1
|
Sturm A, Carmona-Antoñanzas G, Humble JL, Croton C, Boyd S, Mphuti R, Taggart JB, Bassett DI, Houston RD, Gharbi K, Bron JE, Bekaert M. QTL mapping provides new insights into emamectin benzoate resistance in salmon lice, Lepeophtheirus salmonis. BMC Genomics 2024; 25:1212. [PMID: 39695954 DOI: 10.1186/s12864-024-11096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The salmon louse (Lepeophtheirus salmonis) is a parasite of wild and farmed salmonid fish, causing huge economic damage to the commercial farming of Atlantic salmon (Salmo salar) in the northern hemisphere. The avermectin emamectin benzoate (EMB) is widely used for salmon delousing. While resistance to EMB is widespread in Atlantic populations of L. salmonis, the molecular mechanisms of resistance remain to be elucidated. The aim of the present work was to obtain insights into potential EMB resistance mechanisms by identifying genetic and transcriptomic markers associated with EMB resistance. RESULTS Crosses were performed between EMB-susceptible and -resistant L. salmonis, sourced from two parental strains isolated in Scotland, producing fully pedigreed families. The EMB susceptibility of individual parasites was characterised using time-to-response bioassays. Parasites of two families were subjected to double digest restriction site-associated DNA sequencing (ddRAD-seq) for simultaneous discovery of single nucleotide polymorphisms (SNPs) and genotyping. Data analysis revealed that EMB resistance is associated with one quantitative trait locus (QTL) region on L. salmonis chromosome 5. Marker-trait association was confirmed by genotyping assays for 7 SNPs in two additional families. Furthermore, the transcriptome of male parasites of the EMB-susceptible and -resistant L. salmonis parental strains was assessed. Among eighteen sequences showing higher transcript expression in EMB-resistant as compared to drug-susceptible lice, the most strongly up-regulated gene is located in the above QTL region and shows high homology to β spectrin, a cytoskeleton protein that has roles in neuron architecture and function. Further genes differentially regulated in EMB-resistant lice include a glutathione S-transferase (GST), and genes coding for proteins with predicted roles in mitochondrial function, intracellular signalling or transcription. CONCLUSIONS Major determinants of EMB resistance in L. salmonis are located on Chromosome 5. Resistance can be predicted using a limited number of genetic markers. Genes transcriptionally up-regulated in EMB resistant parasites include a β spectrin, a cytoskeletal protein with still incompletely understood roles in neuron structure and function, as well as glutathione S-transferase, an enzyme with potential roles in the biochemical defence against toxicants.
Collapse
Affiliation(s)
- Armin Sturm
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK.
| | | | - Joseph L Humble
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
- University of Glasgow, Glasgow, Scotland, UK
| | - Claudia Croton
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
- Pharmaq AS, Oslo, Norway
| | - Sally Boyd
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - Rapule Mphuti
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - John B Taggart
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - David I Bassett
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Scotland, UK
- Benchmark Holdings, Edinburgh, Scotland, UK
| | - Karim Gharbi
- Edinburgh Genomics, Ashworth Laboratories, King's Buildings, University of Edinburgh, Edinburgh, Scotland, UK
- Earlham Institute, Norwich, England, UK
| | - James E Bron
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - Michaël Bekaert
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
- Cooke España/Culmarex, Palma, Spain
| |
Collapse
|
2
|
Tribiños F, Cuevas P, Cornejo I, Sepúlveda FV, Cid LP. A new family of glutamate-gated chloride channels in parasitic sea louse Caligus rogercresseyi: A subunit refractory to activation by ivermectin is dominant in heteromeric assemblies. PLoS Pathog 2023; 19:e1011188. [PMID: 36917600 PMCID: PMC10038264 DOI: 10.1371/journal.ppat.1011188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 03/24/2023] [Accepted: 02/07/2023] [Indexed: 03/16/2023] Open
Abstract
Sea louse ectoparasitosis is a major threat to fish aquaculture. Avermectins such as ivermectin and emamectin have been effectively used against sea louse infestation, but the emergence of resistance has limited their use. A better understanding of the molecular targets of avermectins is essential to the development of novel treatment strategies or new, more effective drugs. Avermectins are known to act by inhibiting neurotransmission through allosteric activation of glutamate-gated chloride channels (GluCls). We have investigated the GluCl subunit present in Caligus rogercresseyi, a sea louse affecting aquaculture in the Southern hemisphere. We identify four new subunits, CrGluCl-B to CrGluCl-E, and characterise them functionally. CrGluCl-A (previously reported as CrGluClα), CrGluCl-B and CrGluCl-C all function as glutamate channel receptors with different sensitivities to the agonist, but in contrast to subunit -A and -C, CrGluCl-B is not activated by ivermectin but is rather antagonised by the drug. CrGluCl-D channel appears active in the absence of any stimulation by glutamate or ivermectin and CrGluCl-E does not exhibit any activity. Notably, the expression of CrGluCl-B with either -A or -C subunits gives rise to receptors unresponsive to ivermectin and showing altered response to glutamate, suggesting that coexpression has led to the preferential formation of heteromers to which the presence of CrGluCl-B confers the property of ivermectin-activation refractoriness. Furthermore, there was evidence for heteromer formation with novel properties only when coexpressing pairs E/C and D/B CrGluCl subtypes. Site-directed mutagenesis shows that three transmembrane domain residues contribute to the lack of activation by ivermectin, most crucially Gln 15' in M2, with mutation Q15'T (the residue present in ivermectin-activated subunits A and C) conferring ivermectin activation to CrGluCl-B. The differential response to avermectin of these Caligus rogercresseyi GluClsubunits, which are highly conserved in the Northern hemisphere sea louse Lepeophtheirus salmonis, could have an influence on the response of these parasites to treatment with macrocyclic lactones. They could serve as molecular markers to assess susceptibility to existing treatments and might be useful molecular targets in the search for novel antiparasitic drugs.
