1
|
Ornelas-Cruces M, Escalona-Montaño AR, Salaiza-Suazo N, Sifontes-Rodríguez S, Aguirre-García MM. The Potential Role of Sanguinarine as an Inhibitor of Leishmania PP2C in the Induction of Apoptosis. Acta Parasitol 2025; 70:35. [PMID: 39853571 PMCID: PMC11761978 DOI: 10.1007/s11686-024-00977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/14/2024] [Indexed: 01/26/2025]
Abstract
Leishmania spp. cause a wide range of human diseases, localized skin lesions, mucocutaneous and visceral infections. In the present study, the aim was to investigate the potential role of sanguinarine as a specific inhibitor of Leishmania PP2C that can induce apoptosis in the parasite. The results demonstrated that sanguinarine inhibits, in a dose-dependent mode at 72 h, the growth and phosphatase activity of both Leishmania major and Leishmania mexicana promastigotes. Therefore, all assays were performed from this time period onwards. TUNEL assay was used to identify apoptosis and indicated apoptosis in L. major and L. mexicana promastigotes. Similarly, Western blot assay showed that PARP, a DNA damage indicator molecule, was present in L. major and L. mexicana promastigotes incubated with the inhibitor. In addition, differential expression of the proapoptotic protein Bax and the antiapoptotic protein Bcl-2 was observed in both Leishmania species. Finally, the protein phosphatase PP2C expression was not affected, whereas p38 MAPK phosphorylation was increased in L. major promastigotes than in L. mexicana promastigotes. Therefore, sanguinarine proved to be an inhibitor of the growth and PP2C enzymatic activity of L. major and L. mexicana promastigotes, and with it, this inhibition induced apoptosis.
Collapse
Affiliation(s)
- M Ornelas-Cruces
- Laboratorio de Estudios Sociales de la Ciencia y la Tecnología, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - A R Escalona-Montaño
- División de Investigación, Facultad de Medicina, Unidad de Investigación UNAM-INC, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Ciudad de México, C.P. 14080, México
| | - N Salaiza-Suazo
- Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México, C.P. 04510, México
| | - S Sifontes-Rodríguez
- División de Investigación, Facultad de Medicina, Unidad de Investigación UNAM-INC, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Ciudad de México, C.P. 14080, México
| | - M M Aguirre-García
- División de Investigación, Facultad de Medicina, Unidad de Investigación UNAM-INC, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Ciudad de México, C.P. 14080, México.
| |
Collapse
|
2
|
Zhang N, Jiang N, Chen Q. Key Regulators of Parasite Biology Viewed Through a Post-Translational Modification Repertoire. Proteomics 2024:e202400120. [PMID: 39690890 DOI: 10.1002/pmic.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Parasites are the leading causes of morbidity and mortality in both humans and animals, imposing substantial socioeconomic burdens worldwide. Controlling parasitic diseases has become one of the key issues in achieving "One Health". Most parasites have sophisticated life cycles exhibiting progressive developmental stages, morphologies, and host-switching, which are controlled by various regulatory machineries including protein post-translational modifications (PTMs). PTMs have emerged as a key mechanism by which parasites modulate their virulence, developmental transitions, and environmental adaptations. PTMs are enzyme-mediated additions or removals of chemical groups that dynamically regulate the stability and functions of proteins and confer novel properties, playing vital roles in a variety of biological processes and cellular functions. In this review, we circumscribe how parasites utilize various PTMs to regulate their intricate lives, with a focus on the biological role of PTMs in parasite biology and pathogenesis.
