1
|
Springer AL, Agrawal S, Chang EP. Malate dehydrogenase in parasitic protozoans: roles in metabolism and potential therapeutic applications. Essays Biochem 2024; 68:235-251. [PMID: 38938216 PMCID: PMC11461325 DOI: 10.1042/ebc20230075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
The role of malate dehydrogenase (MDH) in the metabolism of various medically significant protozoan parasites is reviewed. MDH is an NADH-dependent oxidoreductase that catalyzes interconversion between oxaloacetate and malate, provides metabolic intermediates for both catabolic and anabolic pathways, and can contribute to NAD+/NADH balance in multiple cellular compartments. MDH is present in nearly all organisms; isoforms of MDH from apicomplexans (Plasmodium falciparum, Toxoplasma gondii, Cryptosporidium spp.), trypanosomatids (Trypanosoma brucei, T. cruzi) and anaerobic protozoans (Trichomonas vaginalis, Giardia duodenalis) are presented here. Many parasitic species have complex life cycles and depend on the environment of their hosts for carbon sources and other nutrients. Metabolic plasticity is crucial to parasite transition between host environments; thus, the regulation of metabolic processes is an important area to explore for therapeutic intervention. Common themes in protozoan parasite metabolism include emphasis on glycolytic catabolism, substrate-level phosphorylation, non-traditional uses of common pathways like tricarboxylic acid cycle and adapted or reduced mitochondria-like organelles. We describe the roles of MDH isoforms in these pathways, discuss unusual structural or functional features of these isoforms relevant to activity or drug targeting, and review current studies exploring the therapeutic potential of MDH and related genes. These studies show that MDH activity has important roles in many metabolic pathways, and thus in the metabolic transitions of protozoan parasites needed for success as pathogens.
Collapse
Affiliation(s)
- Amy L Springer
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, U.S.A
| | - Swati Agrawal
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, VA, U.S.A
| | - Eric P Chang
- Department of Chemistry and Physical Sciences, Pace University, New York, NY, U.S.A
| |
Collapse
|
2
|
Berndsen CE, Bell JK. The structural biology and dynamics of malate dehydrogenases. Essays Biochem 2024; 68:57-72. [PMID: 39113569 DOI: 10.1042/ebc20230082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 10/04/2024]
Abstract
Malate dehydrogenase (MDH) enzymes catalyze the reversible oxidoreduction of malate to oxaloacetate using NAD(P) as a cofactor. This reaction is vital for metabolism and the exchange of reducing equivalents between cellular compartments. There are more than 100 structures of MDH in the Protein Data Bank, representing species from archaea, bacteria, and eukaryotes. This conserved family of enzymes shares a common nucleotide-binding domain, substrate-binding domain, and subunits associate to form a dimeric or a tetrameric enzyme. Despite the variety of crystallization conditions and ligands in the experimental structures, the conformation and configuration of MDH are similar. The quaternary structure and active site dynamics account for most conformational differences in the experimental MDH structures. Oligomerization appears essential for activity despite each subunit having a structurally independent active site. There are two dynamic regions within the active site that influence substrate binding and possibly catalysis, with one of these regions adjoining the subunit interface. In this review, we introduce the reader to the general structural framework of MDH highlighting the conservation of certain features and pointing out unique differences that regulate MDH enzyme activity.
Collapse
Affiliation(s)
- Christopher E Berndsen
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, U.S.A
| | - Jessica K Bell
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, U.S.A
| |
Collapse
|
3
|
Nascimento JDF, Damasceno FS, Marsiccobetre S, Vitorino FNDL, Achjian RW, da Cunha JPC, Silber AM. Branched-chain amino acids modulate the proteomic profile of Trypanosoma cruzi metacyclogenesis induced by proline. PLoS Negl Trop Dis 2024; 18:e0012588. [PMID: 39383181 PMCID: PMC11493278 DOI: 10.1371/journal.pntd.0012588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/21/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, has a complex life cycle that involves triatomine insects as vectors and mammals as hosts. The differentiation of epimastigote forms into metacyclic trypomastigotes within the insect vector is crucial for the parasite's life cycle progression. Factors influencing this process, including temperature, pH, and nutritional stress, along with specific metabolite availability, play a pivotal role. Amino acids like proline, histidine, and glutamine support cell differentiation, while branched-chain amino acids (BCAAs) inhibit it. Interestingly, combining the pro-metacyclogenic amino acid proline with one of the anti-metacyclogenic BCAAs results in viable metacyclics with significantly reduced infectivity. To explore the characteristics of metacyclic parasites differentiated in the presence of BCAAs, proteomics analyses were conducted. Metacyclics obtained in triatomine artificial urine (TAU) supplemented with proline alone and in combination with leucine, isoleucine, or valine were compared. The analyses revealed differential regulation of 40 proteins in TAU-Pro-Leu, 131 in TAU-Pro-Ile, and 179 in TAU-Pro-Val, as compared to metacyclics from TAU-Pro. Among these, 22%, 11%, and 13% of the proteins were associated with metabolic processes, respectively. Notably, enzymes related to glycolysis and the tricarboxylic acid (TCA) cycle were reduced in metacyclics with Pro-BCAAs, while enzymes involved in amino acid and purine metabolic pathways were increased. Furthermore, metacyclics with Pro-Ile and Pro-Val exhibited elevated enzymes linked to lipid and redox metabolism. The results revealed five proteins that were increased and four that were decreased in common in the presence of Pro+BCAAs, indicating their possible participation in key processes related to metacyclogenesis. These findings suggest that the presence of BCAAs can reshape the metabolism of metacyclics, contributing to the observed reduction in infectivity in these parasites.
Collapse
Affiliation(s)
- Janaina de Freitas Nascimento
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Flávia Silva Damasceno
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Sabrina Marsiccobetre
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Francisca Natália de Luna Vitorino
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Renan Weege Achjian
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Julia Pinheiro Chagas da Cunha
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Ariel Mariano Silber
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Morrison LJ, Steketee PC, Tettey MD, Matthews KR. Pathogenicity and virulence of African trypanosomes: From laboratory models to clinically relevant hosts. Virulence 2023; 14:2150445. [PMID: 36419235 DOI: 10.1080/21505594.2022.2150445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
African trypanosomes are vector-borne protozoa, which cause significant human and animal disease across sub-Saharan Africa, and animal disease across Asia and South America. In humans, infection is caused by variants of Trypanosoma brucei, and is characterized by varying rate of progression to neurological disease, caused by parasites exiting the vasculature and entering the brain. Animal disease is caused by multiple species of trypanosome, primarily T. congolense, T. vivax, and T. brucei. These trypanosomes also infect multiple species of mammalian host, and this complexity of trypanosome and host diversity is reflected in the spectrum of severity of disease in animal trypanosomiasis, ranging from hyperacute infections associated with mortality to long-term chronic infections, and is also a main reason why designing interventions for animal trypanosomiasis is so challenging. In this review, we will provide an overview of the current understanding of trypanosome determinants of infection progression and severity, covering laboratory models of disease, as well as human and livestock disease. We will also highlight gaps in knowledge and capabilities, which represent opportunities to both further our fundamental understanding of how trypanosomes cause disease, as well as facilitating the development of the novel interventions that are so badly needed to reduce the burden of disease caused by these important pathogens.