Collapse
Affiliation(s)
| | | | - Isabel Cornejo
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Valdivia, Chile
| | - Francisco V Sepúlveda
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - L Pablo Cid
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
3
|
Tarrant AM, Nilsson B, Hansen BW. Molecular physiology of copepods - from biomarkers to transcriptomes and back again. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:230-247. [DOI: 10.1016/j.cbd.2019.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 12/31/2022]
|
4
|
Mastrantonio V, Ferrari M, Negri A, Sturmo T, Favia G, Porretta D, Epis S, Urbanelli S. Insecticide Exposure Triggers a Modulated Expression of ABC Transporter Genes in Larvae of Anopheles gambiae s.s. INSECTS 2019; 10:insects10030066. [PMID: 30841542 PMCID: PMC6468849 DOI: 10.3390/insects10030066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
Insecticides remain a main tool for the control of arthropod vectors. The urgency to prevent the insurgence of insecticide resistance and the perspective to find new target sites, for the development of novel molecules, are fuelling the study of the molecular mechanisms involved in insect defence against xenobiotic compounds. In this study, we have investigated if ATP-binding cassette (ABC) transporters, a major component of the defensome machinery, are involved in defence against the insecticide permethrin, in susceptible larvae of the malaria vector Anopheles gambiae sensu stricto. Bioassays were performed with permethrin alone, or in combination with an ABC transporter inhibitor. Then we have investigated the expression profiles of five ABC transporter genes at different time points following permethrin exposure, to assess their expression patterns across time. The inhibition of ABC transporters increased the larval mortality by about 15-fold. Likewise, three genes were up-regulated after exposure to permethrin, showing different patterns of expression across the 48 h. Our results provide the first evidences of ABC transporters involvement in defence against a toxic in larvae of An. gambiae s.s. and show that the gene expression response is modulated across time, being continuous, but stronger at the earliest and latest times after exposure.
Collapse
Affiliation(s)
| | - Marco Ferrari
- Department of Biosciences and Pediatric Clinical Research Center, University of Milan, 20133 Milan, Italy.
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| | - Agata Negri
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy.
- Department of Biosciences and Pediatric Clinical Research Center, University of Milan, 20133 Milan, Italy.
| | - Tommaso Sturmo
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy.
| | - Guido Favia
- School of Bioscience and Veterinary Medicine, University of Camerino, 62032 Macerata, Italy.
| | - Daniele Porretta
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy.
| | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center, University of Milan, 20133 Milan, Italy.
| | - Sandra Urbanelli
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
5
|
Zuo YY, Huang JL, Wang J, Feng Y, Han TT, Wu YD, Yang YH. Knockout of a P-glycoprotein gene increases susceptibility to abamectin and emamectin benzoate in Spodoptera exigua. INSECT MOLECULAR BIOLOGY 2018; 27:36-45. [PMID: 28753233 DOI: 10.1111/imb.12338] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
P-glycoprotein [P-gp or the ATP-binding cassette transporter B1 (ABCB1)] is an important participant in multidrug resistance of cancer cells, yet the precise function of this arthropod transporter is unknown. The aim of this study was to determine the importance of P-gp for susceptibility to insecticides in the beet armyworm (Spodoptera exigua) using clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) gene-editing technology. We cloned an open reading frame (ORF) encoding the S. exigua P-gp protein (SeP-gp) predicted to display structural characteristics common to P-gp and other insect ABCB1 transporters. A knockout line with a frame shift deletion of four nucleotides in the SeP-gp ORF was established using the CRISPR/Cas9 gene-editing system to test its potential role in determining susceptibility to chemical insecticides or insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). Results from comparative bioassays demonstrate that knockout of SeP-gp significantly increases susceptibility of S. exigua by around threefold to abamectin and emamectin benzoate (EB), but not to spinosad, chlorfenapyr, beta-cypermethrin, carbosulfan indoxacarb, chlorpyrifos, phoxim, diafenthiuron, chlorfluazuron, chlorantraniliprole or two Bt toxins (Cry1Ca and Cry1Fa). Our data support an important role for SeP-gp in susceptibility of S. exigua to abamectin and EB and imply that overexpression of SeP-gp may contribute to abamectin and EB resistance in S. exigua.
Collapse
Affiliation(s)
- Y-Y Zuo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - J-L Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - J Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Y Feng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - T-T Han
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Y-D Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Y-H Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
A Survey of the ATP-Binding Cassette (ABC) Gene Superfamily in the Salmon Louse (Lepeophtheirus salmonis). PLoS One 2015; 10:e0137394. [PMID: 26418738 PMCID: PMC4587908 DOI: 10.1371/journal.pone.0137394] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/17/2015] [Indexed: 01/20/2023] Open
Abstract
Salmon lice, Lepeophtheirus salmonis (Krøyer, 1837), are fish ectoparasites causing significant economic damage in the mariculture of Atlantic salmon, Salmo salar Linnaeus, 1758. The control of L. salmonis at fish farms relies to a large extent on treatment with anti-parasitic drugs. A problem related to chemical control is the potential for development of resistance, which in L. salmonis is documented for a number of drug classes including organophosphates, pyrethroids and avermectins. The ATP-binding cassette (ABC) gene superfamily is found in all biota and includes a range of drug efflux transporters that can confer drug resistance to cancers and pathogens. Furthermore, some ABC transporters are recognised to be involved in conferral of insecticide resistance. While a number of studies have investigated ABC transporters in L. salmonis, no systematic analysis of the ABC gene family exists for this species. This study presents a genome-wide survey of ABC genes in L. salmonis for which, ABC superfamily members were identified through homology searching of the L. salmonis genome. In addition, ABC proteins were identified in a reference transcriptome of the parasite generated by high-throughput RNA sequencing (RNA-seq) of a multi-stage RNA library. Searches of both genome and transcriptome allowed the identification of a total of 33 genes / transcripts coding for ABC proteins, of which 3 were represented only in the genome and 4 only in the transcriptome. Eighteen sequences were assigned to ABC subfamilies known to contain drug transporters, i.e. subfamilies B (4 sequences), C (11) and G (2). The results suggest that the ABC gene family of L. salmonis possesses fewer members than recorded for other arthropods. The present survey of the L. salmonis ABC gene superfamily will provide the basis for further research into potential roles of ABC transporters in the toxicity of salmon delousing agents and as potential mechanisms of drug resistance.
