeffrey Seow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville3052Australia
| | - Sreedam C. Das
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville3052Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville3052Australia
| |
Collapse
|
26
|
iMem-2LSAAC: A two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into chou's pseudo amino acid composition. J Theor Biol 2018; 442:11-21. [DOI: 10.1016/j.jtbi.2018.01.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/23/2017] [Accepted: 01/10/2018] [Indexed: 02/08/2023]
|
27
|
Davies HM, Nofal SD, McLaughlin EJ, Osborne AR. Repetitive sequences in malaria parasite proteins. FEMS Microbiol Rev 2018; 41:923-940. [PMID: 29077880 DOI: 10.1093/femsre/fux046] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
Five species of parasite cause malaria in humans with the most severe disease caused by Plasmodium falciparum. Many of the proteins encoded in the P. falciparum genome are unusually enriched in repetitive low-complexity sequences containing a limited repertoire of amino acids. These repetitive sequences expand and contract dynamically and are among the most rapidly changing sequences in the genome. The simplest repetitive sequences consist of single amino acid repeats such as poly-asparagine tracts that are found in approximately 25% of P. falciparum proteins. More complex repeats of two or more amino acids are also common in diverse parasite protein families. There is no universal explanation for the occurrence of repetitive sequences and it is possible that many confer no function to the encoded protein and no selective advantage or disadvantage to the parasite. However, there are increasing numbers of examples where repetitive sequences are important for parasite protein function. We discuss the diverse roles of low-complexity repetitive sequences throughout the parasite life cycle, from mediating protein-protein interactions to enabling the parasite to evade the host immune system.
Collapse
Affiliation(s)
- Heledd M Davies
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Stephanie D Nofal
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Emilia J McLaughlin
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Andrew R Osborne
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, Malet Street, London, WC1E 7HX, United Kingdom
| |
Collapse
|
28
|
Russo A, Manna SL, Novellino E, Malfitano AM, Marasco D. Molecular signaling involving intrinsically disordered proteins in prostate cancer. Asian J Androl 2017; 18:673-81. [PMID: 27212129 PMCID: PMC5000787 DOI: 10.4103/1008-682x.181817] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Investigations on cellular protein interaction networks (PINs) reveal that proteins that constitute hubs in a PIN are notably enriched in Intrinsically Disordered Proteins (IDPs) compared to proteins that constitute edges, highlighting the role of IDPs in signaling pathways. Most IDPs rapidly undergo disorder-to-order transitions upon binding to their biological targets to perform their function. Conformational dynamics enables IDPs to be versatile and to interact with a broad range of interactors under normal physiological conditions where their expression is tightly modulated. IDPs are involved in many cellular processes such as cellular signaling, transcriptional regulation, and splicing; thus, their high-specificity/low-affinity interactions play crucial roles in many human diseases including cancer. Prostate cancer (PCa) is one of the leading causes of cancer-related mortality in men worldwide. Therefore, identifying molecular mechanisms of the oncogenic signaling pathways that are involved in prostate carcinogenesis is crucial. In this review, we focus on the aspects of cellular pathways leading to PCa in which IDPs exert a primary role.
Collapse
Affiliation(s)
- Anna Russo
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Anna Maria Malfitano
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| |
Collapse
|
29
|
In-silico screening, identification and validation of a novel vaccine candidate in the fight against Plasmodium falciparum. Parasitol Res 2017; 116:1293-1305. [DOI: 10.1007/s00436-017-5408-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/08/2017] [Indexed: 12/14/2022]
|
30
|
Seow J, Morales RAV, MacRaild CA, Krishnarjuna B, McGowan S, Dingjan T, Jaipuria G, Rouet R, Wilde KL, Atreya HS, Richards JS, Anders RF, Christ D, Drinkwater N, Norton RS. Structure and Characterisation of a Key Epitope in the Conserved C-Terminal Domain of the Malaria Vaccine Candidate MSP2. J Mol Biol 2017; 429:836-846. [PMID: 28189425 DOI: 10.1016/j.jmb.2017.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/22/2017] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
Abstract
Merozoite surface protein 2 (MSP2) is an intrinsically disordered antigen that is abundant on the surface of the malaria parasite Plasmodium falciparum. The two allelic families of MSP2, 3D7 and FC27, differ in their central variable regions, which are flanked by highly conserved C-terminal and N-terminal regions. In a vaccine trial, full-length 3D7 MSP2 induced a strain-specific protective immune response despite the detectable presence of conserved region antibodies. This work focuses on the conserved C-terminal region of MSP2, which includes the only disulphide bond in the protein and encompasses key epitopes recognised by the mouse monoclonal antibodies 4D11 and 9H4. Although the 4D11 and 9H4 epitopes are overlapping, immunofluorescence assays have shown that the mouse monoclonal antibody 4D11 binds to MSP2 on the merozoite surface with a much stronger signal than 9H4. Understanding the structural basis for this antigenic difference between these antibodies will help direct the design of a broad-spectrum and MSP2-based malaria vaccine. 4D11 and 9H4 were reengineered into antibody fragments [variable region fragment (Fv) and single-chain Fv (scFv)] and were validated as suitable models for their full-sized IgG counterparts by surface plasmon resonance and isothermal titration calorimetry. An alanine scan of the 13-residue epitope 3D7-MSP2207-222 identified the minimal binding epitope of 4D11 and the key residues involved in binding. A 2.2-Å crystal structure of 4D11 Fv bound to the eight-residue epitope NKENCGAA provided valuable insight into the possible conformation of the C-terminal region of MSP2 on the parasite. This work underpins continued efforts to optimise recombinant MSP2 constructs for evaluation as potential vaccine candidates.