Collapse
Affiliation(s)
- Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pieter C Steketee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Mabel D Tettey
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Li S, Shao Z, Lu C, Duan D. Isolation and functional verification of an aspartate aminotransferase gene from Neoporphyra haitanensis. BMC PLANT BIOLOGY 2023; 23:150. [PMID: 36941626 PMCID: PMC10029208 DOI: 10.1186/s12870-023-04158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Neoporphyra haitanensis is a commercial laver species in China. Aspartic acid is an important flavor amino acid, and aspartate aminotransferase (AAT) is a crucial enzyme in its biosynthesis. In this study, we cloned one AAT gene (NhAAT) from the red alga N. haitanensis and investigated its sequence structure, transcriptional expression and enzymatic characteristics. The purpose of our research is to obtain a functional AAT responsible for the biosynthesis of aspartic acid from red seaweeds, which has the potential to influence the flavor of N. haitanensis. RESULTS Sequence analysis showed that NhAAT contains a conserved domain of Aminotran_1_2, which belongs to the transaminase superfamily. The secondary structure of NhAAT is dominated by α-helix. The results of enzymatic characterization illustrated that the NhAAT has highest catalytic activity at 45 °C and pH 7.5 in both forward and reverse reactions. The calculated Km values of NhAAT was 5.67 and 6.16 mM for L-glutamic acid and L-aspartic acid, respectively. Quantitative analysis showed that the NhAAT expression of N. haitanensis collected in late harvest (Dec) was 4.5 times that of N. haitanensis collected in early harvest (Oct), while the aspartic acid content of N. haitanensis collected in late harvest (Dec) was 1.2 times that of N. haitanensis collected in early harvest (Oct). CONCLUSION The results of enzyme kinetics indicated that NhAAT prefers to catalyze the reaction in the direction of aspartic acid production. Moreover, the trend of NhAAT expression level was consistent with that of aspartic acid content in N. haitanensis in different harvest periods. Our research is helpful to understand the accumulation and regulation of amino acids in N. haitanensis in different habitats and the taste difference of N. haitanensis in different harvest periods.
Collapse
Affiliation(s)
- Shuang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanru Shao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Chang Lu
- Department of Biological Engineering, College of Life Science, Yantai University, Yantai, 264005, P. R. China
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
6
|
Branched chain amino acids catabolism as a source of new drug targets in pathogenic protists. Exp Parasitol 2023; 249:108499. [PMID: 36898495 DOI: 10.1016/j.exppara.2023.108499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Leucine, isoleucine, and valine, collectively termed Branched Chain Amino Acids (BCAA), are hydrophobic amino acids (AAs) and are essential for most eukaryotes since in these organisms they cannot be biosynthesized and must be supplied by the diet. These AAs are structurally relevant for muscle cells and, of course, important for the protein synthesis process. The metabolism of BCAA and its participation in different biological processes in mammals have been relatively well described. However, for other organisms as pathogenic parasites, the literature is really scarce. Here we review the BCAA catabolism, compile evidence on their relevance for pathogenic eukaryotes with special emphasis on kinetoplastids and highlight unique aspects of this underrated pathway.
Collapse
|
7
|
Poudyal NR, Paul KS. Fatty acid uptake in Trypanosoma brucei: Host resources and possible mechanisms. Front Cell Infect Microbiol 2022; 12:949409. [PMID: 36478671 PMCID: PMC9719944 DOI: 10.3389/fcimb.2022.949409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma brucei spp. causes African Sleeping Sickness in humans and nagana, a wasting disease, in cattle. As T. brucei goes through its life cycle in its mammalian and insect vector hosts, it is exposed to distinct environments that differ in their nutrient resources. One such nutrient resource is fatty acids, which T. brucei uses to build complex lipids or as a potential carbon source for oxidative metabolism. Of note, fatty acids are the membrane anchoring moiety of the glycosylphosphatidylinositol (GPI)-anchors of the major surface proteins, Variant Surface Glycoprotein (VSG) and the Procyclins, which are implicated in parasite survival in the host. While T. brucei can synthesize fatty acids de novo, it also readily acquires fatty acids from its surroundings. The relative contribution of parasite-derived vs. host-derived fatty acids to T. brucei growth and survival is not known, nor have the molecular mechanisms of fatty acid uptake been defined. To facilitate experimental inquiry into these important aspects of T. brucei biology, we addressed two questions in this review: (1) What is known about the availability of fatty acids in different host tissues where T. brucei can live? (2) What is known about the molecular mechanisms mediating fatty acid uptake in T. brucei? Finally, based on existing biochemical and genomic data, we suggest a model for T. brucei fatty acid uptake that proposes two major routes of fatty acid uptake: diffusion across membranes followed by intracellular trapping, and endocytosis of host lipoproteins.
Collapse
Affiliation(s)
- Nava Raj Poudyal
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| | - Kimberly S. Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| |
Collapse
|
8
|
A tyrosine catabolic intermediate 4-hydroxyphenylpyruate attenuates murine endotoxic shock by blocking NLRP3 inflammasome activation. Int Immunopharmacol 2022; 111:109098. [PMID: 35944460 DOI: 10.1016/j.intimp.2022.109098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
Abstract
The metabolic alterations of amino acid metabolism are closely associated with inflammatory response. However, relatively little is known about the roles of phenylalanine (Phe)/tyrosine (Tyr) catabolites during inflammation. Nitisinone (NTBC) is an orphan drug used to treat hereditary tyrosinemia type I potentially by changing Phe/Tyr metabolic flow. In this study, we used NTBC as a tool to investigate the potential role of the Phe/Tyr catabolic pathway in inflammatory responses. We found that NTBC was effective in tempering the bacterial endotoxin lipopolysaccharide (LPS)-induced septic shock in mice. Mechanistically, the protective effect was related to the accumulation of a Phe/Tyr catabolic intermediate, 4-hydroxyphenylpyruvate (4-HPP), induced by the NTBC treatment. 4-HPP could inhibit NLRP3 inflammasome priming and activation processes and therefore reduce IL-1β release and pyroptosis. Like NTBC, 4-HPP was also effective in attenuating endotoxic shock in mice. Our results suggest the Phe/Tyr catabolic pathway as a potential immunoregulatory hub that may be exploited therapeutically to alleviate inflammation.