Collapse
Affiliation(s)
- Naiwen Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
3
|
Serrano-Rodríguez M, Araya JE, Cortez M, Orrego PR. Cytotoxic Effect of Trypanosoma cruzi Calcineurin B Against Melanoma and Adenocarcinoma Cells In Vitro. Adv Pharmacol Pharm Sci 2024; 2024:5394494. [PMID: 39640496 PMCID: PMC11620811 DOI: 10.1155/adpp/5394494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/30/2024] [Accepted: 10/26/2024] [Indexed: 12/07/2024] Open
Abstract
Chagas disease caused by the obligate intracellular flagellate protozoan Trypanozoma cruzi infects about 6 million people. From the 1930s to the present, the antitumor capacity of T. cruzi has been studied; however, the identification of the responsible molecules for this effect remains undiscovered. Calcineurin, a calcium/calmodulin-dependent serine/threonine phosphatase, is a heterodimer consisting of a catalytic subunit (CaNA) and a regulatory subunit (CaNB). It has been described that T. cruzi CaN is involved in the cell invasion and proliferation of the parasite. Recently, extracellular human CaNB has been demonstrated to be capable of inhibiting tumor growth cells, conferring an antitumor effect; however, the extracellular role of T. cruzi CaNB (TcCaNB) is still unknown. The objective of this work was to investigate the antitumor potential of TcCaNB by interacting with membrane proteins and evaluating its effects on the viability, proliferation, and morphology of tumor cells in vitro. Additionally, the possible mechanism of action of TcCaNB was explored. Murine melanoma (B16-F10), human cervical adenocarcinoma (HeLa), and African green monkey kidney epithelial (Vero) cell lines were employed for in vitro assays. Far Western blot and immunofluorescence were performed to assess the interaction of TcCaNB with membrane proteins, and the effect of TcCaNB on cell viability and proliferation was evaluated using the MTS assay and the CyQUANT NF assay, respectively. The effect of the caspase inhibitor Z-VAD-FMK on TcCaNB-stimulated tumor cells was investigated to determine if TcCaNB-induced cell death was associated with apoptosis. To assess cell cycle progression, TcCaNB-treated cells were analyzed by flow cytometry. In this study, the results showed an interaction of TcCaNB with cell membrane proteins in B16-F10 and HeLa tumor lines, indicating that TcCaNB is capable of decreasing viability and proliferation of B16-F10 and HeLa cells, with no significant effect observed in Vero cells. Furthermore, morphological changes were observed in tumor cells treated with TcCaNB. DNA fragmentations and inhibition of caspases with Z-VAD-FMK partially counteracted the cytotoxic effects of TcCaNB on tumor cells, suggesting that TcCaNB-induced cell death might be associated with apoptosis. Additionally, TcCaNB caused S phase cell cycle arrest in HeLa cells, with an increase in the sub-G1 population indicative of apoptosis, while no significant effects were observed in Vero cells.
Collapse
Affiliation(s)
- Mayela Serrano-Rodríguez
- Biomedical Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta 1240000, Chile
| | - Jorge E. Araya
- Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta 1240000, Chile
| | - Mauro Cortez
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Patricio R. Orrego
- Biomedical Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta 1240000, Chile
| |
Collapse
|
4
|
Carvalho-Kelly LF, Freitas-Mesquita AL, Ferreira Pralon C, de Souza-Maciel E, Meyer-Fernandes JR. Identification and characterization of an ectophosphatase activity involved in Acanthamoeba castellanii adhesion to host cells. Eur J Protistol 2023; 91:126026. [PMID: 37871554 DOI: 10.1016/j.ejop.2023.126026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Acanthamoeba castellanii is a free-living amoeba and an opportunistic pathogen for humans that can cause encephalitis and, more commonly, Acanthamoeba keratitis. During its life cycle, A. castellanii may present as proliferative and infective trophozoites or resistant cysts. The adhesion of trophozoites to host cells is a key first step in the pathogenesis of infection. A major virulence protein of Acanthamoeba is a mannose-binding protein (MBP) that mediates the adhesion of amoebae to cell surfaces. Ectophosphatases are ecto-enzymes that can dephosphorylate extracellular substrates and have already been described in several microorganisms. Regarding their physiological roles, there is consistent evidence that ectophosphatase activities play an important role in parasite-host interactions. In the present work, we identified and biochemically characterized the ectophosphatase activity of A. castellanii. The ectophosphatase activity is acidic, stimulated by magnesium, cobalt and nickel, and presents the following apparent kinetic parameters: Km = 2.12 ± 0.54 mM p-NPP and Vmax = 26.12 ± 2.53 nmol p-NP × h-1 × 10-6 cells. We observed that sodium orthovanadate, ammonium molybdate, sodium fluoride, and inorganic phosphate are able to inhibit ectophosphatase activity. Comparing the two stages of the A. castellanii lifecycle, ectophosphatase activity is significantly higher in trophozoites than in cysts. The ectophosphatase activity is stimulated by mannose residues and is significantly increased when trophozoites interact with LLC-MK2 cells. The inhibition of ectophosphatase by pretreatment with sodium orthovanadate also inhibits the adhesion of trophozoites to epithelial cells. These results allow us to conclude that the ectophosphatase activity of A. castellanii is somehow important for the adhesion of trophozoites to their host cells. According to our data, we believe that the activation of MBP by mannose residues triggers the stimulation of ectophosphatase activity to facilitate the adhesion process.