Collapse
Affiliation(s)
- Jeffrey Seow
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Rodrigo A V Morales
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Christopher A MacRaild
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Bankala Krishnarjuna
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Sheena McGowan
- Department of Microbiology, Monash University, Clayton 3168, Australia
| | - Tamir Dingjan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Garima Jaipuria
- NMR Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Romain Rouet
- Garvan Institute of Medical Research, Darlinghurst 2010, Australia
| | - Karyn L Wilde
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights 2234, Australia
| | - Hanudatta S Atreya
- NMR Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Jack S Richards
- Centre for Biomedical Research, The Burnet Institute, Melbourne 3004, Australia
| | - Robin F Anders
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Darlinghurst 2010, Australia
| | - Nyssa Drinkwater
- Department of Microbiology, Monash University, Clayton 3168, Australia
| | - Raymond S Norton
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia.
| |
Collapse
|
31
|
The Identification and Characterization of Two Novel Epitopes on the Nucleocapsid Protein of the Porcine Epidemic Diarrhea Virus. Sci Rep 2016; 6:39010. [PMID: 27991537 PMCID: PMC5171872 DOI: 10.1038/srep39010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/16/2016] [Indexed: 01/08/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that causes severe diarrhea and death, particularly in neonatal piglets. The nucleocapsid protein (N protein) of PEDV presents strong immunogenicity and contributes to the cross-reactivity between PEDV and TGEV. However, the characterization of epitopes on the PEDV N protein remains largely unknown. Here, two monoclonal antibodies (MAbs) specific to the N protein of a PEDV strain, FJzz1/2011, were generated and screened against a partially overlapping library of 24 GST-fusion N protein-truncated constructs. We confirmed that residues 18–133 (designated NEP-D4) and residues 252–262 (designated NEP-D6) were the epitopes targeted by MAbs PN-D4 and PN-D6, respectively. Sequence analysis revealed that these two epitopes were highly conserved among PEDV strains but were significantly different from other members of the Coronavirinae subfamily. Western blot analysis showed that they could be specifically recognized by PEDV antisera but could not be recognized by TGEV hyperimmune antisera. Indirect immunofluorescence (IFA) assays confirmed no cross-reaction between these two MAbs and TGEV. In addition, the freeze-thaw cycle and protease treatment results indicated that NEP-D4 was intrinsically disordered. All these results suggest that these two novel epitopes and their cognate MAbs could serve as the basis for the development of precise diagnostic assays for PEDV.
Collapse
|
32
|
Peng Z, Uversky VN, Kurgan L. Genes encoding intrinsic disorder in Eukaryota have high GC content. INTRINSICALLY DISORDERED PROTEINS 2016; 4:e1262225. [PMID: 28232902 DOI: 10.1080/21690707.2016.1262225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/03/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
Abstract
We analyze a correlation between the GC content in genes of 12 eukaryotic species and the level of intrinsic disorder in their corresponding proteins. Comprehensive computational analysis has revealed that the disordered regions in eukaryotes are encoded by the GC-enriched gene regions and that this enrichment is correlated with the amount of disorder and is present across proteins and species characterized by varying amounts of disorder. The GC enrichment is a result of higher rate of amino acid coded by GC-rich codons in the disordered regions. Individual amino acids have the same GC-content profile between different species. Eukaryotic proteins with the disordered regions encoded by the GC-enriched gene segments carry out important biological functions including interactions with RNAs, DNAs, nucleotides, binding of calcium and metal ions, are involved in transcription, transport, cell division and certain signaling pathways, and are localized primarily in nucleus, cytosol and cytoplasm. We also investigate a possible relationship between GC content, intrinsic disorder and protein evolution. Analysis of a devised "age" of amino acids, their disorder-promoting capacity and the GC-enrichment of their codons suggests that the early amino acids are mostly disorder-promoting and their codons are GC-rich while most of late amino acids are mostly order-promoting.
Collapse
Affiliation(s)
- Zhenling Peng
- Center for Applied Mathematics, Tianjin University , Tianjin, China
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University , Richmond, VA, USA
| |
Collapse
|
33
|
Orosz F. Wider than Thought Phylogenetic Occurrence of Apicortin, A Characteristic Protein of Apicomplexan Parasites. J Mol Evol 2016; 82:303-14. [PMID: 27282556 DOI: 10.1007/s00239-016-9749-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 06/04/2016] [Indexed: 11/25/2022]
Abstract
Apicomplexan parasites cause serious illnesses, including malaria, in humans and domestic animals. The presence of apicortins is predominantly characteristic of this phylum. All the apicomplexan species sequenced contain an apicortin which unites two conserved domains: DCX and partial p25alpha. This paper identifies novel apicortin orthologs in silico and corrects in several cases the erroneous sequences of hypothetical apicortin proteins of Cryptosporidium, Eimeria, and Theileria genera published in databases. Plasmodium apicortins, except from Plasmodium gallinaceum, differ significantly from the other apicomplexan apicortins. The feature of this ortholog suggests that only orthologs of Plasmodiums hosted by mammals altered significantly. The free-living Chromerida, Chromera velia, and Vitrella brassicaformis, contain three paralogs. Their apicomplexan-type and nonapicomplexan-type apicortins might be "outparalogs." The fungal ortholog, Rozella allomycis, found at protein level, and the algal Nitella mirabilis, found as Transcriptome Shotgun Assembly (TSA), are similar to the known Opisthokont (Trichoplax adhaerens, Spizellomyces punctatus) and Viridiplantae (Nicotiana tabacum) ones, since they do not contain the long, unstructured N-terminal part present in apicomplexan apicortins. A few eumetazoan animals possess apicortin-like (partial) sequences at TSA level, which may be either contaminations or the result of horizontal gene transfer; in some cases the contamination has been proved.