Collapse
|
7
|
Sutherland BJG, Poley JD, Igboeli OO, Jantzen JR, Fast MD, Koop BF, Jones SRM. Transcriptomic responses to emamectin benzoate in Pacific and Atlantic Canada salmon lice Lepeophtheirus salmonis with differing levels of drug resistance. Evol Appl 2014; 8:133-48. [PMID: 25685190 PMCID: PMC4319862 DOI: 10.1111/eva.12237] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/16/2014] [Indexed: 01/10/2023] Open
Abstract
Salmon lice Lepeophtheirus salmonis are an ecologically and economically important parasite of wild and farmed salmon. In Scotland, Norway, and Eastern Canada, L. salmonis have developed resistance to emamectin benzoate (EMB), one of the few parasiticides available for salmon lice. Drug resistance mechanisms can be complex, potentially differing among populations and involving multiple genes with additive effects (i.e., polygenic resistance). Indicators of resistance development may enable early detection and countermeasures to avoid the spread of resistance. Here, we collect sensitive Pacific L. salmonis and sensitive and resistant Atlantic L. salmonis from salmon farms, propagate in laboratory (F1), expose to EMB in bioassays, and evaluate either baseline (Atlantic only) or induced transcriptomic differences between populations. In all populations, induced responses were minor and a cellular stress response was not identified. Pacific lice did not upregulate any genes in response to EMB, but downregulated degradative enzymes and transport proteins at 50 ppb EMB. Baseline differences between sensitive and now resistant Atlantic lice were much greater than responses to exposures. All resistant lice overexpressed degradative enzymes, and resistant males, the most resistant group, overexpressed collagenases to the greatest extent. These results indicate an accumulation of baseline expression differences related to resistance.
Collapse
Affiliation(s)
- Ben J G Sutherland
- Centre for Biomedical Research, Department of Biology, University of Victoria Victoria, BC, Canada ; Institut de Biologie Intégrative et des Systèmes (IBIS), Département de biologie, Université Laval Québec, QC, Canada
| | - Jordan D Poley
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island Charlottetown, PEI, Canada
| | - Okechukwu O Igboeli
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island Charlottetown, PEI, Canada
| | - Johanna R Jantzen
- Centre for Biomedical Research, Department of Biology, University of Victoria Victoria, BC, Canada
| | - Mark D Fast
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island Charlottetown, PEI, Canada
| | - Ben F Koop
- Centre for Biomedical Research, Department of Biology, University of Victoria Victoria, BC, Canada
| | | |
Collapse
|
8
|
Jeong CB, Kim BM, Kim RK, Park HG, Lee SJ, Shin KH, Leung KMY, Rhee JS, Lee JS. Functional characterization of P-glycoprotein in the intertidal copepod Tigriopus japonicus and its potential role in remediating metal pollution. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:135-147. [PMID: 25198425 DOI: 10.1016/j.aquatox.2014.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/07/2014] [Accepted: 08/10/2014] [Indexed: 06/03/2023]
Abstract
The intertidal copepod Tigriopus japonicus has been widely used in aquatic toxicity testing for diverse environmental pollutants including metals. Despite relatively well-characterized in vivo physiological modulations in response to aquatic pollutants, the molecular mechanisms due to toxicity and detoxification are still unclear. To better understand the mechanisms of metal transport and further detoxification, T. japonicus P-glycoprotein (TJ-P-gp) with conserved motifs/domains was cloned and measured for protein activity against the transcript and protein expression profiles in response to metal exposure. Specifically, we characterized the preliminary efflux activity and membrane topology of TJ-P-gp protein that supports a transport function for chemicals. To uncover whether the efflux activity of TJ-P-gp protein would be modulated by metal treatment, copepods were exposed to three metals (Cd, Cu, and Zn), and were observed for both dose- and time-dependency on the efflux activity of TJ-P-gp protein with or without 10μM of P-gp-specific inhibitors verapamil and zosuquidar (LY335979) for 24h over a wide range of metal concentrations. In particular, treatment with zosuquidar induced metal accumulation in the inner body of T. japonicus. In addition, three metals significantly induced the transporting activity of TJ-P-gp in a concentration-dependent manner in both transcript and protein levels within 24h. Together these data indicate that T. japonicus has a conserved P-gp-mediated metal defense system through the induction of transcriptional up-regulation of TJ-P-gp gene and TJ-P-gp protein activity. This finding provides further understanding of the molecular defense mechanisms involved in P-glycoprotein-mediated metal detoxification in copepods.