Collapse
Affiliation(s)
| | | | - Clara Ferreira Pralon
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), UFRJ, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
5
|
Lima DA, Gonçalves LO, Reis-Cunha JL, Guimarães PAS, Ruiz JC, Liarte DB, Murta SMF. Transcriptomic analysis of benznidazole-resistant and susceptible Trypanosoma cruzi populations. Parasit Vectors 2023; 16:167. [PMID: 37217925 DOI: 10.1186/s13071-023-05775-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/16/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Chagas disease (CD), caused by the parasite Trypanosoma cruzi, is a serious public health concern in Latin America. Nifurtimox and benznidazole (BZ), the only two drugs currently approved for the treatment of CD, have very low efficacies in the chronic phase of the disease and several toxic side effects. Trypanosoma cruzi strains that are naturally resistant to both drugs have been reported. We performed a comparative transcriptomic analysis of wild-type and BZ-resistant T. cruzi populations using high-throughput RNA sequencing to elucidate the metabolic pathways related to clinical drug resistance and identify promising molecular targets for the development of new drugs for treating CD. METHODS All complementary DNA (cDNA) libraries were constructed from the epimastigote forms of each line, sequenced and analysed using the Prinseq and Trimmomatic tools for the quality analysis, STAR as the aligner for mapping the reads against the reference genome (T. cruzi Dm28c-2018), the Bioconductor package EdgeR for statistical analysis of differential expression and the Python-based library GOATools for the functional enrichment analysis. RESULTS The analytical pipeline with an adjusted P-value of < 0.05 and fold-change > 1.5 identified 1819 transcripts that were differentially expressed (DE) between wild-type and BZ-resistant T. cruzi populations. Of these, 1522 (83.7%) presented functional annotations and 297 (16.2%) were assigned as hypothetical proteins. In total, 1067 transcripts were upregulated and 752 were downregulated in the BZ-resistant T. cruzi population. Functional enrichment analysis of the DE transcripts identified 10 and 111 functional categories enriched for the up- and downregulated transcripts, respectively. Through functional analysis we identified several biological processes potentially associated with the BZ-resistant phenotype: cellular amino acid metabolic processes, translation, proteolysis, protein phosphorylation, RNA modification, DNA repair, generation of precursor metabolites and energy, oxidation-reduction processes, protein folding, purine nucleotide metabolic processes and lipid biosynthetic processes. CONCLUSIONS The transcriptomic profile of T. cruzi revealed a robust set of genes from different metabolic pathways associated with the BZ-resistant phenotype, proving that T. cruzi resistance mechanisms are multifactorial and complex. Biological processes associated with parasite drug resistance include antioxidant defenses and RNA processing. The identified transcripts, such as ascorbate peroxidase (APX) and iron superoxide dismutase (Fe-SOD), provide important information on the resistant phenotype. These DE transcripts can be further evaluated as molecular targets for new drugs against CD.
Collapse
Affiliation(s)
- Davi Alvarenga Lima
- Genômica Funcional de Parasitos, Instituto René Rachou (IRR/Fiocruz Minas), Av. Augusto de Lima 1715, Belo Horizonte, MG, CEP 30190-002, Brazil
| | - Leilane Oliveira Gonçalves
- Informática de Biossistemas, Genômica e Bioengenharia, Instituto René Rachou (IRR/Fiocruz Minas), Belo Horizonte, MG, Brazil
| | | | - Paul Anderson Souza Guimarães
- Informática de Biossistemas, Genômica e Bioengenharia, Instituto René Rachou (IRR/Fiocruz Minas), Belo Horizonte, MG, Brazil
| | - Jeronimo Conceição Ruiz
- Informática de Biossistemas, Genômica e Bioengenharia, Instituto René Rachou (IRR/Fiocruz Minas), Belo Horizonte, MG, Brazil
| | | | - Silvane Maria Fonseca Murta
- Genômica Funcional de Parasitos, Instituto René Rachou (IRR/Fiocruz Minas), Av. Augusto de Lima 1715, Belo Horizonte, MG, CEP 30190-002, Brazil.