Collapse
Affiliation(s)
- Ferenc Orosz
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary.
| |
Collapse
|
34
|
Uversky VN. Dancing Protein Clouds: The Strange Biology and Chaotic Physics of Intrinsically Disordered Proteins. J Biol Chem 2016; 291:6681-8. [PMID: 26851286 DOI: 10.1074/jbc.r115.685859] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Biologically active but floppy proteins represent a new reality of modern protein science. These intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered and intrinsically disordered protein regions (IDPRs) constitute a noticeable part of any given proteome. Functionally, they complement ordered proteins, and their conformational flexibility and structural plasticity allow them to perform impossible tricks and be engaged in biological activities that are inaccessible to well folded proteins with their unique structures. The major goals of this minireview are to show that, despite their simplified amino acid sequences, IDPs/IDPRs are complex entities often resembling chaotic systems, are structurally and functionally heterogeneous, and can be considered an important part of the structure-function continuum. Furthermore, IDPs/IDPRs are everywhere, and are ubiquitously engaged in various interactions characterized by a wide spectrum of binding scenarios and an even wider spectrum of structural and functional outputs.
Collapse
Affiliation(s)
- Vladimir N Uversky
- From the Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, the Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia, the Institute for Biological Instrumentation, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia, and the Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russian Federation
| |
Collapse
|
35
|
Rodrigues-da-Silva RN, Martins da Silva JH, Singh B, Jiang J, Meyer EVS, Santos F, Banic DM, Moreno A, Galinski MR, Oliveira-Ferreira J, Lima-Junior JDC. In silico Identification and Validation of a Linear and Naturally Immunogenic B-Cell Epitope of the Plasmodium vivax Malaria Vaccine Candidate Merozoite Surface Protein-9. PLoS One 2016; 11:e0146951. [PMID: 26788998 PMCID: PMC4720479 DOI: 10.1371/journal.pone.0146951] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
Synthetic peptide vaccines provide the advantages of safety, stability and low cost. The success of this approach is highly dependent on efficient epitope identification and synthetic strategies for efficacious delivery. In malaria, the Merozoite Surface Protein-9 of Plasmodium vivax (PvMSP9) has been considered a vaccine candidate based on the evidence that specific antibodies were able to inhibit merozoite invasion and recombinant proteins were highly immunogenic in mice and humans. However the identities of linear B-cell epitopes within PvMSP9 as targets of functional antibodies remain undefined. We used several publicly-available algorithms for in silico analyses and prediction of relevant B cell epitopes within PMSP9. We show that the tandem repeat sequence EAAPENAEPVHENA (PvMSP9E795-A808) present at the C-terminal region is a promising target for antibodies, given its high combined score to be a linear epitope and located in a putative intrinsically unstructured region of the native protein. To confirm the predictive value of the computational approach, plasma samples from 545 naturally exposed individuals were screened for IgG reactivity against the recombinant PvMSP9-RIRII729-972 and a synthetic peptide representing the predicted B cell epitope PvMSP9E795-A808. 316 individuals (58%) were responders to the full repetitive region PvMSP9-RIRII, of which 177 (56%) also presented total IgG reactivity against the synthetic peptide, confirming it validity as a B cell epitope. The reactivity indexes of anti-PvMSP9-RIRII and anti-PvMSP9E795-A808 antibodies were correlated. Interestingly, a potential role in the acquisition of protective immunity was associated with the linear epitope, since the IgG1 subclass against PvMSP9E795-A808 was the prevalent subclass and this directly correlated with time elapsed since the last malaria episode; however this was not observed in the antibody responses against the full PvMSP9-RIRII. In conclusion, our findings identified and experimentally confirmed the potential of PvMSP9E795-A808 as an immunogenic linear B cell epitope within the P. vivax malaria vaccine candidate PvMSP9 and support its inclusion in future subunit vaccines.
Collapse
Affiliation(s)
| | | | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Jianlin Jiang
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Esmeralda V. S. Meyer
- Environmental Health and Safety Office, Emory University, Atlanta, GA, United States of America
| | - Fátima Santos
- National Health Foundation, Department of Entomology, Central Laboratory, Porto Velho, RO, Brazil
| | - Dalma Maria Banic
- Laboratory of Simulids and Onchocerciasis "Malaria and Onchocerciasis Research", Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Mary R. Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Joseli Oliveira-Ferreira
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- * E-mail: (JCLJ); (JO-F)
| | - Josué da Costa Lima-Junior
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- * E-mail: (JCLJ); (JO-F)
| |
Collapse
|
36
|
Yan J, Dunker AK, Uversky VN, Kurgan L. Molecular recognition features (MoRFs) in three domains of life. MOLECULAR BIOSYSTEMS 2016; 12:697-710. [DOI: 10.1039/c5mb00640f] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MoRFs are widespread intrinsically disordered protein-binding regions that have similar abundance and amino acid composition across the three domains of life.