Collapse
Affiliation(s)
- Chang-Bum Jeong
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | - Bo-Mi Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Rae-Kwon Kim
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 210-702, South Korea
| | - Su-Jae Lee
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan 426-791, South Korea
| | - Kenneth Mei Yee Leung
- School of Biological Sciences and the Swire Institute of Marine Science, The University of Hong Kong, Poklam Road, Hong Kong, China
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 406-772, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea.
| |
Collapse
|
9
|
Besnier F, Kent M, Skern-Mauritzen R, Lien S, Malde K, Edvardsen RB, Taylor S, Ljungfeldt LER, Nilsen F, Glover KA. Human-induced evolution caught in action: SNP-array reveals rapid amphi-atlantic spread of pesticide resistance in the salmon ecotoparasite Lepeophtheirus salmonis. BMC Genomics 2014; 15:937. [PMID: 25344698 PMCID: PMC4223847 DOI: 10.1186/1471-2164-15-937] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/16/2014] [Indexed: 12/23/2022] Open
Abstract
Background The salmon louse, Lepeophtheirus salmonis, is an ectoparasite of salmonids that causes huge economic losses in salmon farming, and has also been causatively linked with declines of wild salmonid populations. Lice control on farms is reliant upon a few groups of pesticides that have all shown time-limited efficiency due to resistance development. However, to date, this example of human-induced evolution is poorly documented at the population level due to the lack of molecular tools. As such, important evolutionary and management questions, linked to the development and dispersal of pesticide resistance in this parasite, remain unanswered. Here, we introduce the first Single Nucleotide Polymorphism (SNP) array for the salmon louse, which includes 6000 markers, and present a population genomic scan using this array on 576 lice from twelve farms distributed across the North Atlantic. Results Our results support the hypothesis of a single panmictic population of lice in the Atlantic, and importantly, revealed very strong selective sweeps on linkage groups 1 and 5. These sweeps included candidate genes potentially connected to pesticide resistance. After genotyping a further 576 lice from 12 full sibling families, a genome-wide association analysis established a highly significant association between the major sweep on linkage group 5 and resistance to emamectin benzoate, the most widely used pesticide in salmonid aquaculture for more than a decade. Conclusions The analysis of conserved haplotypes across samples from the Atlantic strongly suggests that emamectin benzoate resistance developed at a single source, and rapidly spread across the Atlantic within the period 1999 when the chemical was first introduced, to 2010 when samples for the present study were obtained. These results provide unique insights into the development and spread of pesticide resistance in the marine environment, and identify a small genomic region strongly linked to emamectin benzoate resistance. Finally, these results have highly significant implications for the way pesticide resistance is considered and managed within the aquaculture industry. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-937) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Jeong CB, Kim BM, Lee JS, Rhee JS. Genome-wide identification of whole ATP-binding cassette (ABC) transporters in the intertidal copepod Tigriopus japonicus. BMC Genomics 2014; 15:651. [PMID: 25096237 PMCID: PMC4247197 DOI: 10.1186/1471-2164-15-651] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/31/2014] [Indexed: 12/30/2022] Open
Abstract
Backgrounds The ATP-binding cassette (ABC) transporter superfamily is one of the largest transporter gene families and is observed in all animal taxa. Although a large set of transcriptomic data was recently assembled for several species of crustaceans, identification and annotation of the large ABC transporter gene family have been very challenging. Results In the intertidal copepod Tigriopus japonicus, 46 putative ABC transporters were identified using in silico analysis, and their full-length cDNA sequences were characterized. Phylogenetic analysis revealed that the 46 T. japonicus ABC transporters are classified into eight subfamilies (A-H) that include all the members of all ABC subfamilies, consisting of five ABCA, five ABCB, 17 ABCC, three ABCD, one ABCE, three ABCF, seven ABCG, and five ABCH subfamilies. Of them, unique isotypic expansion of two clades of ABCC1 proteins was observed. Real-time RT-PCR-based heatmap analysis revealed that most T. japonicus ABC genes showed temporal transcriptional expression during copepod development. The overall transcriptional profile demonstrated that half of all T. japonicus ABC genes were strongly associated with at least one developmental stage. Of them, transcripts TJ-ABCH_88708 and TJ-ABCE1 were highly expressed during all developmental stages. Conclusions The whole set of T. japonicus ABC genes and their phylogenetic relationships will provide a better understanding of the comparative evolution of essential gene family resources in arthropods, including the crustacean copepods. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-651) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea.
| | | |
Collapse
|
11
|
Dermauw W, Van Leeuwen T. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 45:89-110. [PMID: 24291285 DOI: 10.1016/j.ibmb.2013.11.001] [Citation(s) in RCA: 403] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 05/26/2023]
Abstract
About a 100 years ago, the Drosophila white mutant marked the birth of Drosophila genetics. The white gene turned out to encode the first well studied ABC transporter in arthropods. The ABC gene family is now recognized as one of the largest transporter families in all kingdoms of life. The majority of ABC proteins function as primary-active transporters that bind and hydrolyze ATP while transporting a large diversity of substrates across lipid membranes. Although extremely well studied in vertebrates for their role in drug resistance, less is known about the role of this family in the transport of endogenous and exogenous substances in arthropods. The ABC families of five insect species, a crustacean and a chelicerate have been annotated in some detail. We conducted a thorough phylogenetic analysis of the seven arthropod and human ABC protein subfamilies, to infer orthologous relationships that might suggest conserved function. Most orthologous relationships were found in the ABCB half transporter, ABCD, ABCE and ABCF subfamilies, but specific expansions within species and lineages are frequently observed and discussed. We next surveyed the role of ABC transporters in the transport of xenobiotics/plant allelochemicals and their involvement in insecticide resistance. The involvement of ABC transporters in xenobiotic resistance in arthropods is historically not well documented, but an increasing number of studies using unbiased differential gene expression analysis now points to their importance. We give an overview of methods that can be used to link ABC transporters to resistance. ABC proteins have also recently been implicated in the mode of action and resistance to Bt toxins in Lepidoptera. Given the enormous interest in Bt toxicology in transgenic crops, such findings will provide an impetus to further reveal the role of ABC transporters in arthropods.