| |
Collapse
|
6
|
Salari S, Bamorovat M, Sharifi I, Almani PGN. Global distribution of treatment resistance gene markers for leishmaniasis. J Clin Lab Anal 2022; 36:e24599. [PMID: 35808933 PMCID: PMC9396204 DOI: 10.1002/jcla.24599] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/19/2022] [Accepted: 06/28/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Pentavalent antimonials (Sb(V)) such as meglumine antimoniate (Glucantime®) and sodium stibogluconate (Pentostam®) are used as first-line treatments for leishmaniasis, either alone or in combination with second-line drugs such as amphotericin B (Amp B), miltefosine (MIL), methotrexate (MTX), or cryotherapy. Therapeutic aspects of these drugs are now challenged because of clinical resistance worldwide. METHODS We reviewedthe recent original studies were assessed by searching in electronic databases such as Scopus, Pubmed, Embase, and Web of Science. RESULTS Studies on molecular biomarkers involved in drug resistance are essential for monitoring the disease. We reviewed genes and mechanisms of resistance to leishmaniasis, and the geographical distribution of these biomarkers in each country has also been thoroughly investigated. CONCLUSION Due to the emergence of resistant genes mainly in anthroponotic Leishmania species such as L. donovani and L. tropica, as the causative agents of ACL and AVL, respectively, selection of an appropriate treatment modality is essential. Physicians should be aware of the presence of such resistance for the selection of proper treatment modalities in endemic countries.
Collapse
Affiliation(s)
- Samira Salari
- Medical Mycology and Bacteriology Research CenterKerman University of Medical SciencesKermanIran
| | - Mehdi Bamorovat
- Leishmaniasis Research CenterKerman University of Medical SciencesKermanIran
| | - Iraj Sharifi
- Leishmaniasis Research CenterKerman University of Medical SciencesKermanIran
| | | |
Collapse
|
7
|
Sáez Conde J, Dean S. Structure, function and druggability of the African trypanosome flagellum. J Cell Physiol 2022; 237:2654-2667. [PMID: 35616248 PMCID: PMC9323424 DOI: 10.1002/jcp.30778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
African trypanosomes are early branching protists that cause human and animal diseases, termed trypanosomiases. They have been under intensive study for more than 100 years and have contributed significantly to our understanding of eukaryotic biology. The combination of conserved and parasite-specific features mean that their flagellum has gained particular attention. Here, we discuss the different structural features of the flagellum and their role in transmission and virulence. We highlight the possibilities of targeting flagellar function to cure trypanosome infections and help in the fight to eliminate trypanosomiases.
Collapse
Affiliation(s)
- Julia Sáez Conde
- Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Samuel Dean
- Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUK
| |
Collapse
|
8
|
Manchola Varón NC, Dos Santos GRRM, Colli W, Alves MJM. Interaction With the Extracellular Matrix Triggers Calcium Signaling in Trypanosoma cruzi Prior to Cell Invasion. Front Cell Infect Microbiol 2021; 11:731372. [PMID: 34671568 PMCID: PMC8521164 DOI: 10.3389/fcimb.2021.731372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/23/2021] [Indexed: 11/26/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease in humans, infects a wide variety of vertebrates. Trypomastigotes, the parasite infective forms, invade mammalian cells by a still poorly understood mechanism. Adhesion of tissue culture- derived trypomastigotes to the extracellular matrix (ECM) prior to cell invasion has been shown to be a relevant part of the process. Changes in phosphorylation, S-nitrosylation, and nitration levels of proteins, in the late phase of the interaction (2 h), leading to the reprogramming of both trypomastigotes metabolism and the DNA binding profile of modified histones, were described by our group. Here, the involvement of calcium signaling at a very early phase of parasite interaction with ECM is described. Increments in the intracellular calcium concentrations during trypomastigotes-ECM interaction depends on the Ca2+ uptake from the extracellular medium, since it is inhibited by EGTA or Nifedipine, an inhibitor of the L-type voltage gated Ca2+ channels and sphingosine-dependent plasma membrane Ca2+ channel, but not by Vanadate, an inhibitor of the plasma membrane Ca2+-ATPase. Furthermore, Nifedipine inhibits the invasion of host cells by tissue culture- derived trypomastigotes in a dose-dependent manner, reaching 95% inhibition at 100 µM Nifedipine. These data indicate the importance of both Ca2+ uptake from the medium and parasite-ECM interaction for host-cell invasion. Previous treatment of ECM with protease abolishes the Ca2+ uptake, further reinforcing the possibility that these events may be connected. The mitochondrion plays a relevant role in Ca2+ homeostasis in trypomastigotes during their interaction with ECM, as shown by the increment of the intracellular Ca2+ concentration in the presence of Antimycin A, in contrast to other calcium homeostasis disruptors, such as Cyclopiazonic acid for endoplasmic reticulum and Bafilomycin A for acidocalcisome. Total phosphatase activity in the parasite decreases in the presence of Nifedipine, EGTA, and Okadaic acid, implying a role of calcium in the phosphorylation level of proteins that are interacting with the ECM in tissue culture- derived trypomastigotes. In summary, we describe here the increment of Ca2+ at an early phase of the trypomastigotes interaction with ECM, implicating both nifedipine-sensitive Ca2+ channels in the influx of Ca2+ and the mitochondrion as the relevant organelle in Ca2+ homeostasis. The data unravel a complex sequence of events prior to host cell invasion itself.