Collapse
Affiliation(s)
- Jing Yan
- Department of Electrical and Computer Engineering
- University of Alberta
- Edmonton
- Canada
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics
- Indiana University School of Medicine
- Indianapolis
- USA
- Indiana University School of Informatics
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute
- Morsani College of Medicine
- University of South Florida
- Tampa
- USA
| | - Lukasz Kurgan
- Department of Electrical and Computer Engineering
- University of Alberta
- Edmonton
- Canada
- Department of Computer Science
| |
Collapse
|
37
|
MacRaild CA, Richards JS, Anders RF, Norton RS. Antibody Recognition of Disordered Antigens. Structure 2015; 24:148-157. [PMID: 26712277 DOI: 10.1016/j.str.2015.10.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/12/2015] [Accepted: 10/28/2015] [Indexed: 11/16/2022]
Abstract
Disordered proteins are important antigens in a range of infectious diseases. Little is known, however, about the molecular details of recognition of disordered antigens by their cognate antibodies. Using a large dataset of protein antigens, we show that disordered epitopes are as likely to be recognized by antibodies as ordered epitopes. Moreover, the affinity with which antigens are recognized is, unexpectedly, only weakly dependent on the degree of disorder within the epitope. Structurally defined complexes of ordered and disordered protein antigens with their cognate antibodies reveal that disordered epitopes are smaller than their ordered counterparts, but are more efficient in their interactions with antibody. Our results demonstrate that disordered antigens are bona fide targets of antibody recognition, and that recognition of disordered epitopes is particularly sensitive to epitope variation, a finding with implications for the effects of disorder on the specificity of molecular recognition more generally.
Collapse
Affiliation(s)
- Christopher A MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Jack S Richards
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Robin F Anders
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
38
|
From the Macro to the Micro: Gel Mapping to Differentiate between Sporozoites of Two Immunologically Distinct Strains of Eimeria maxima (Strains M6 and Guelph). PLoS One 2015; 10:e0143232. [PMID: 26641262 PMCID: PMC4671645 DOI: 10.1371/journal.pone.0143232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/02/2015] [Indexed: 11/19/2022] Open
Abstract
Two immunologically distinct strains of E. maxima were examined in this study: the M6 strain and the Guelph strain. The differential expression between the sporozoites of the two strains of E. maxima was determined by image analysis of 100 μg of protein from each strain separated by standard one- and conventional two-dimensional polyacrylamide gel electrophoresis. In addition to differences in both molecular weight and the electrophoretic mobility, differences in the intensity of polypeptide bands for example, GS 136.4 and M6 169 were explored. Pooled gels were prepared from each strain. A representative 2D-PAGE gel spanning a non-linear pH range of 3-10 of E. maxima strain M6 consisted of approximately 694 polypeptide spots with about 67 (9.6%) of the polypeptide spots being unique relative to the other strain. E. maxima strain GS had about 696 discernable polypeptide spots with 69 spots (9.9%) that differed from those of the M6 strain. In-depth characterization of the variable polypeptide spots; unique polypeptide spots (absence or presence) and shared polypeptide spots with modifications may lead to novel vaccine target in the form of multi-component, multi-stage, multi-immunovariant strains, multi-species subunit vaccine, and diagnostic probe for E. maxima.
Collapse
|
39
|
Kang JM, Lee J, Cho PY, Moon SU, Ju HL, Ahn SK, Sohn WM, Lee HW, Kim TS, Na BK. Population genetic structure and natural selection of apical membrane antigen-1 in Plasmodium vivax Korean isolates. Malar J 2015; 14:455. [PMID: 26572984 PMCID: PMC4647566 DOI: 10.1186/s12936-015-0942-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/09/2015] [Indexed: 12/27/2022] Open
Abstract
Background Plasmodium vivax apical membrane antigen-1 (PvAMA-1) is a leading candidate antigen for blood stage malaria vaccine. However, antigenic variation is a major obstacle in the development of an effective vaccine based on this antigen. In this study, the genetic structure and the effect of natural selection of PvAMA-1 among Korean P. vivax isolates were analysed. Methods Blood samples were collected from 66 Korean patients with vivax malaria. The entire PvAMA-1 gene was amplified by polymerase chain reaction and cloned into a TA cloning vector. The PvAMA-1 sequence of each isolate was sequenced and the polymorphic characteristics and effect of natural selection were analysed using the DNASTAR, MEGA4, and DnaSP programs. Results Thirty haplotypes of PvAMA-1, which were further classified into seven different clusters, were identified in the 66 Korean P. vivax isolates. Domain II was highly conserved among the sequences, but substantial nucleotide diversity was observed in domains I and III. The difference between the rates of non-synonymous and synonymous mutations suggested that the gene has evolved under natural selection. No strong evidence indicating balancing or positive selection on PvAMA-1 was identified. Recombination may also play a role in the resulting genetic diversity of PvAMA-1. Conclusions This study is the first comprehensive analysis of nucleotide diversity across the entire PvAMA-1 gene using a single population sample from Korea. Korean PvAMA-1 had limited genetic diversity compared to PvAMA-1 in global isolates. The overall pattern of genetic polymorphism of Korean PvAMA-1 differed from other global isolates and novel amino acid changes were also identified in Korean PvAMA-1. Evidences for natural selection and recombination event were observed, which is likely to play an important role in generating genetic diversity across the PvAMA-1. These results provide useful information for the understanding the population structure of P. vivax circulating in Korea and have important implications for the design of a vaccine incorporating PvAMA-1.