Collapse
Affiliation(s)
- Wannes Dermauw
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Carmichael SN, Bron JE, Taggart JB, Ireland JH, Bekaert M, Burgess ST, Skuce PJ, Nisbet AJ, Gharbi K, Sturm A. Salmon lice (Lepeophtheirus salmonis) showing varying emamectin benzoate susceptibilities differ in neuronal acetylcholine receptor and GABA-gated chloride channel mRNA expression. BMC Genomics 2013; 14:408. [PMID: 23773482 PMCID: PMC3691771 DOI: 10.1186/1471-2164-14-408] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/13/2013] [Indexed: 01/01/2023] Open
Abstract
Background Caligid copepods, also called sea lice, are fish ectoparasites, some species of which cause significant problems in the mariculture of salmon, where the annual cost of infection is in excess of €300 million globally. At present, caligid control on farms is mainly achieved using medicinal treatments. However, the continued use of a restricted number of medicine actives potentially favours the development of drug resistance. Here, we report transcriptional changes in a laboratory strain of the caligid Lepeophtheirus salmonis (Krøyer, 1837) that is moderately (~7-fold) resistant to the avermectin compound emamectin benzoate (EMB), a component of the anti-salmon louse agent SLICE® (Merck Animal Health). Results Suppression subtractive hybridisation (SSH) was used to enrich transcripts differentially expressed between EMB-resistant (PT) and drug-susceptible (S) laboratory strains of L. salmonis. SSH libraries were subjected to 454 sequencing. Further L. salmonis transcript sequences were available as expressed sequence tags (EST) from GenBank. Contiguous sequences were generated from both SSH and EST sequences and annotated. Transcriptional responses in PT and S salmon lice were investigated using custom 15 K oligonucleotide microarrays designed using the above sequence resources. In the absence of EMB exposure, 359 targets differed in transcript abundance between the two strains, these genes being enriched for functions such as calcium ion binding, chitin metabolism and muscle structure. γ-aminobutyric acid (GABA)-gated chloride channel (GABA-Cl) and neuronal acetylcholine receptor (nAChR) subunits showed significantly lower transcript levels in PT lice compared to S lice. Using RT-qPCR, the decrease in mRNA levels was estimated at ~1.4-fold for GABA-Cl and ~2.8-fold for nAChR. Salmon lice from the PT strain showed few transcriptional responses following acute exposure (1 or 3 h) to 200 μg L-1 of EMB, a drug concentration tolerated by PT lice, but toxic for S lice. Conclusions Avermectins are believed to exert their toxicity to invertebrates through interaction with glutamate-gated and GABA-gated chloride channels. Further potential drug targets include other Cys-loop ion channels such as nAChR. The present study demonstrates decreased transcript abundances of GABA-Cl and nAChR subunits in EMB-resistant salmon lice, suggesting their involvement in avermectin toxicity in caligids.
Collapse
|
13
|
Torrissen O, Jones S, Asche F, Guttormsen A, Skilbrei OT, Nilsen F, Horsberg TE, Jackson D. Salmon lice--impact on wild salmonids and salmon aquaculture. JOURNAL OF FISH DISEASES 2013; 36:171-94. [PMID: 23311858 PMCID: PMC3675643 DOI: 10.1111/jfd.12061] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 05/04/2023]
Abstract
Salmon lice, Lepeophtheirus salmonis, are naturally occurring parasites of salmon in sea water. Intensive salmon farming provides better conditions for parasite growth and transmission compared with natural conditions, creating problems for both the salmon farming industry and, under certain conditions, wild salmonids. Salmon lice originating from farms negatively impact wild stocks of salmonids, although the extent of the impact is a matter of debate. Estimates from Ireland and Norway indicate an odds ratio of 1.1:1-1.2:1 for sea lice treated Atlantic salmon smolt to survive sea migration compared to untreated smolts. This is considered to have a moderate population regulatory effect. The development of resistance against drugs most commonly used to treat salmon lice is a serious concern for both wild and farmed fish. Several large initiatives have been taken to encourage the development of new strategies, such as vaccines and novel drugs, for the treatment or removal of salmon lice from farmed fish. The newly sequenced salmon louse genome will be an important tool in this work. The use of cleaner fish has emerged as a robust method for controlling salmon lice, and aquaculture production of wrasse is important towards this aim. Salmon lice have large economic consequences for the salmon industry, both as direct costs for the prevention and treatment, but also indirectly through negative public opinion.
Collapse
Affiliation(s)
- O Torrissen
- Institute of Marine Research, Nordnes, Bergen, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Rhee JS, Jeong CB, Kim BM, Lee JS. P-glycoprotein (P-gp) in the monogonont rotifer, Brachionus koreanus: molecular characterization and expression in response to pharmaceuticals. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 114-115:104-118. [PMID: 22446822 DOI: 10.1016/j.aquatox.2012.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 02/12/2012] [Accepted: 02/13/2012] [Indexed: 05/31/2023]
Abstract
P-glycoprotein is involved in the efflux of diverse chemicals, including hydrophobic compounds and pharmaceuticals as a first line of defense. Here, we firstly identified and characterized the P-gp (Bk-P-gp) gene in the rotifer, Brachionus koreanus. Bk-P-gp was highly conserved in genomic organization compared to the human P-gp gene. Messenger RNA expression of Bk-P-gp revealed that it would be regulated by temperature change via 14 heat shock response elements in its promoter region. Bk-P-gp showed a high similarity of motifs/domains compared to those of vertebrates in its amino acid sequences. To check whether Bk-P-gp would be inducible, we exposed B. koreanus to six pharmaceuticals including antibiotics for use in aquaculture and observed dose- and time-dependency on transcripts of Bk-P-gp for 24h over a wide range of concentration. Efflux assay and membrane topology supported its conserved function for transportation of a number of chemicals upon cellular damage. To reveal the effect of pharmaceuticals on the rotifer, we measured survival rate and population growth rate after exposure to six pharmaceuticals. In an acute toxicity test, both NOEC and LC₅₀ values for all the pharmaceuticals were high for 24 h. ATP, CBZ, SMX, and TMP markedly inhibited the population growth of B. koreanus after exposure up to 100 mg/L for 10 days. In this paper, we demonstrated that various pharmaceuticals can retard growth rate with up-regulation of the P-gp gene as a cellular defense system. This finding provides a better understanding of molecular mechanisms involved in pharmaceutical-mediated cellular damage in B. koreanus.