Collapse
Affiliation(s)
- Nubia Carolina Manchola Varón
- Laboratory of Biochemistry of Parasites, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Walter Colli
- Laboratory of Biochemistry of Parasites, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Maria Julia M Alves
- Laboratory of Biochemistry of Parasites, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Orrego PR, Serrano-Rodríguez M, Cortez M, Araya JE. In Silico Characterization of Calcineurin from Pathogenic Obligate Intracellular Trypanosomatids: Potential New Biological Roles. Biomolecules 2021; 11:biom11091322. [PMID: 34572535 PMCID: PMC8470620 DOI: 10.3390/biom11091322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/16/2021] [Accepted: 08/09/2021] [Indexed: 12/28/2022] Open
Abstract
Calcineurin (CaN) is present in all eukaryotic cells, including intracellular trypanosomatid parasites such as Trypanosoma cruzi (Tc) and Leishmania spp. (Lspp). In this study, we performed an in silico analysis of the CaN subunits, comparing them with the human (Hs) and looking their structure, post-translational mechanisms, subcellular distribution, interactors, and secretion potential. The differences in the structure of the domains suggest the existence of regulatory mechanisms and differential activity between these protozoa. Regulatory subunits are partially conserved, showing differences in their Ca2+-binding domains and myristoylation potential compared with human CaN. The subcellular distribution reveals that the catalytic subunits TcCaNA1, TcCaNA2, LsppCaNA1, LsppCaNA1_var, and LsppCaNA2 associate preferentially with the plasma membrane compared with the cytoplasmic location of HsCaNAα. For regulatory subunits, HsCaNB-1 and LsppCaNB associate preferentially with the nucleus and cytoplasm, and TcCaNB with chloroplast and cytoplasm. Calpain cleavage sites on CaNA suggest differential processing. CaNA and CaNB of these trypanosomatids have the potential to be secreted and could play a role in remote communication. Therefore, this background can be used to develop new drugs for protozoan pathogens that cause neglected disease.
Collapse
Affiliation(s)
- Patricio R. Orrego
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile
- Correspondence: (P.R.O.); (J.E.A.); Tel.: +56-55-2637664 (J.E.A.)
| | - Mayela Serrano-Rodríguez
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile;
| | - Mauro Cortez
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Jorge E. Araya
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile;
- Center for Biotechnology and Bioengineering, CeBIB, Universidad de Antofagasta, Antofagasta 1270300, Chile
- Correspondence: (P.R.O.); (J.E.A.); Tel.: +56-55-2637664 (J.E.A.)
| |
Collapse
|
10
|
Parasite protein phosphatases: biological function, virulence, and host immune evasion. Parasitol Res 2021; 120:2703-2715. [PMID: 34309709 DOI: 10.1007/s00436-021-07259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
Protein phosphatases are enzymes that dephosphorylate tyrosine and serine/threonine amino acid residues. Although their role in cellular processes has been best characterized in higher eukaryotes, they have also been identified and studied in different pathogenic microorganisms (e.g., parasites) in the last two decades. Whereas some parasite protein phosphatases carry out functions similar to those of their homologs in yeast and mammalian cells, others have unique structural and/or functional characteristics. Thus, the latter unique phosphatases may be instrumental as targets for drug therapy or as markers for diagnosis. It is important to better understand the involvement of protein phosphatases in parasites in relation to their cell cycle, metabolism, virulence, and evasion of the host immune response. The up-to-date information about parasite phosphatases of medical and veterinarian relevance is herein reviewed.