Collapse
Affiliation(s)
- Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 660-751, Republic of Korea.
| | - Jinyoung Lee
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 660-751, Republic of Korea.
| | - Pyo-Yun Cho
- Department of Tropical Medicine, Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon, 400-712, Republic of Korea.
| | - Sung-Ung Moon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, 463-707, Republic of Korea.
| | - Hye-Lim Ju
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 660-751, Republic of Korea.
| | - Seong Kyu Ahn
- Department of Tropical Medicine, Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon, 400-712, Republic of Korea.
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 660-751, Republic of Korea.
| | - Hyeong-Woo Lee
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, J-566, 1275 Center Drive, Gainesville, FL, 32610, USA.
| | - Tong-Soo Kim
- Department of Tropical Medicine, Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon, 400-712, Republic of Korea.
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 660-751, Republic of Korea.
| |
Collapse
|
40
|
Guy AJ, Irani V, MacRaild CA, Anders RF, Norton RS, Beeson JG, Richards JS, Ramsland PA. Insights into the Immunological Properties of Intrinsically Disordered Malaria Proteins Using Proteome Scale Predictions. PLoS One 2015; 10:e0141729. [PMID: 26513658 PMCID: PMC4626106 DOI: 10.1371/journal.pone.0141729] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022] Open
Abstract
Malaria remains a significant global health burden. The development of an effective malaria vaccine remains as a major challenge with the potential to significantly reduce morbidity and mortality. While Plasmodium spp. have been shown to contain a large number of intrinsically disordered proteins (IDPs) or disordered protein regions, the relationship of protein structure to subcellular localisation and adaptive immune responses remains unclear. In this study, we employed several computational prediction algorithms to identify IDPs at the proteome level of six Plasmodium spp. and to investigate the potential impact of protein disorder on adaptive immunity against P. falciparum parasites. IDPs were shown to be particularly enriched within nuclear proteins, apical proteins, exported proteins and proteins localised to the parasitophorous vacuole. Furthermore, several leading vaccine candidates, and proteins with known roles in host-cell invasion, have extensive regions of disorder. Presentation of peptides by MHC molecules plays an important role in adaptive immune responses, and we show that IDP regions are predicted to contain relatively few MHC class I and II binding peptides owing to inherent differences in amino acid composition compared to structured domains. In contrast, linear B-cell epitopes were predicted to be enriched in IDPs. Tandem repeat regions and non-synonymous single nucleotide polymorphisms were found to be strongly associated with regions of disorder. In summary, immune responses against IDPs appear to have characteristics distinct from those against structured protein domains, with increased antibody recognition of linear epitopes but some constraints for MHC presentation and issues of polymorphisms. These findings have major implications for vaccine design, and understanding immunity to malaria.
Collapse
Affiliation(s)
- Andrew J. Guy
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
| | - Vashti Irani
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Christopher A. MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Robin F. Anders
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - James G. Beeson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Microbiology, Monash University, Melbourne, Australia
| | - Jack S. Richards
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Microbiology, Monash University, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Australia
- * E-mail: (JSR); (PAR)
| | - Paul A. Ramsland
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
- Department of Surgery Austin Health, University of Melbourne, Heidelberg, Australia
- School of Biomedical Sciences, CHIRI Biosciences, Faculty of Health Sciences, Curtin University, Perth, Australia
- * E-mail: (JSR); (PAR)
| |
Collapse
|
41
|
Abstract
The main therapeutic and prophylactic tools against malaria have been locked for more than a century in the classical approaches of using drugs targeting metabolic processes of the causing agent, the protist Plasmodium spp., and of designing vaccines against chosen antigens found on the parasite's surface. Given the extraordinary resources exhibited by Plasmodium to escape these traditional strategies, which have not been able to free humankind from the scourge of malaria despite much effort invested in them, new concepts have to be explored in order to advance toward eradication of the disease. In this context, amyloid-forming proteins and peptides found in the proteome of the pathogen should perhaps cease being regarded as mere anomalous molecules. Their likely functionality in the pathophysiology of Plasmodium calls for attention being paid to them as a possible Achilles' heel of malaria. Here we will give an overview of Plasmodium-encoded amyloid-forming polypeptides as potential therapeutic targets and toxic elements, particularly in relation to cerebral malaria and the blood-brain barrier function. We will also discuss the recent finding that the genome of the parasite contains an astonishingly high proportion of prionogenic domains.