Collapse
Affiliation(s)
- Jae-Sung Rhee
- Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791, South Korea
| | | | | | | |
Collapse
|
15
|
Lauritano C, Procaccini G, Ianora A. Gene expression patterns and stress response in marine copepods. MARINE ENVIRONMENTAL RESEARCH 2012; 76:22-31. [PMID: 22030210 DOI: 10.1016/j.marenvres.2011.09.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/16/2011] [Accepted: 09/30/2011] [Indexed: 05/31/2023]
Abstract
Aquatic organisms are constantly exposed to both physical (e.g. temperature and salinity variations) and chemical (e.g. endocrine disruptor chemicals, heavy metals, hydrocarbons, diatom toxins, and other toxicants) stressors which they react to by activating a series of defense mechanisms. This paper reviews the literature on the defense systems, including detoxification enzymes and proteins (e.g. glutathione S-transferases, heat shock proteins, superoxide dismutase and catalase), studied in copepods at the molecular level. The data indicate high inter- and intra-species variability in copepod response, depending on the type of stressor tested, the concentration and exposure time, and the enzyme isoform studied. Ongoing -omics approaches will allow the identification of new genes which will give a more comprehensive overview of how copepods respond to specific stressors in laboratory and/or field conditions and the effects of these responses on higher trophic levels.
Collapse
Affiliation(s)
- Chiara Lauritano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | | | | |
Collapse
|
16
|
Prichard R, Ménez C, Lespine A. Moxidectin and the avermectins: Consanguinity but not identity. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2012; 2:134-53. [PMID: 24533275 DOI: 10.1016/j.ijpddr.2012.04.001] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/29/2012] [Accepted: 04/01/2012] [Indexed: 01/16/2023]
Abstract
The avermectins and milbemycins contain a common macrocyclic lactone (ML) ring, but are fermentation products of different organisms. The principal structural difference is that avermectins have sugar groups at C13 of the macrocyclic ring, whereas the milbemycins are protonated at C13. Moxidectin (MOX), belonging to the milbemycin family, has other differences, including a methoxime at C23. The avermectins and MOX have broad-spectrum activity against nematodes and arthropods. They have similar but not identical, spectral ranges of activity and some avermectins and MOX have diverse formulations for great user flexibility. The longer half-life of MOX and its safety profile, allow MOX to be used in long-acting formulations. Some important differences between MOX and avermectins in interaction with various invertebrate ligand-gated ion channels are known and could be the basis of different efficacy and safety profiles. Modelling of IVM interaction with glutamate-gated ion channels suggest different interactions will occur with MOX. Similarly, profound differences between MOX and the avermectins are seen in interactions with ABC transporters in mammals and nematodes. These differences are important for pharmacokinetics, toxicity in animals with defective transporter expression, and probable mechanisms of resistance. Resistance to the avermectins has become widespread in parasites of some hosts and MOX resistance also exists and is increasing. There is some degree of cross-resistance between the avermectins and MOX, but avermectin resistance and MOX resistance are not identical. In many cases when resistance to avermectins is noticed, MOX produces a higher efficacy and quite often is fully effective at recommended dose rates. These similarities and differences should be appreciated for optimal decisions about parasite control, delaying, managing or reversing resistances, and also for appropriate anthelmintic combination.
Collapse
Affiliation(s)
- Roger Prichard
- Institute of Parasitology, McGill University, Montreal, Canada
| | - Cécile Ménez
- INRA, UMR 1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France ; Université de Toulouse, INP, UMR 1331, Toxalim, F-31000 Toulouse, France
| | - Anne Lespine
- INRA, UMR 1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France ; Université de Toulouse, INP, UMR 1331, Toxalim, F-31000 Toulouse, France
| |
Collapse
|
17
|
Heumann J, Carmichael S, Bron JE, Tildesley A, Sturm A. Molecular cloning and characterisation of a novel P-glycoprotein in the salmon louse Lepeophtheirus salmonis. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:198-205. [PMID: 21867772 DOI: 10.1016/j.cbpc.2011.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 08/08/2011] [Accepted: 08/08/2011] [Indexed: 11/30/2022]
Abstract
The salmon louse, Lepeophtheirus salmonis, is a crustacean ectoparasite of salmonid fish. At present, sea louse control on salmon farms relies heavily upon chemical treatments. Drug efflux transport, mediated by ABC transporters such as P-glycoprotein (Pgp), represents a major mechanism for drug resistance in parasites. We report here the molecular cloning of a new Pgp from the salmon louse, called SL-PGY1. A partial Pgp sequence was obtained by searching sea louse ESTs, and extended by rapid amplification of cDNA ends (RACE). The open reading frame of SL-PGY1 encodes a protein of 1438 amino acids that possesses typical structural traits of P-glycoproteins, and shows a high degree of sequence homology to invertebrate and vertebrate P-glycoproteins. In the absence of drug exposure, SL-PGY1 mRNA expression levels did not differ between a drug-susceptible strain of L. salmonis and a strain showing a ~7-fold decrease in sensitivity against emamectin benzoate, the active component of the in-feed sea louse treatment SLICE (Merck Animal Health). Aqueous exposure of the hyposensitive salmon louse strain to emamectin benzoate (24h, 410 μg/L) provoked a 2.9-fold upregulation of SL-PGY1. Adult male lice of both strains showed a greater abundance of SL-PGY1 mRNA than adult females.