Collapse
|
9
|
Fitzgerald HK, O’Rourke SA, Desmond E, Neto NGB, Monaghan MG, Tosetto M, Doherty J, Ryan EJ, Doherty GA, Nolan DP, Fletcher JM, Dunne A. The Trypanosoma brucei-Derived Ketoacids, Indole Pyruvate and Hydroxyphenylpyruvate, Induce HO-1 Expression and Suppress Inflammatory Responses in Human Dendritic Cells. Antioxidants (Basel) 2022; 11:antiox11010164. [PMID: 35052669 PMCID: PMC8772738 DOI: 10.3390/antiox11010164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
The extracellular parasite and causative agent of African sleeping sickness Trypanosoma brucei (T. brucei) has evolved a number of strategies to avoid immune detection in the host. One recently described mechanism involves the conversion of host-derived amino acids to aromatic ketoacids, which are detected at relatively high concentrations in the bloodstream of infected individuals. These ketoacids have been shown to directly suppress inflammatory responses in murine immune cells, as well as acting as potent inducers of the stress response enzyme, heme oxygenase 1 (HO-1), which has proven anti-inflammatory properties. The aim of this study was to investigate the immunomodulatory properties of the T. brucei-derived ketoacids in primary human immune cells and further examine their potential as a therapy for inflammatory diseases. We report that the T. brucei-derived ketoacids, indole pyruvate (IP) and hydroxyphenylpyruvate (HPP), induce HO-1 expression through Nrf2 activation in human dendritic cells (DC). They also limit DC maturation and suppress the production of pro-inflammatory cytokines, which, in turn, leads to a reduced capacity to differentiate adaptive CD4+ T cells. Furthermore, the ketoacids are capable of modulating DC cellular metabolism and suppressing the inflammatory profile of cells isolated from patients with inflammatory bowel disease. This study therefore not only provides further evidence of the immune-evasion mechanisms employed by T. brucei, but also supports further exploration of this new class of HO-1 inducers as potential therapeutics for the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Hannah K. Fitzgerald
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (H.K.F.); (S.A.O.); (E.D.); (D.P.N.); (J.M.F.)
| | - Sinead A. O’Rourke
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (H.K.F.); (S.A.O.); (E.D.); (D.P.N.); (J.M.F.)
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (N.G.B.N.); (M.G.M.)
| | - Eva Desmond
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (H.K.F.); (S.A.O.); (E.D.); (D.P.N.); (J.M.F.)
| | - Nuno G. B. Neto
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (N.G.B.N.); (M.G.M.)
| | - Michael G. Monaghan
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (N.G.B.N.); (M.G.M.)
| | - Miriam Tosetto
- Centre for Colorectal Disease, St. Vincent’s University Hospital, School of Medicine, University College Dublin, D04 YN26 Dublin, Ireland; (M.T.); (J.D.); (G.A.D.)
| | - Jayne Doherty
- Centre for Colorectal Disease, St. Vincent’s University Hospital, School of Medicine, University College Dublin, D04 YN26 Dublin, Ireland; (M.T.); (J.D.); (G.A.D.)
| | - Elizabeth J. Ryan
- Department of Biological Sciences, Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Glen A. Doherty
- Centre for Colorectal Disease, St. Vincent’s University Hospital, School of Medicine, University College Dublin, D04 YN26 Dublin, Ireland; (M.T.); (J.D.); (G.A.D.)
| | - Derek P. Nolan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (H.K.F.); (S.A.O.); (E.D.); (D.P.N.); (J.M.F.)
| | - Jean M. Fletcher
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (H.K.F.); (S.A.O.); (E.D.); (D.P.N.); (J.M.F.)
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (H.K.F.); (S.A.O.); (E.D.); (D.P.N.); (J.M.F.)
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
- Correspondence:
| |
Collapse
|
10
|
Diskin C, Corcoran SE, Tyrrell VJ, McGettrick AF, Zaslona Z, O'Donnell VB, Nolan DP, O'Neill LAJ. The Trypanosome-Derived Metabolite Indole-3-Pyruvate Inhibits Prostaglandin Production in Macrophages by Targeting COX2. THE JOURNAL OF IMMUNOLOGY 2021; 207:2551-2560. [PMID: 34635586 DOI: 10.4049/jimmunol.2100402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022]
Abstract
The protozoan parasite Trypanosoma brucei is the causative agent of the neglected tropical disease human African trypanosomiasis, otherwise known as sleeping sickness. Trypanosomes have evolved many immune-evasion mechanisms to facilitate their own survival, as well as prolonging host survival to ensure completion of the parasitic life cycle. A key feature of the bloodstream form of T. brucei is the secretion of aromatic keto acids, which are metabolized from tryptophan. In this study, we describe an immunomodulatory role for one of these keto acids, indole-3-pyruvate (I3P). We demonstrate that I3P inhibits the production of PGs in activated macrophages. We also show that, despite the reduction in downstream PGs, I3P augments the expression of cyclooxygenase (COX2). This increase in COX2 expression is mediated in part via inhibition of PGs relieving a negative-feedback loop on COX2. Activation of the aryl hydrocarbon receptor also participates in this effect. However, the increase in COX2 expression is of little functionality, as we also provide evidence to suggest that I3P targets COX activity. This study therefore details an evasion strategy by which a trypanosome-secreted metabolite potently inhibits macrophage-derived PGs, which might promote host and trypanosome survival.
Collapse
Affiliation(s)
- Ciana Diskin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland; and
| | - Sarah E Corcoran
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland; and
| | - Victoria J Tyrrell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Anne F McGettrick
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland; and
| | - Zbigniew Zaslona
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland; and
| | - Valerie B O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Derek P Nolan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland; and
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland; and
| |
Collapse
|
11
|
Silva LR, Guimarães AS, do Nascimento J, do Santos Nascimento IJ, da Silva EB, McKerrow JH, Cardoso SH, da Silva-Júnior EF. Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Bioorg Med Chem 2021; 41:116213. [PMID: 33992862 DOI: 10.1016/j.bmc.2021.116213] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022]
Abstract
Chagas disease and Human African Trypanosomiasis (HAT) are caused by Trypanosoma cruzi and T. brucei parasites, respectively. Cruzain (CRZ) and Rhodesain (RhD) are cysteine proteases that share 70% of identity and play vital functions in these parasites. These macromolecules represent promising targets for designing new inhibitors. In this context, 26 CRZ and 5 RhD 3D-structures were evaluated by molecular redocking to identify the most accurate one to be utilized as a target. Posteriorly, a virtual screening of a library containing 120 small natural and nature-based compounds was performed on both of them. In total, 14 naphthoquinone-based analogs were identified, synthesized, and biologically evaluated. In total, five compounds were active against RhD, being three of them also active on CRZ. A derivative of 1,4-naphthoquinonepyridin-2-ylsulfonamide was found to be the most active molecule, exhibiting IC50 values of 6.3 and 1.8 µM for CRZ and RhD, respectively. Dynamic simulations at 100 ns demonstrated good stability and do not alter the targets' structures. MM-PBSA calculations revealed that it presents a higher affinity for RhD (-25.3 Kcal mol-1) than CRZ, in which van der Waals interactions were more relevant. A mechanistic hypothesis (via C3-Michael-addition reaction) involving a covalent mode of inhibition for this compound towards RhD was investigated by covalent molecular docking and DFT B3LYP/6-31 + G* calculations, exhibiting a low activation energy (ΔG‡) and providing a stable product (ΔG), with values of 7.78 and - 39.72 Kcal mol-1, respectively; similar to data found in the literature. Nevertheless, a reversibility assay by dilution revealed that JN-11 is a time-dependent and reversible inhibitor. Finally, this study applies modern computer-aided techniques to identify promising inhibitors from a well-known chemical class of natural products. Then, this work could inspire other future studies in the field, being useful for designing potent naphthoquinones as RhD inhibitors.