Collapse
|
11
|
Campbell PC, de Graffenried CL. Alternate histories of cytokinesis: lessons from the trypanosomatids. Mol Biol Cell 2021; 31:2631-2639. [PMID: 33180676 PMCID: PMC7927182 DOI: 10.1091/mbc.e19-12-0696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Popular culture has recently produced several “alternate histories” that describe worlds where key historical events had different outcomes. Beyond entertainment, asking “could this have happened a different way?” and “what would the consequences be?” are valuable approaches for exploring molecular mechanisms in many areas of research, including cell biology. Analogous to alternate histories, studying how the evolutionary trajectories of related organisms have been selected to provide a range of outcomes can tell us about the plasticity and potential contained within the genome of the ancestral cell. Among eukaryotes, a group of model organisms has been employed with great success to identify a core, conserved framework of proteins that segregate the duplicated cellular organelles into two daughter cells during cell division, a process known as cytokinesis. However, these organisms provide relatively sparse sampling across the broad evolutionary distances that exist, which has limited our understanding of the true potential of the ancestral eukaryotic toolkit. Recent work on the trypanosomatids, a group of eukaryotic parasites, exemplifies alternate historical routes for cytokinesis that illustrate the range of eukaryotic diversity, especially among unicellular organisms.
Collapse
Affiliation(s)
- Paul C Campbell
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | | |
Collapse
|
12
|
Freitas-Mesquita AL, Dos-Santos ALA, Meyer-Fernandes JR. Involvement of Leishmania Phosphatases in Parasite Biology and Pathogeny. Front Cell Infect Microbiol 2021; 11:633146. [PMID: 33968798 PMCID: PMC8100340 DOI: 10.3389/fcimb.2021.633146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
In the Leishmania lifecycle, the motile promastigote form is transmitted from the sand fly vector to a mammalian host during a blood meal. Inside vertebrate host macrophages, the parasites can differentiate into the amastigote form and multiply, causing leishmaniasis, one of the most significant neglected tropical diseases. Leishmania parasites face different conditions throughout their development inside sand flies. Once in the mammalian host, the parasites have to overcome the microbicide repertoire of the cells of the immune system to successfully establish the infection. In this context, the expression of protein phosphatases is of particular interest. Several members of the serine/threonine-specific protein phosphatase (STP), protein tyrosine phosphatase (PTP), and histidine acid phosphatase (HAcP) families have been described in different Leishmania species. Although their physiological roles have not been fully elucidated, many studies suggest they have an involvement with parasite biology and pathogeny. Phosphatases play a role in adaptation to nutrient starvation during parasite passage through the sand fly midgut. They are also important to parasite virulence, mainly due to the modulation of host cytokine production and impairment of the microbiocidal potential of macrophages. Furthermore, recent whole-genome expression analyses have shown that different phosphatases are upregulated in metacyclic promastigotes, the infective form of the mammalian host. Leishmania phosphatases are also upregulated in drug-resistant strains, probably due to the increase in drug efflux related to the activation of ABC transporters. Throughout this review, we will describe the physiological roles that have been attributed to Leishmania endogenous phosphatases, including their involvement in the adaptation, survival, and proliferation of the parasites inside their hosts.
Collapse
Affiliation(s)
- Anita Leocadio Freitas-Mesquita
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz Araújo Dos-Santos
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Genome Analysis of Endotrypanum and Porcisia spp., Closest Phylogenetic Relatives of Leishmania, Highlights the Role of Amastins in Shaping Pathogenicity. Genes (Basel) 2021; 12:genes12030444. [PMID: 33804709 PMCID: PMC8004069 DOI: 10.3390/genes12030444] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
While numerous genomes of Leishmania spp. have been sequenced and analyzed, an understanding of the evolutionary history of these organisms remains limited due to the unavailability of the sequence data for their closest known relatives, Endotrypanum and Porcisia spp., infecting sloths and porcupines. We have sequenced and analyzed genomes of three members of this clade in order to fill this gap. Their comparative analyses revealed only minute differences from Leishmaniamajor genome in terms of metabolic capacities. We also documented that the number of genes under positive selection on the Endotrypanum/Porcisia branch is rather small, with the flagellum-related group of genes being over-represented. Most significantly, the analysis of gene family evolution revealed a substantially reduced repertoire of surface proteins, such as amastins and biopterin transporters BT1 in the Endotrypanum/Porcisia species when compared to amastigote-dwelling Leishmania. This reduction was especially pronounced for δ-amastins, a subfamily of cell surface proteins crucial in the propagation of Leishmania amastigotes inside vertebrate macrophages and, apparently, dispensable for Endotrypanum/Porcisia, which do not infect such cells.