Collapse
Affiliation(s)
- Jan Heumann
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
18
|
Veldhoen N, Ikonomou MG, Buday C, Jordan J, Rehaume V, Cabecinha M, Dubetz C, Chamberlain J, Pittroff S, Vallée K, van Aggelen G, Helbing CC. Biological effects of the anti-parasitic chemotherapeutant emamectin benzoate on a non-target crustacean, the spot prawn (Pandalus platyceros Brandt, 1851) under laboratory conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 108:94-105. [PMID: 22088864 DOI: 10.1016/j.aquatox.2011.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 10/10/2011] [Accepted: 10/21/2011] [Indexed: 05/31/2023]
Abstract
The potential impact of commercial salmon aquaculture along the coast of British Columbia on the health of non-target marine wildlife is of growing concern. In the current initiative, the biological effects on gene expression within spot prawn (Pandalus platyceros) exposed to the sea lice controlling agent, emamectin benzoate (EB; 0.1-4.8 mg/kg sediment), were investigated. A mean sediment/water partitioning coefficient (K(p)) was determined to be 21.81 and significant levels of EB were detected in the tail muscle tissue in all exposed animals. Animals selected for the experiment did not have eggs and were of similar weight. Significant mortality was observed within 8 days of EB treatment at concentrations between 0.1 and 0.8 mg/kg and there was no effect of EB on molting. Twelve spot prawn cDNA sequences were isolated from the tail muscle either by directed cloning or subtractive hybridization of control versus EB exposed tissues. Three of the transcripts most affected by EB exposure matched sequences encoding the 60S ribosomal protein L22, spliceosome RNA helicase WM6/UAP56, and the intracellular signal mediator histidine triad nucleotide binding protein 1 suggesting that translation, transcription regulation, and apoptosis pathways were impacted. The mRNA encoding the molting enzyme, β-N-acetylglucosaminidase, was not affected by EB treatment. However, the expression of this transcript was extremely variable making it unsuitable for effects assessment. The results suggest that short-term exposure to EB can impact biological processes within this non-target crustacean.
Collapse
Affiliation(s)
- Nik Veldhoen
- Department of Biochemistry & Microbiology, University of Victoria, P.O. Box 3055, Stn CSC, Victoria, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ménez C, Mselli-Lakhal L, Foucaud-Vignault M, Balaguer P, Alvinerie M, Lespine A. Ivermectin induces P-glycoprotein expression and function through mRNA stabilization in murine hepatocyte cell line. Biochem Pharmacol 2012; 83:269-78. [DOI: 10.1016/j.bcp.2011.10.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/11/2011] [Accepted: 10/11/2011] [Indexed: 11/26/2022]
|
20
|
Lespine A, Ménez C, Bourguinat C, Prichard RK. P-glycoproteins and other multidrug resistance transporters in the pharmacology of anthelmintics: Prospects for reversing transport-dependent anthelmintic resistance. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2011; 2:58-75. [PMID: 24533264 DOI: 10.1016/j.ijpddr.2011.10.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 10/11/2011] [Accepted: 10/13/2011] [Indexed: 12/24/2022]
Abstract
Parasitic helminths cause significant disease in animals and humans. In the absence of alternative treatments, anthelmintics remain the principal agents for their control. Resistance extends to the most important class of anthelmintics, the macrocyclic lactone endectocides (MLs), such as ivermectin, and presents serious problems for the livestock industries and threatens to severely limit current parasite control strategies in humans. Understanding drug resistance is important for optimizing and monitoring control, and reducing further selection for resistance. Multidrug resistance (MDR) ABC transporters have been implicated in ML resistance and contribute to resistance to a number of other anthelmintics. MDR transporters, such as P-glycoproteins, are essential for many cellular processes that require the transport of substrates across cell membranes. Being overexpressed in response to chemotherapy in tumour cells and to ML-based treatment in nematodes, they lead to therapy failure by decreasing drug concentration at the target. Several anthelmintics are inhibitors of these efflux pumps and appropriate combinations can result in higher treatment efficacy against parasites and reversal of resistance. However, this needs to be balanced against possible increased toxicity to the host, or the components of the combination selecting on the same genes involved in the resistance. Increased efficacy could result from modifying anthelmintic pharmacokinetics in the host or by blocking parasite transporters involved in resistance. Combination of anthelmintics can be beneficial for delaying selection for resistance. However, it should be based on knowledge of resistance mechanisms and not simply on mode of action classes, and is best started before resistance has been selected to any member of the combination. Increasing knowledge of the MDR transporters involved in anthelmintic resistance in helminths will play an important role in allowing for the identification of markers to monitor the spread of resistance and to evaluate new tools and management practices aimed at delaying its spread.
Collapse
Affiliation(s)
- Anne Lespine
- INRA UMR1331, Université de Toulouse, INP, TOXALIM, F-31027 Toulouse, France
| | - Cécile Ménez
- INRA UMR1331, Université de Toulouse, INP, TOXALIM, F-31027 Toulouse, France
| | | | | |
Collapse
|
21
|
Mounsey KE, Pasay CJ, Arlian LG, Morgan MS, Holt DC, Currie BJ, Walton SF, McCarthy JS. Increased transcription of Glutathione S-transferases in acaricide exposed scabies mites. Parasit Vectors 2010; 3:43. [PMID: 20482766 PMCID: PMC2890653 DOI: 10.1186/1756-3305-3-43] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 05/18/2010] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Recent evidence suggests that Sarcoptes scabiei var. hominis mites collected from scabies endemic communities in northern Australia show increasing tolerance to 5% permethrin and oral ivermectin. Previous findings have implicated detoxification pathways in developing resistance to these acaricides. We investigated the contribution of Glutathione S-transferase (GST) enzymes to permethrin and ivermectin tolerance in scabies mites using biochemical and molecular approaches. RESULTS Increased in vitro survival following permethrin exposure was observed in S. scabiei var. hominis compared to acaricide naïve mites (p < 0.0001). The addition of the GST inhibitor diethyl maleate restored in vitro permethrin susceptibility, confirming GST involvement in permethrin detoxification. Assay of GST enzymatic activity in mites demonstrated that S. scabiei var. hominis mites showed a two-fold increase in activity compared to naïve mites (p < 0.0001). Increased transcription of three different GST molecules was observed in permethrin resistant S. scabiei var. canis- mu 1 (p < 0.0001), delta 1 (p < 0.001), and delta 3 (p < 0.0001). mRNA levels of GST mu 1, delta 3 and P-glycoprotein also significantly increased in S. scabiei var. hominis mites collected from a recurrent crusted scabies patient over the course of ivermectin treatment. CONCLUSIONS These findings provide further support for the hypothesis that increased drug metabolism and efflux mediate permethrin and ivermectin resistance in scabies mites and highlight the threat of emerging acaricide resistance to the treatment of scabies worldwide. This is one of the first attempts to define specific genes involved in GST mediated acaricide resistance at the transcriptional level, and the first application of such studies to S. scabiei, a historically challenging ectoparasite.