Collapse
Affiliation(s)
- Leandro Rocha Silva
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | - Ari Souza Guimarães
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | - Jadiely do Nascimento
- Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | - Igor José do Santos Nascimento
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | - Elany Barbosa da Silva
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - James H McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Sílvia Helena Cardoso
- Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil.
| |
Collapse
|
12
|
Souza ROO, Damasceno FS, Marsiccobetre S, Biran M, Murata G, Curi R, Bringaud F, Silber AM. Fatty acid oxidation participates in resistance to nutrient-depleted environments in the insect stages of Trypanosoma cruzi. PLoS Pathog 2021; 17:e1009495. [PMID: 33819309 PMCID: PMC8049481 DOI: 10.1371/journal.ppat.1009495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/15/2021] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma cruzi, the parasite causing Chagas disease, is a digenetic flagellated protist that infects mammals (including humans) and reduviid insect vectors. Therefore, T. cruzi must colonize different niches in order to complete its life cycle in both hosts. This fact determines the need of adaptations to face challenging environmental cues. The primary environmental challenge, particularly in the insect stages, is poor nutrient availability. In this regard, it is well known that T. cruzi has a flexible metabolism able to rapidly switch from carbohydrates (mainly glucose) to amino acids (mostly proline) consumption. Also established has been the capability of T. cruzi to use glucose and amino acids to support the differentiation process occurring in the insect, from replicative non-infective epimastigotes to non-replicative infective metacyclic trypomastigotes. However, little is known about the possibilities of using externally available and internally stored fatty acids as resources to survive in nutrient-poor environments, and to sustain metacyclogenesis. In this study, we revisit the metabolic fate of fatty acid breakdown in T. cruzi. Herein, we show that during parasite proliferation, the glucose concentration in the medium can regulate the fatty acid metabolism. At the stationary phase, the parasites fully oxidize fatty acids. [U-14C]-palmitate can be taken up from the medium, leading to CO2 production. Additionally, we show that electrons are fed directly to oxidative phosphorylation, and acetyl-CoA is supplied to the tricarboxylic acid (TCA) cycle, which can be used to feed anabolic pathways such as the de novo biosynthesis of fatty acids. Finally, we show as well that the inhibition of fatty acids mobilization into the mitochondrion diminishes the survival to severe starvation, and impairs metacyclogenesis.
Collapse
Affiliation(s)
- Rodolpho Ornitz Oliveira Souza
- University of São Paulo, Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences–São Paulo, São Paulo, Brazil
| | - Flávia Silva Damasceno
- University of São Paulo, Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences–São Paulo, São Paulo, Brazil
| | - Sabrina Marsiccobetre
- University of São Paulo, Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences–São Paulo, São Paulo, Brazil
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université de Bordeaux, Bordeaux, France
| | - Gilson Murata
- University of São Paulo, Department of Physiology, Institute of Biomedical Sciences–São Paulo, São Paulo, Brazil
| | - Rui Curi
- University of São Paulo, Department of Physiology, Institute of Biomedical Sciences–São Paulo, São Paulo, Brazil
- Cruzeiro do Sul University, Interdisciplinary Post-Graduate Program in Health Sciences—São Paulo, São Paulo, Brazil
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, Bordeaux, France
| | - Ariel Mariano Silber
- University of São Paulo, Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences–São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Trypanosoma cruzi synthesizes proline via a Δ1-pyrroline-5-carboxylate reductase whose activity is fine-tuned by NADPH cytosolic pools. Biochem J 2020; 477:1827-1845. [PMID: 32315030 DOI: 10.1042/bcj20200232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022]
Abstract
In Trypanosoma cruzi, the etiological agent of Chagas disease, the amino acid proline participates in processes related to T. cruzi survival and infection, such as ATP production, cell differentiation, host-cell invasion, and in protection against osmotic, nutritional, and thermal stresses and oxidative imbalance. However, little is known about proline biosynthesis in this parasite. Δ1-Pyrroline-5-carboxylate reductase (P5CR, EC 1.5.1.2) catalyzes the biosynthesis of proline from Δ1-pyrroline-5-carboxylate (P5C) with concomitant NADPH oxidation. Herein, we show that unlike other eukaryotes, T. cruzi biosynthesizes proline from P5C, which is produced exclusively from glutamate. We found that TcP5CR is an NADPH-dependent cytosolic enzyme with a Kmapp for P5C of 27.7 μM and with a higher expression in the insect-resident form of the parasite. High concentrations of the co-substrate NADPH partially inhibited TcP5CR activity, prompting us to analyze multiple kinetic inhibition models. The model that best explained the obtained data included a non-competitive substrate inhibition mechanism (Kiapp=45±0.7μM). Therefore, TcP5CR is a candidate as a regulatory factor of this pathway. Finally, we show that P5C can exit trypanosomatid mitochondria in conditions that do not compromise organelle integrity. These observations, together with previously reported results, lead us to propose that in T. cruzi TcP5CR participates in a redox shuttle between the mitochondria and the cytoplasm. In this model, cytoplasmic redox equivalents from NADPH pools are transferred to the mitochondria using proline as a reduced metabolite, and shuttling to fuel electrons to the respiratory chain through proline oxidation by its cognate dehydrogenase.
Collapse
|
14
|
Cockram PE, Dickie EA, Barrett MP, Smith TK. Halogenated tryptophan derivatives disrupt essential transamination mechanisms in bloodstream form Trypanosoma brucei. PLoS Negl Trop Dis 2020; 14:e0008928. [PMID: 33275612 PMCID: PMC7744056 DOI: 10.1371/journal.pntd.0008928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 12/16/2020] [Accepted: 10/19/2020] [Indexed: 12/05/2022] Open
Abstract
Amino acid metabolism within Trypanosoma brucei, the causative agent of human African trypanosomiasis, is critical for parasite survival and virulence. Of these metabolic processes, the transamination of aromatic amino acids is one of the most important. In this study, a series of halogenated tryptophan analogues were investigated for their anti-parasitic potency. Several of these analogues showed significant trypanocidal activity. Metabolomics analysis of compound-treated parasites revealed key differences occurring within aromatic amino acid metabolism, particularly within the widely reported and essential transamination processes of this parasite.