Collapse
|
42
|
Structural basis for epitope masking and strain specificity of a conserved epitope in an intrinsically disordered malaria vaccine candidate. Sci Rep 2015; 5:10103. [PMID: 25965408 PMCID: PMC4428071 DOI: 10.1038/srep10103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/30/2015] [Indexed: 12/15/2022] Open
Abstract
Merozoite surface protein 2 (MSP2) is an intrinsically disordered, membrane-anchored antigen of the malaria parasite Plasmodium falciparum. MSP2 can elicit a protective, albeit strain-specific, antibody response in humans. Antibodies are generated to the conserved N- and C-terminal regions but many of these react poorly with the native antigen on the parasite surface. Here we demonstrate that recognition of a conserved N-terminal epitope by mAb 6D8 is incompatible with the membrane-bound conformation of that region, suggesting a mechanism by which native MSP2 escapes antibody recognition. Furthermore, crystal structures and NMR spectroscopy identify transient, strain-specific interactions between the 6D8 antibody and regions of MSP2 beyond the conserved epitope. These interactions account for the differential affinity of 6D8 for the two allelic families of MSP2, even though 6D8 binds to a fully conserved epitope. These results highlight unappreciated mechanisms that may modulate the specificity and efficacy of immune responses towards disordered antigens.
Collapse
|
43
|
MacRaild CA, Zachrdla M, Andrew D, Krishnarjuna B, Nováček J, Žídek L, Sklenář V, Richards JS, Beeson JG, Anders RF, Norton RS. Conformational dynamics and antigenicity in the disordered malaria antigen merozoite surface protein 2. PLoS One 2015; 10:e0119899. [PMID: 25742002 PMCID: PMC4351039 DOI: 10.1371/journal.pone.0119899] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/16/2015] [Indexed: 12/14/2022] Open
Abstract
Merozoite surface protein 2 (MSP2) of Plasmodium falciparum is an abundant, intrinsically disordered protein that is GPI-anchored to the surface of the invasive blood stage of the malaria parasite. Recombinant MSP2 has been trialled as a component of a malaria vaccine, and is one of several disordered proteins that are candidates for inclusion in vaccines for malaria and other diseases. Nonetheless, little is known about the implications of protein disorder for the development of an effective antibody response. We have therefore undertaken a detailed analysis of the conformational dynamics of the two allelic forms of MSP2 (3D7 and FC27) using NMR spectroscopy. Chemical shifts and NMR relaxation data indicate that conformational and dynamic properties of the N- and C-terminal conserved regions in the two forms of MSP2 are essentially identical, but significant variation exists between and within the central variable regions. We observe a strong relationship between the conformational dynamics and the antigenicity of MSP2, as assessed with antisera to recombinant MSP2. Regions of increased conformational order in MSP2, including those in the conserved regions, are more strongly antigenic, while the most flexible regions are minimally antigenic. This suggests that modifications that increase conformational order may offer a means to tune the antigenicity of MSP2 and other disordered antigens, with implications for vaccine design.
Collapse
Affiliation(s)
- Christopher A. MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Australia
- * E-mail:
| | - Milan Zachrdla
- NCBR, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Dean Andrew
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, 3004, Australia
| | - Bankala Krishnarjuna
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Australia
| | - Jiří Nováček
- NCBR, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Lukáš Žídek
- NCBR, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Vladimír Sklenář
- NCBR, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Jack S. Richards
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, 3004, Australia
| | - James G. Beeson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, 3004, Australia
| | - Robin F. Anders
- Department of Biochemistry, La Trobe University, Victoria, 3086, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Australia
| |
Collapse
|
44
|
Manzano-Román R, Díaz-Martín V, Oleaga A, Pérez-Sánchez R. Identification of protective linear B-cell epitopes on the subolesin/akirin orthologues of Ornithodoros spp. soft ticks. Vaccine 2015; 33:1046-55. [PMID: 25597941 DOI: 10.1016/j.vaccine.2015.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/02/2015] [Indexed: 01/19/2023]
Abstract
Subolesin/akirin is a protective antigen that is highly conserved across hematophagous vector species and is therefore potentially useful for the development of a universal vaccine for vector control, including soft ticks. Recent results have shown that in Ornithodoros erraticus and O. moubata soft ticks, RNAi-mediated subolesin gene knockdown inhibits tick oviposition and fertility by more than 90%; however, vaccination with recombinant subolesins resulted in remarkably low protective efficacies (5-24.5% reduction in oviposition). Here we report that vaccination with subolesin recombinants induces non-protective antibodies mainly directed against immunodominant linear B-cell epitopes located on highly structured regions of the subolesin protein, probably unrelated to its biological activity, while leaving the unstructured/disordered regions unrecognized. Accordingly, for a new vaccine trial we designed four synthetic peptides (OE1, OE2, OM1 and OM2) from the unrecognized/disordered regions of the Ornithodoros subolesin sequences and coupled them to keyhole limpet haemocyanin (KLH). These KLH-peptide conjugates induced the synthesis of antibodies that recognized linear B-cell epitopes located on the unstructured loops of the subolesin protein and provided up to 70.1% and 83.1% vaccine efficacies in O. erraticus and O. moubata, respectively. These results show that the protective effect of subolesin-based vaccines is highly dependent on the particular epitope recognized by antibodies on the subolesin sequence and strongly suggest that the biological activity of subolesin is exerted through its unstructured regions. The results reported here contribute to our understanding of the mechanism of protection of subolesin-based vaccines and reveal novel protective peptides that could be included among the array of candidate antigens useful for developing anti-vector vaccines based on subolesin/akirin.