Collapse
Affiliation(s)
- Kate E Mounsey
- Infectious Diseases Division, Queensland Institute of Medical Research and Australian Centre for International and Tropical Health and Nutrition, University of Queensland, Brisbane, Queensland, Australia
- Tropical and Emerging Infectious Diseases Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Cielo J Pasay
- Infectious Diseases Division, Queensland Institute of Medical Research and Australian Centre for International and Tropical Health and Nutrition, University of Queensland, Brisbane, Queensland, Australia
| | | | | | - Deborah C Holt
- Tropical and Emerging Infectious Diseases Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Bart J Currie
- Tropical and Emerging Infectious Diseases Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Northern Territory Clinical School, Flinders University, Darwin, Northern Territory, Australia
| | - Shelley F Walton
- School of Health and Sports Science, University of Sunshine Coast, Maroochydore, Queensland, Australia
| | - James S McCarthy
- Infectious Diseases Division, Queensland Institute of Medical Research and Australian Centre for International and Tropical Health and Nutrition, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
Sturm A, Cunningham P, Dean M. The ABC transporter gene family of Daphnia pulex. BMC Genomics 2009; 10:170. [PMID: 19383151 PMCID: PMC2680897 DOI: 10.1186/1471-2164-10-170] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 04/21/2009] [Indexed: 11/24/2022] Open
Abstract
Background The large gene superfamily of ABC (ATP-binding cassette) transporters encodes membrane proteins involved in trafficking processes across biological membranes and further essential cell biological functions. ABC transporters are evolutionary ancient and involved in the biochemical defence against toxicants. We report here a genome-wide survey of ABC proteins of Daphnia pulex, providing for the first time information on ABC proteins in crustacea, a primarily aquatic arthropod subphylum of high ecological and economical importance. Results We identified 64 ABC proteins in the Daphnia genome, which possesses members of all current ABC subfamilies A to H. To unravel phylogenetic relationships, ABC proteins of Daphnia were compared to those from yeast, worm, fruit fly and human. A high conservation of Daphnia of ABC transporters was observed for proteins involved in fundamental cellular processes, including the mitochondrial half transporters of the ABCB subfamily, which function in iron metabolism and transport of Fe/S protein precursors, and the members of subfamilies ABCD, ABCE and ABCF, which have roles in very long chain fatty acid transport, initiation of gene transcription and protein translation, respectively. A number of Daphnia proteins showed one-to-one orthologous relationships to Drosophila ABC proteins including the sulfonyl urea receptor (SUR), the ecdysone transporter ET23, and the eye pigment precursor transporter scarlet. As the fruit fly, Daphnia lacked homologues to the TAP protein, which plays a role in antigene processing, and the cystic fibrosis transmembrane conductance regulator (CFTR), which functions as a chloride channel. Daphnia showed two proteins homologous to MDR (multidrug resistance) P-glycoproteins (ABCB subfamily) and six proteins homologous to MRPs (multidrug resistance-associated proteins) (ABCC subfamily). However, lineage specific gene duplications in the ABCB and ABCC subfamilies complicated the inference of function. A particularly high number of gene duplications were observed in the ABCG and ABCH subfamilies, which have 23 and 15 members, respectively. Conclusion The in silico characterisation of ABC transporters in the Daphnia pulex genome revealed that the complement of ABC transporters is as complex in crustaceans as that other metazoans. Not surprisingly, among currently available genomes, Daphnia ABC transporters most closely resemble those of the fruit fly, another arthropod.
Collapse
Affiliation(s)
- Armin Sturm
- Institute of Aquaculture, University of Stirling, Stirling, UK.
| | | | | |
Collapse
|
23
|
Identification and localization of a putative ATP-binding cassette transporter in sea lice (Lepeophtheirus salmonis) and host Atlantic salmon (Salmo salar). Parasitology 2007; 135:243-55. [PMID: 17961285 DOI: 10.1017/s0031182007003861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Some members of the ABC-transporter superfamily, such as P-glycoprotein and the multidrug resistance associated protein, may confer resistance to the avermectin subclass of macrocyclic lactones. The aim of this study was to examine the presence of ABC transporters in both sea lice (Lepeophtheirus salmonis) and its Atlantic salmon host (Salmo salar) using monoclonal antibodies (C219 and JSB-1, with high selectivity for P-gp) and a new polyclonal antibody (SL0525) generated against a putative sea louse ABC transporter. The antibody raised to SL0525 did not react with rat P-gp, suggesting that an ABC transporter, not necessarily P-gp, was isolated. C219 was the only antibody to localize P-gp in all 3 salmon tissues (intestine, kidney and liver). American lobster (Homarus americanus) was used as a reference crustacean for L. salmonis immunostaining reactions and showed positive staining in the hepatopancreatic and intestinal tissues with all 3 antibodies. The L. salmonis showed positive staining in the intestinal epithelial lining with all antibodies. This report represents the first documented evidence for the expression of ABC transporters in L. salmonis, its Atlantic salmon host, and the American lobster.
Collapse
|