Collapse
Affiliation(s)
- Peter E. Cockram
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland
| | - Emily A. Dickie
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Terry K. Smith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland
| |
Collapse
|
15
|
Campbell NK, Williams DG, Fitzgerald HK, Barry PJ, Cunningham CC, Nolan DP, Dunne A. Trypanosoma brucei Secreted Aromatic Ketoacids Activate the Nrf2/HO-1 Pathway and Suppress Pro-inflammatory Responses in Primary Murine Glia and Macrophages. Front Immunol 2019; 10:2137. [PMID: 31572363 PMCID: PMC6749089 DOI: 10.3389/fimmu.2019.02137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/27/2019] [Indexed: 11/23/2022] Open
Abstract
African trypanosomes, such as Trypanosoma brucei (T. brucei), are protozoan parasites of the mammalian vasculature and central nervous system that are best known for causing fatal human sleeping sickness. As exclusively extracellular parasites, trypanosomes are subject to constant challenge from host immune defenses but they have developed very effective strategies to evade and modulate these responses to maintain an infection while simultaneously prolonging host survival. Here we investigate host parasite interactions, especially within the CNS context, which are not well-understood. We demonstrate that T. brucei strongly upregulates the stress response protein, Heme Oxygenase 1 (HO-1), in primary murine glia and macrophages in vitro. Furthermore, using a novel AHADHinT. brucei cell line, we demonstrate that specific aromatic ketoacids secreted by bloodstream forms of T. brucei are potent drivers of HO-1 expression and are capable of inhibiting pro-IL1β induction in both glia and macrophages. Additionally, we found that these ketoacids significantly reduced IL-6 and TNFα production by glia, but not macrophages. Finally, we present data to support Nrf2 activation as the mechanism of action by which these ketoacids upregulate HO-1 expression and mediate their anti-inflammatory activity. This study therefore reports a novel immune evasion mechanism, whereby T. brucei secretes amino-acid derived metabolites for the purpose of suppressing both the host CNS and peripheral immune response, potentially via induction of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Nicole K Campbell
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - David G Williams
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Hannah K Fitzgerald
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Paul J Barry
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Clare C Cunningham
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Derek P Nolan
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland.,School of Medicine, Trinity Biomedical Biosciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Mitochondrial proteome profiling of Leishmania tropica. Microb Pathog 2019; 133:103542. [DOI: 10.1016/j.micpath.2019.103542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/17/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022]
|
17
|
Sayé M, Reigada C, Gauna L, Valera-Vera EA, Pereira CA, Miranda MR. Amino Acid and Polyamine Membrane Transporters in Trypanosoma cruzi: Biological Function and Evaluation as Drug Targets. Curr Med Chem 2019; 26:6636-6651. [PMID: 31218951 DOI: 10.2174/0929867326666190620094710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 12/12/2018] [Accepted: 02/04/2019] [Indexed: 01/19/2023]
Abstract
Amino acids and polyamines are involved in relevant processes for the parasite Trypanosoma cruzi, like protein synthesis, stress resistance, life cycle progression, infection establishment and redox balance, among others. In addition to the biosynthetic routes of amino acids, T. cruzi possesses transport systems that allow the active uptake from the extracellular medium; and in the case of polyamines, the uptake is the unique way to obtain these compounds. The TcAAAP protein family is absent in mammals and its members are responsible for amino acid and derivative uptake, thus the TcAAAP permeases are not only interesting and promising therapeutic targets but could also be used to direct the entry of toxic compounds into the parasite. Although there is a treatment available for Chagas disease, its limited efficacy in the chronic stage of the disease, as well as the side effects reported, highlight the urgent need to develop new therapies. Discovery of new drugs is a slow and cost-consuming process, and even during clinical trials the drugs can fail. In this context, drug repositioning is an interesting and recommended strategy by the World Health Organization since costs and time are significantly reduced. In this article, amino acids and polyamines transport and their potential as therapeutic targets will be revised, including examples of synthetic drugs and drug repurposing.
Collapse
Affiliation(s)
- Melisa Sayé
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Medicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Chantal Reigada
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Medicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Lucrecia Gauna
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Medicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Edward A Valera-Vera
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Medicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Claudio A Pereira
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Medicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Mariana R Miranda
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Medicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| |
Collapse
|
18
|
Mapping the metabolism of five amino acids in bloodstream form Trypanosoma brucei using U- 13C-labelled substrates and LC-MS. Biosci Rep 2019; 39:BSR20181601. [PMID: 31028136 PMCID: PMC6522824 DOI: 10.1042/bsr20181601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/04/2022] Open
Abstract
The metabolism of the parasite Trypanosoma brucei has been the focus of numerous studies since the 1940s. Recently it was shown, using metabolomics coupled with heavy-atom isotope labelled glucose, that the metabolism of the bloodstream form parasite is more complex than previously thought. The present study also raised a number of questions regarding the origin of several metabolites, for example succinate, only a proportion of which derives from glucose. In order to answer some of these questions and explore the metabolism of bloodstream form T. brucei in more depth we followed the fate of five heavy labelled amino acids – glutamine, proline, methionine, cysteine and arginine – using an LC–MS based metabolomics approach. We found that some of these amino acids have roles beyond those previously thought and we have tentatively identified some unexpected metabolites which need to be confirmed and their function determined.
Collapse
|
19
|
Tavares de Oliveira M, Taciana Santos Silva K, Xavier Neves L, de Ornelas Toledo MJ, Castro-Borges W, de Lana M. Differential expression of proteins in genetically distinct Trypanosoma cruzi samples (TcI and TcII DTUs) isolated from chronic Chagas disease cardiac patients. Parasit Vectors 2018; 11:611. [PMID: 30497493 PMCID: PMC6267078 DOI: 10.1186/s13071-018-3181-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/31/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi, a hemoflagellate protozoan parasite and the etiological agent of Chagas disease (CD), exhibits great genetic and biological diversity. Infected individuals may present clinical manifestations with different levels of severity. Several hypotheses have been proposed to attempt to correlate the diversity of clinical signs and symptoms to the genetic variability of T. cruzi. This work aimed to investigate the differential expression of proteins from two distinct genetic groups of T. cruzi (discrete typing units TcI and TcII), isolated from chronically infected individuals displaying the cardiac form of CD. For this purpose, epimastigote forms of the two isolates were cultured in vitro and the cells recovered for protein extraction. Comparative two-dimensional (2D) gel electrophoreses were performed and differentially expressed spots selected for identification by mass spectrometry, followed by database searching and protein categorization. RESULTS The 2D electrophoretic profiles revealed the complex composition of the T. cruzi extracted proteome. Protein spots were distributed along the entire pH and molecular mass ranges attesting for the integrity of the protein preparations. In total, 46 differentially expressed proteins were identified present in 40 distinct spots found in the comparative gel analyses. Of these, 16 displayed upregulation in the gel from TcI-typed parasites and 24 appeared overexpressed in the gel from TcII-typed parasites. Functional characterization of differentially expressed proteins revealed major alterations associated with stress response, lipid and amino acid metabolism in parasites of the TcII isolate, whilst those proteins upregulated in the TcI sample were primarily linked to central metabolic pathways. CONCLUSIONS The comparative 2D-gel electrophoresis allowed detection of major differences in protein expression between two T. cruzi isolates, belonging to the TcI and TcII genotypes. Our findings suggest that patients displaying the cardiac form of the disease harbor parasites capable of exhibiting distinct proteomic profiles. This should be of relevance to disease prognosis and treatment.