Collapse
Affiliation(s)
- Raúl Manzano-Román
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| | - Verónica Díaz-Martín
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| | - Ana Oleaga
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| | - Ricardo Pérez-Sánchez
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
45
|
Spiegel H, Boes A, Voepel N, Beiss V, Edgue G, Rademacher T, Sack M, Schillberg S, Reimann A, Fischer R. Application of a Scalable Plant Transient Gene Expression Platform for Malaria Vaccine Development. FRONTIERS IN PLANT SCIENCE 2015; 6:1169. [PMID: 26779197 PMCID: PMC4688378 DOI: 10.3389/fpls.2015.01169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/07/2015] [Indexed: 05/23/2023]
Abstract
Despite decades of intensive research efforts there is currently no vaccine that provides sustained sterile immunity against malaria. In this context, a large number of targets from the different stages of the Plasmodium falciparum life cycle have been evaluated as vaccine candidates. None of these candidates has fulfilled expectations, and as long as we lack a single target that induces strain-transcending protective immune responses, combining key antigens from different life cycle stages seems to be the most promising route toward the development of efficacious malaria vaccines. After the identification of potential targets using approaches such as omics-based technology and reverse immunology, the rapid expression, purification, and characterization of these proteins, as well as the generation and analysis of fusion constructs combining different promising antigens or antigen domains before committing to expensive and time consuming clinical development, represents one of the bottlenecks in the vaccine development pipeline. The production of recombinant proteins by transient gene expression in plants is a robust and versatile alternative to cell-based microbial and eukaryotic production platforms. The transfection of plant tissues and/or whole plants using Agrobacterium tumefaciens offers a low technical entry barrier, low costs, and a high degree of flexibility embedded within a rapid and scalable workflow. Recombinant proteins can easily be targeted to different subcellular compartments according to their physicochemical requirements, including post-translational modifications, to ensure optimal yields of high quality product, and to support simple and economical downstream processing. Here, we demonstrate the use of a plant transient expression platform based on transfection with A. tumefaciens as essential component of a malaria vaccine development workflow involving screens for expression, solubility, and stability using fluorescent fusion proteins. Our results have been implemented for the evidence-based iterative design and expression of vaccine candidates combining suitable P. falciparum antigen domains. The antigens were also produced, purified, and characterized in further studies by taking advantage of the scalability of this platform.
Collapse
Affiliation(s)
- Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
- *Correspondence: Alexander Boes
| | - Nadja Voepel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Veronique Beiss
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Gueven Edgue
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Thomas Rademacher
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Markus Sack
- Institute for Molecular Biotechnology, RWTH Aachen UniversityAachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen UniversityAachen, Germany
| |
Collapse
|
46
|
Peng Z, Yan J, Fan X, Mizianty MJ, Xue B, Wang K, Hu G, Uversky VN, Kurgan L. Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol Life Sci 2015; 72:137-51. [PMID: 24939692 PMCID: PMC11113594 DOI: 10.1007/s00018-014-1661-9] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 02/02/2023]
Abstract
Recent years witnessed increased interest in intrinsically disordered proteins and regions. These proteins and regions are abundant and possess unique structural features and a broad functional repertoire that complements ordered proteins. However, modern studies on the abundance and functions of intrinsically disordered proteins and regions are relatively limited in size and scope of their analysis. To fill this gap, we performed a broad and detailed computational analysis of over 6 million proteins from 59 archaea, 471 bacterial, 110 eukaryotic and 325 viral proteomes. We used arguably more accurate consensus-based disorder predictions, and for the first time comprehensively characterized intrinsic disorder at proteomic and protein levels from all significant perspectives, including abundance, cellular localization, functional roles, evolution, and impact on structural coverage. We show that intrinsic disorder is more abundant and has a unique profile in eukaryotes. We map disorder into archaea, bacterial and eukaryotic cells, and demonstrate that it is preferentially located in some cellular compartments. Functional analysis that considers over 1,200 annotations shows that certain functions are exclusively implemented by intrinsically disordered proteins and regions, and that some of them are specific to certain domains of life. We reveal that disordered regions are often targets for various post-translational modifications, but primarily in the eukaryotes and viruses. Using a phylogenetic tree for 14 eukaryotic and 112 bacterial species, we analyzed relations between disorder, sequence conservation and evolutionary speed. We provide a complete analysis that clearly shows that intrinsic disorder is exceptionally and uniquely abundant in each domain of life.
Collapse
Affiliation(s)
- Zhenling Peng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Jing Yan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Xiao Fan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Marcin J. Mizianty
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, College of Fine Arts and Sciences, University of South Florida, 33612 Tampa, USA
| | - Kui Wang
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, People’s Republic of China
| | - Gang Hu
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, People’s Republic of China
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, College of Medicine, University of South Florida, 33612 Tampa, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, Moscow Region, 142290 Pushchino, Russia
| | - Lukasz Kurgan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
47
|
de Cássia Ruy P, Torrieri R, Toledo JS, de Souza Alves V, Cruz AK, Ruiz JC. Intrinsically disordered proteins (IDPs) in trypanosomatids. BMC Genomics 2014; 15:1100. [PMID: 25496281 PMCID: PMC4378006 DOI: 10.1186/1471-2164-15-1100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 12/04/2014] [Indexed: 11/10/2022] Open
Abstract
Background Proteins are composed of one or more amino acid chains and exhibit several structure levels. IDPs (intrinsically disordered proteins) represent a class of proteins that do not fold into any particular conformation and exist as dynamic ensembles in their native state. Due to their intrinsic adaptability, IDPs participate in many regulatory biological processes, including parasite immune escape. Using the information from trypanosomatids proteomes, we developed a pipeline for the identification, characterization and analysis of IDPs. The pipeline employs six disorder prediction methodologies and integrates structural and functional annotation information, subcellular location prediction and physicochemical properties. At the core of the IDP pipeline, there is a relational database that describes the protein disorder knowledge in a logically consistent manner. Results The results obtained from the IDP pipeline showed that Leishmania and Trypanosoma species have approximately 70% and 55% IDPs, respectively. Our results indicate that IDPs in trypanosomatids contain disorder-promoting amino acids and order-promoting amino acids. The functional annotation analysis demonstrated enrichment of selected Gene Ontology terms. A relevant association was observed between the disordered residue numbers within predicted IDPs and their subcellular location, lack of transmembrane domains and lack of predicted function. We validated our computational findings with 2D electrophoresis designed for IDP identification and found that 100% of the identified protein spots were predicted in silico. Conclusions Because there is no pipeline or database addressing IDPs in trypanosomatids, the pipeline described here represents the first attempt to establish possible correlations between protein function and structural disorder in these eukaryotes. Interestingly, all significant associations detected in the contingency analysis were observed when the protein disorder content reached approximately 40%. The exploratory data analysis allowed us to develop hypotheses regarding the IDPs’ association with key biological features of these parasites, including transcription and transcriptional regulation, RNA processing and splicing, and cytoskeleton. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1100) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Jeronimo Conceição Ruiz
- Informática de Biossistemas, Centro de Pesquisas René Rachou - Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG, Brasil.
| |
Collapse
|
48
|
Blanc M, Coetzer TL, Blackledge M, Haertlein M, Mitchell EP, Forsyth VT, Jensen MR. Intrinsic disorder within the erythrocyte binding-like proteins from Plasmodium falciparum. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2306-14. [DOI: 10.1016/j.bbapap.2014.09.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/18/2014] [Accepted: 09/26/2014] [Indexed: 10/24/2022]
|
49
|
Boucher JI, Jacobowitz JR, Beckett BC, Classen S, Theobald DL. An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases. eLife 2014; 3:e02304. [PMID: 24966208 PMCID: PMC4109310 DOI: 10.7554/elife.02304] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 06/23/2014] [Indexed: 01/08/2023] Open
Abstract
Malate and lactate dehydrogenases (MDH and LDH) are homologous, core metabolic enzymes that share a fold and catalytic mechanism yet possess strict specificity for their substrates. In the Apicomplexa, convergent evolution of an unusual LDH from MDH produced a difference in specificity exceeding 12 orders of magnitude. The mechanisms responsible for this extraordinary functional shift are currently unknown. Using ancestral protein resurrection, we find that specificity evolved in apicomplexan LDHs by classic neofunctionalization characterized by long-range epistasis, a promiscuous intermediate, and few gain-of-function mutations of large effect. In canonical MDHs and LDHs, a single residue in the active-site loop governs substrate specificity: Arg102 in MDHs and Gln102 in LDHs. During the evolution of the apicomplexan LDH, however, specificity switched via an insertion that shifted the position and identity of this 'specificity residue' to Trp107f. Residues far from the active site also determine specificity, as shown by the crystal structures of three ancestral proteins bracketing the key duplication event. This work provides an unprecedented atomic-resolution view of evolutionary trajectories creating a nascent enzymatic function.
Collapse
Affiliation(s)
- Jeffrey I Boucher
- Department of Biochemistry, Brandeis University, Waltham, United States
| | | | - Brian C Beckett
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Scott Classen
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | | |
Collapse
|
50
|
Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. CELLULAR AND MOLECULAR LIFE SCIENCES : CMLS 2014. [PMID: 24939692 DOI: 10.1007/s00018‐014‐1661‐9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recent years witnessed increased interest in intrinsically disordered proteins and regions. These proteins and regions are abundant and possess unique structural features and a broad functional repertoire that complements ordered proteins. However, modern studies on the abundance and functions of intrinsically disordered proteins and regions are relatively limited in size and scope of their analysis. To fill this gap, we performed a broad and detailed computational analysis of over 6 million proteins from 59 archaea, 471 bacterial, 110 eukaryotic and 325 viral proteomes. We used arguably more accurate consensus-based disorder predictions, and for the first time comprehensively characterized intrinsic disorder at proteomic and protein levels from all significant perspectives, including abundance, cellular localization, functional roles, evolution, and impact on structural coverage. We show that intrinsic disorder is more abundant and has a unique profile in eukaryotes. We map disorder into archaea, bacterial and eukaryotic cells, and demonstrate that it is preferentially located in some cellular compartments. Functional analysis that considers over 1,200 annotations shows that certain functions are exclusively implemented by intrinsically disordered proteins and regions, and that some of them are specific to certain domains of life. We reveal that disordered regions are often targets for various post-translational modifications, but primarily in the eukaryotes and viruses. Using a phylogenetic tree for 14 eukaryotic and 112 bacterial species, we analyzed relations between disorder, sequence conservation and evolutionary speed. We provide a complete analysis that clearly shows that intrinsic disorder is exceptionally and uniquely abundant in each domain of life.
Collapse
|