Collapse
Affiliation(s)
- Maykon Tavares de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas do Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP, Ouro Preto, MG 35400-000 Brazil
| | - Karina Taciana Santos Silva
- Departamento de Farmácia, Escola de Farmácia, Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP, Ouro Preto, MG 35400-000 Brazil
| | - Leandro Xavier Neves
- Programa de Pós-Graduação em Biotecnologia do Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000, Ouro Preto, MG Brazil
| | - Max Jean de Ornelas Toledo
- Departamento de Ciências Básicas da Saúde – Parasitologia, Universidade Estadual de Maringá, CEP: 87020-900, Maringá, Paraná, PR Brazil
| | - William Castro-Borges
- Programa de Pós-Graduação em Ciências Biológicas do Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP, Ouro Preto, MG 35400-000 Brazil
- Programa de Pós-Graduação em Biotecnologia do Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000, Ouro Preto, MG Brazil
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000, Ouro Preto, MG Brazil
| | - Marta de Lana
- Programa de Pós-Graduação em Ciências Biológicas do Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP, Ouro Preto, MG 35400-000 Brazil
- Departamento de Análises Clínicas, Escola de Farmácia, Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000, Ouro Preto, MG Brazil
| |
Collapse
|
20
|
The Uptake and Metabolism of Amino Acids, and Their Unique Role in the Biology of Pathogenic Trypanosomatids. Pathogens 2018; 7:pathogens7020036. [PMID: 29614775 PMCID: PMC6027508 DOI: 10.3390/pathogens7020036] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/24/2023] Open
Abstract
Trypanosoma brucei, as well as Trypanosoma cruzi and more than 20 species of the genus Leishmania, form a group of flagellated protists that threaten human health. These organisms are transmitted by insects that, together with mammals, are their natural hosts. This implies that during their life cycles each of them faces environments with different physical, chemical, biochemical, and biological characteristics. In this work we review how amino acids are obtained from such environments, how they are metabolized, and how they and some of their intermediate metabolites are used as a survival toolbox to cope with the different conditions in which these parasites should establish the infections in the insects and mammalian hosts.
Collapse
|
21
|
Manchola NC, Silber AM, Nowicki C. The Non-Canonical Substrates of Trypanosoma cruzi Tyrosine and Aspartate Aminotransferases: Branched-Chain Amino Acids. J Eukaryot Microbiol 2017; 65:70-76. [PMID: 28618210 DOI: 10.1111/jeu.12435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 11/28/2022]
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, lacks genes that encode canonical branched-chain aminotransferases. However, early studies showed that when epimastigotes were grown in the presence of 14 C1 -DL-leucine, the label was incorporated into various intermediates. More recently, our studies provided evidence that T. cruzi epimastigotes display a single ATP-dependent and saturable transport system that enables epimastigotes to uptake branched-chain amino acids (BCAAs) from the culture media. To extend our knowledge of the first step of BCAA catabolism, the ability of this parasite's noncanonical broad specificity aminotransferases, such as tyrosine aminotransferase (TAT) and aspartate aminotransferase (ASAT), to transaminate these amino acids was investigated. Indeed, our results show that TAT and ASAT utilize BCAAs as substrates; however, both enzymes differ in their catalytic competence in utilizing these amino donors. For instance, ASAT transaminates isoleucine nearly 10-fold more efficiently than does TAT. This unique characteristic of TAT and ASAT allows to explain how BCAAs can be oxidized in the absence of a BCAA transaminase in T. cruzi.
Collapse
Affiliation(s)
- Nubia Carolina Manchola
- Laboratory of Biochemistry of Tryps - LaBTryps, Instituto de Ciencias Biomédicas, Universidade de Sao Paulo USP, Avenida Professor Lineu Prestes, 1374, Cidade Universitaria, São Paulo, Brasil
| | - Ariel Mariano Silber
- Laboratory of Biochemistry of Tryps - LaBTryps, Instituto de Ciencias Biomédicas, Universidade de Sao Paulo USP, Avenida Professor Lineu Prestes, 1374, Cidade Universitaria, São Paulo, Brasil
| | - Cristina Nowicki
- IQUIFIB (CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires), Junin 956, Buenos Aires, 1113, Argentina
| |
Collapse
|
22
|
Trypanosoma brucei metabolite indolepyruvate decreases HIF-1α and glycolysis in macrophages as a mechanism of innate immune evasion. Proc Natl Acad Sci U S A 2016; 113:E7778-E7787. [PMID: 27856732 DOI: 10.1073/pnas.1608221113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The parasite Trypanasoma brucei causes African trypanosomiasis, known as sleeping sickness in humans and nagana in domestic animals. These diseases are a major burden in the 36 sub-Saharan African countries where the tsetse fly vector is endemic. Untreated trypanosomiasis is fatal and the current treatments are stage-dependent and can be problematic during the meningoencephalitic stage, where no new therapies have been developed in recent years and the current drugs have a low therapeutic index. There is a need for more effective treatments and a better understanding of how these parasites evade the host immune response will help in this regard. The bloodstream form of T. brucei excretes significant amounts of aromatic ketoacids, including indolepyruvate, a transamination product of tryptophan. This study demonstrates that this process is essential in bloodstream forms, is mediated by a specialized isoform of cytoplasmic aminotransferase and, importantly, reveals an immunomodulatory role for indolepyruvate. Indolepyruvate prevents the LPS-induced glycolytic shift in macrophages. This effect is the result of an increase in the hydroxylation and degradation of the transcription factor hypoxia-inducible factor-1α (HIF-1α). The reduction in HIF-1α levels by indolepyruvate, following LPS or trypanosome activation, results in a decrease in production of the proinflammatory cytokine IL-1β. These data demonstrate an important role for indolepyruvate in immune evasion by T. brucei.
Collapse
|
23
|
Wen J, Nowicki C, Blankenfeldt W. Structural basis for the relaxed substrate selectivity of Leishmania mexicana broad specificity aminotransferase. Mol Biochem Parasitol 2015; 202:34-7. [PMID: 26456583 DOI: 10.1016/j.molbiopara.2015.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 11/29/2022]
Abstract
Leishmania species are early branching eukaryotic parasites that cause difficult-to-treat tissue-damaging diseases known as leishmaniases. As a hallmark of their parasitic lifestyle, Leishmaniae express a number of aminotransferases that are involved in important cellular processes and exhibit broader substrate specificity than their mammalian host's counterparts. Here, we have determined the crystal structure of the broad specificity aminotransferase from Leishmania mexicana (LmexBSAT) at 1.91Å resolution. LmexBSAT is a homodimer and belongs to the α-branch of family-I aminotransferases. Despite the fact that the protein was crystallized in the absence of substrates and has lost the pyridoxal-5'-phosphate (PLP) cofactor during crystallization, the structure resembles the closed, ligand-bound form of related enzymes such as chicken cytosolic aspartate aminotransferase. Its broader substrate specificity seems to be rooted in increased flexibility of a substrate-binding arginine (R291) and the interactions of this residue with the N-terminus of the second chain of the dimer.
Collapse
Affiliation(s)
- Jiang Wen
- Technische Universität Dortmund, Fakultät Chemie, Otto-Hahn-Str. 6, 44227 Dortmund, Germany; Physical Biochemistry, Max Planck Institute for Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Cristina Nowicki
- IQUIFIB (CONICET-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires), Junín 956, 1113 Buenos Aires, Argentina.
| | - Wulf Blankenfeldt
- Physical Biochemistry, Max Planck Institute for Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany.
| |
Collapse
|
24
|
Moreno SA, Nava M. Trypanosoma evansi is alike to Trypanosoma brucei brucei in the subcellular localisation of glycolytic enzymes. Mem Inst Oswaldo Cruz 2015; 110:468-75. [PMID: 26061149 PMCID: PMC4501409 DOI: 10.1590/0074-02760150024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/01/2015] [Indexed: 01/17/2023] Open
Abstract
Trypanosoma evansi, which causes surra, is descended from Trypanosoma brucei brucei, which causes nagana. Although both parasites are presumed to be metabolically similar, insufficient knowledge of T. evansi precludes a full comparison. Herein, we provide the first report on the subcellular localisation of the glycolytic enzymes in T. evansi, which is a alike to that of the bloodstream form (BSF) of T. b. brucei: (i) fructose-bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hexokinase, phosphofructokinase, glucose-6-phosphate isomerase, phosphoglycerate kinase, triosephosphate isomerase (glycolytic enzymes) and glycerol-3-phosphate dehydrogenase (a glycolysis-auxiliary enzyme) in glycosomes, (ii) enolase, phosphoglycerate mutase, pyruvate kinase (glycolytic enzymes) and a GAPDH isoenzyme in the cytosol, (iii) malate dehydrogenase in cytosol and (iv) glucose-6-phosphate dehydrogenase in both glycosomes and the cytosol. Specific enzymatic activities also suggest that T. evansi is alike to the BSF of T. b. brucei in glycolytic flux, which is much faster than the pentose phosphate pathway flux, and in the involvement of cytosolic GAPDH in the NAD+/NADH balance. These similarities were expected based on the close phylogenetic relationship of both parasites.
Collapse
Affiliation(s)
- S Andrea Moreno
- Departamento de Biología, Facultad de Ciencias, Universidad de Los
Andes, Mérida, Mérida, Venezuela
| | - Mayerly Nava
- Departamento de Biología, Facultad Experimental de Ciencias, Universidad
del Zulia, Maracaibo, Zulia, Venezuela
| |
Collapse
|
25
|
Mantilla BS, Paes LS, Pral EMF, Martil DE, Thiemann OH, Fernández-Silva P, Bastos EL, Silber AM. Role of Δ1-pyrroline-5-carboxylate dehydrogenase supports mitochondrial metabolism and host-cell invasion of Trypanosoma cruzi. J Biol Chem 2015; 290:7767-90. [PMID: 25623067 PMCID: PMC4367278 DOI: 10.1074/jbc.m114.574525] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 12/30/2014] [Indexed: 01/03/2023] Open
Abstract
Proline is crucial for energizing critical events throughout the life cycle of Trypanosoma cruzi, the etiological agent of Chagas disease. The proline breakdown pathway consists of two oxidation steps, both of which produce reducing equivalents as follows: the conversion of proline to Δ(1)-pyrroline-5-carboxylate (P5C), and the subsequent conversion of P5C to glutamate. We have identified and characterized the Δ(1)-pyrroline-5-carboxylate dehydrogenase from T. cruzi (TcP5CDH) and report here on how this enzyme contributes to a central metabolic pathway in this parasite. Size-exclusion chromatography, two-dimensional gel electrophoresis, and small angle x-ray scattering analysis of TcP5CDH revealed an oligomeric state composed of two subunits of six protomers. TcP5CDH was found to complement a yeast strain deficient in PUT2 activity, confirming the enzyme's functional role; and the biochemical parameters (Km, kcat, and kcat/Km) of the recombinant TcP5CDH were determined, exhibiting values comparable with those from T. cruzi lysates. In addition, TcP5CDH exhibited mitochondrial staining during the main stages of the T. cruzi life cycle. mRNA and enzymatic activity levels indicated the up-regulation (6-fold change) of TcP5CDH during the infective stages of the parasite. The participation of P5C as an energy source was also demonstrated. Overall, we propose that this enzymatic step is crucial for the viability of both replicative and infective forms of T. cruzi.
Collapse
Affiliation(s)
- Brian S Mantilla
- From the Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Lisvane S Paes
- From the Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Elizabeth M F Pral
- From the Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Daiana E Martil
- the Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, and
| | - Otavio H Thiemann
- the Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, and
| | - Patricio Fernández-Silva
- the Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013 Zaragoza Spain
| | - Erick L Bastos
- Instituto de Química, Departamento de Química Fundamental, Universidade de São Paulo, 13560-590 São Paulo, Brazil, and
| | - Ariel M Silber
- From the Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, 05508-000 São Paulo, Brazil,
| |
Collapse
|
26
|
Kim DH, Achcar F, Breitling R, Burgess KE, Barrett MP. LC-MS-based absolute metabolite quantification: application to metabolic flux measurement in trypanosomes. Metabolomics 2015; 11:1721-1732. [PMID: 26491423 PMCID: PMC4605981 DOI: 10.1007/s11306-015-0827-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/25/2015] [Indexed: 01/15/2023]
Abstract
Human African trypanosomiasis is a neglected tropical disease caused by the protozoan parasite, Trypanosoma brucei. In the mammalian bloodstream, the trypanosome's metabolism differs significantly from that of its host. For example, the parasite relies exclusively on glycolysis for energy source. Recently, computational and mathematical models of trypanosome metabolism have been generated to assist in understanding the parasite metabolism with the aim of facilitating drug development. Optimisation of these models requires quantitative information, including metabolite concentrations and/or metabolic fluxes that have been hitherto unavailable on a large scale. Here, we have implemented an LC-MS-based method that allows large scale quantification of metabolite levels by using U-13C-labelled E.coli extracts as internal standards. Known amounts of labelled E. coli extract were added into the parasite samples, as well as calibration standards, and used to obtain calibration curves enabling us to convert intensities into concentrations. This method allowed us to reliably quantify the changes of 43 intracellular metabolites and 32 extracellular metabolites in the medium over time. Based on the absolute quantification, we were able to compute consumption and production fluxes. These quantitative data can now be used to optimise computational models of parasite metabolism.
Collapse
Affiliation(s)
- Dong-Hyun Kim
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA UK
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Fiona Achcar
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA UK
| | - Rainer Breitling
- Manchester Centre of Synthetic Biology for Fine and Speciality Chemicals, Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, M1 7DN UK
| | - Karl E. Burgess
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, G61 1QH UK
| | - Michael P. Barrett
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA UK
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, G61 1QH UK
| |
Collapse
|
27
|
Trypanosoma cruzi bromodomain factor 3 binds acetylated α-tubulin and concentrates in the flagellum during metacyclogenesis. EUKARYOTIC CELL 2014; 13:822-31. [PMID: 24747213 DOI: 10.1128/ec.00341-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bromodomains are highly conserved acetyl-lysine binding domains found mainly in proteins associated with chromatin and nuclear acetyltransferases. The Trypanosoma cruzi genome encodes at least four bromodomain factors (TcBDFs). We describe here bromodomain factor 3 (TcBDF3), a bromodomain-containing protein localized in the cytoplasm. TcBDF3 cytolocalization was determined, using purified antibodies, by Western blot and immunofluorescence analyses in all life cycle stages of T. cruzi. In epimastigotes and amastigotes, it was detected in the cytoplasm, the flagellum, and the flagellar pocket, and in trypomastigotes only in the flagellum. Subcellular localization of TcBDF3 was also determined by digitonin extraction, ultrastructural immunocytochemistry, and expression of TcBDF3 fused to cyan fluorescent protein (CFP). Tubulin can acquire different posttranslational modifications, which modulate microtubule functions. Acetylated α-tubulin has been found in the axonemes of flagella and cilia, as well as in the subpellicular microtubules of trypanosomatids. TcBDF3 and acetylated α-tubulin partially colocalized in isolated cytoskeletons and flagella from T. cruzi epimastigotes and trypomastigotes. Interaction between the two proteins was confirmed by coimmunoprecipitation and far-Western blot assays with synthetic acetylated α-tubulin peptides and recombinant TcBDF3.
Collapse
|
28
|
Miranda MR, Camara MDLM, Bouvier LA, Pereira CA. TcNDPK2, a Trypanosoma cruzi microtubule-associated nucleoside diphosphate kinase. Mol Biochem Parasitol 2011; 177:152-5. [PMID: 21354216 DOI: 10.1016/j.molbiopara.2011.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 02/11/2011] [Accepted: 02/16/2011] [Indexed: 11/25/2022]
Abstract
Nucleoside diphosphate kinases (NDPKs) are enzymes required to preserve the intracellular nucleoside phosphate equilibrium. Trypanosoma cruzi has four putative nucleoside diphosphate kinases with unidentified biological roles and subcellular localization. TcNDPK2 has an N-terminal domain (DM10) with unknown function, which defines a subgroup of NDPKs distributed in a wide variety of organisms. Digitonin extraction demonstrated that this isoform is distributed in detergent soluble and insoluble fractions. Fluorescence microscopy showed that TcNDPK2 alone or fused to GFP was localized in cytoskeleton and flagella. TcNDPK2 was also detected by Western blot in purified polymerized tubulin and flagellar samples. In parasites expressing DM10 fused with GFP, the fluorescence was localized in cytoskeleton and flagellum with an identical pattern to TcNDPK2. This constitutes the first report that could give insights on the role of DM10 domains in NDPKs and also the identification of the first T. cruzi peptide that contains a microtubule association domain.
Collapse
Affiliation(s)
- Mariana R Miranda
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
29
|
Leroux AE, Maugeri DA, Opperdoes FR, Cazzulo JJ, Nowicki C. Comparative studies on the biochemical properties of the malic enzymes from Trypanosoma cruzi and Trypanosoma brucei. FEMS Microbiol Lett 2010; 314:25-33. [PMID: 21105905 DOI: 10.1111/j.1574-6968.2010.02142.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Comparative studies showed that, like Trypanosoma cruzi, Trypanosoma brucei exhibits functional cytosolic and mitochondrial malic enzymes (MEs), which are specifically linked to NADP. Kinetic studies provided evidence that T. cruzi and T. brucei MEs display similarly high affinities towards NADP(+) and are also almost equally efficient in catalyzing the production of NADPH. Nevertheless, in contrast to the cytosolic ME from T. cruzi, which is highly activated by l-aspartate (over 10-fold), the T. brucei homologue is slightly more active (50%) in the presence of this amino acid. In T. brucei, both isozymes appear to be clearly more abundant in the insect stage, although they can be immunodetected in the bloodstream forms. By contrast, in T. cruzi the expression of the mitochondrial ME seems to be clearly upregulated in amastigotes, whereas the cytosolic isoform appears to be more abundant in the insect stages of the parasite. It might be hypothesized that in those environments where glucose is very low or absent, these pathogens depend on NADP-linked dehydrogenases such as the MEs for NADPH production, as in those conditions the pentose phosphate pathway cannot serve as a source of essential reducing power.
Collapse
Affiliation(s)
- Alejandro E Leroux
- Instituto de Química y Fisicoquímica Biológica IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
30
|
Spitznagel D, Ebikeme C, Biran M, Nic a' Bháird N, Bringaud F, Henehan GTM, Nolan DP. Alanine aminotransferase of Trypanosoma brucei--a key role in proline metabolism in procyclic life forms. FEBS J 2009; 276:7187-99. [PMID: 19895576 DOI: 10.1111/j.1742-4658.2009.07432.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
African trypanosomes possess high levels of alanine aminotransferase (EC 2.6.1.2), although the function of their activity remains enigmatic, especially in slender bloodstream forms where the metabolism of ketoacids does not occur. Therefore, the gene for alanine aminotransferase enzyme in Trypanosoma brucei (TbAAT) was characterized and its function assessed using a combination of RNA interference and gene knockout approaches. Surprisingly, as much as 95% or more of the activity appears to be unnecessary for growth of either bloodstream or procyclic forms respiring on glucose. A combination of RNA interference and NMR spectroscopy revealed an important role for the activity in procyclic forms respiring on proline. Under these conditions, the major end product of proline metabolism is alanine, and a reduction in TbAAT activity led to a proportionate decrease in the amount of alanine excreted along with an increase in the doubling time of the cells. These results provide evidence of a role for alanine aminotransferase in the metabolism of proline in African trypanosomes by linking glutamate produced by the initial oxidative steps of the pathway with pyruvate produced by the final oxidative step of the pathway. This step appears to be essential when proline is the primary carbon source, which is likely to be the physiological situation in the tsetse fly vector.
Collapse
Affiliation(s)
- Diana Spitznagel
- School of Biochemistry and Immunology, Trinity College Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
31
|
Functional characterization of stage-specific aminotransferases from trypanosomatids. Mol Biochem Parasitol 2009; 166:172-82. [DOI: 10.1016/j.molbiopara.2009.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/20/2009] [Accepted: 04/02/2009] [Indexed: 11/19/2022]
|
32
|
Abstract
Phosphoarginine is a cell energy buffer molecule synthesized by the enzyme arginine kinase. In Trypanosoma cruzi, the aetiological agent of Chagas' disease, 2 different isoforms were identified by data mining, but only 1 was expressed during the parasite life cycle. The digitonin extraction pattern of arginine kinase differed from those obtained for reservosomes, glycosomes and mitochondrial markers, and similar to the cytosolic marker. Immunofluorescence analysis revealed that although arginine kinase is localized mainly in unknown punctuated structures and also in the cytosol, it did not co-localize with any of the subcelular markers. This punctuated pattern has previously been observed in many cytosolic proteins of trypanosomatids. The knowledge of the subcellular localization of phosphagen kinases is a crucial issue to understand their physiological role in protozoan parasites.
Collapse
|
33
|
Canepa GE, Bouvier LA, Miranda MR, Uttaro AD, Pereira CA. Characterization of Trypanosoma cruzi L-cysteine transport mechanisms and their adaptive regulation. FEMS Microbiol Lett 2009; 292:27-32. [PMID: 19175408 DOI: 10.1111/j.1574-6968.2008.01467.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
L-Cysteine and methionine are unique amino acids that act as sulfur donors in all organisms. In the specific case of Trypanosomatids, L-cysteine is particularly relevant as a substrate in the synthesis of trypanothione. Although it can be synthesized de novo, L-cysteine is actively transported in Trypanosoma cruzi epimastigote cells. L-Cysteine uptake is highly specific; none of the amino acids assayed yield significant differences in terms of transport rates. L-Cysteine is transported by epimastigote cells with a calculated apparent K(m) of 49.5 microM and a V(max) of about 13 pmol min(-1) per 10(7) cells. This transport is finely regulated by amino acid starvation, extracellular pH, and between the parasite growth phases. In addition, L-cysteine is incorporated post-translationally into proteins, suggesting its role in iron-sulfur core formation. Finally, the metabolic fates of Lcysteine were predicted in silico.
Collapse
Affiliation(s)
- Gaspar E Canepa
- Laboratorio de Biología Molecular de Trypanosoma cruzi, Instituto de Investigaciones Médicas Alfredo Lanari, Consejo Nacional de Investigaciones Científicas y Té cnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|