Collapse
|
14
|
Manzano-Román R, Fuentes M. Relevance and proteomics challenge of functional posttranslational modifications in Kinetoplastid parasites. J Proteomics 2020; 220:103762. [PMID: 32244008 DOI: 10.1016/j.jprot.2020.103762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
Protozoan parasitic infections are health, social and economic issues impacting both humans and animals, with significant morbidity and mortality worldwide. Protozoan parasites have complicated life cycles with both intracellular and extracellular forms. As a consequence, protozoan adapt to changing environments in part through a dynamic enzyme-catalyzed process leading to reversible posttranslational modifications (PTMs). The characterization by proteomics approaches reveals the critical role of the PTMs of the proteins involved in host-pathogen interaction. The complexity of PTMs characterization is increased by the high diversity, stoichiometry, dynamic and also co-existence of several PTMs in the same moieties which crosstalk between them. Here, we review how to understand the complexity and the essential role of PTMs crosstalk in order to provide a new hallmark for vaccines developments, immunotherapies and personalized medicine. In addition, the importance of these motifs in the biology and biological cycle of kinetoplastid parasites is highlighted with key examples showing the potential to act as targets against protozoan diseases.
Collapse
Affiliation(s)
- R Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain..
| | - M Fuentes
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.; Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain
| |
Collapse
|
15
|
Zhou Q, Pham KTM, Hu H, Kurasawa Y, Li Z. A kinetochore-based ATM/ATR-independent DNA damage checkpoint maintains genomic integrity in trypanosomes. Nucleic Acids Res 2019; 47:7973-7988. [PMID: 31147720 PMCID: PMC6736141 DOI: 10.1093/nar/gkz476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/23/2019] [Accepted: 05/17/2019] [Indexed: 02/02/2023] Open
Abstract
DNA damage-induced cell cycle checkpoints serve as surveillance mechanisms to maintain genomic stability, and are regulated by ATM/ATR-mediated signaling pathways that are conserved from yeast to humans. Trypanosoma brucei, an early divergent microbial eukaryote, lacks key components of the conventional DNA damage-induced G2/M cell cycle checkpoint and the spindle assembly checkpoint, and nothing is known about how T. brucei controls its cell cycle checkpoints. Here we discover a kinetochore-based, DNA damage-induced metaphase checkpoint in T. brucei. MMS-induced DNA damage triggers a metaphase arrest by modulating the abundance of the outer kinetochore protein KKIP5 in an Aurora B kinase- and kinetochore-dependent, but ATM/ATR-independent manner. Overexpression of KKIP5 arrests cells at metaphase through stabilizing the mitotic cyclin CYC6 and the cohesin subunit SCC1, mimicking DNA damage-induced metaphase arrest, whereas depletion of KKIP5 alleviates the DNA damage-induced metaphase arrest and causes chromosome mis-segregation and aneuploidy. These findings suggest that trypanosomes employ a novel DNA damage-induced metaphase checkpoint to maintain genomic integrity.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Kieu T M Pham
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Huiqing Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Yasuhiro Kurasawa
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| |
Collapse
|
16
|
Srivastava A, Badjatia N, Lee JH, Hao B, Günzl A. An RNA polymerase II-associated TFIIF-like complex is indispensable for SL RNA gene transcription in Trypanosoma brucei. Nucleic Acids Res 2019; 46:1695-1709. [PMID: 29186511 PMCID: PMC5829719 DOI: 10.1093/nar/gkx1198] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/17/2017] [Indexed: 12/23/2022] Open
Abstract
Trypanosomes are protistan parasites that diverged early in evolution from most eukaryotes. Their streamlined genomes are packed with arrays of tandemly linked genes that are transcribed polycistronically by RNA polymerase (pol) II. Individual mRNAs are processed from pre-mRNA by spliced leader (SL) trans splicing and polyadenylation. While there is no strong evidence that general transcription factors are needed for transcription initiation at these gene arrays, a RNA pol II transcription pre-initiation complex (PIC) is formed on promoters of SLRNA genes, which encode the small nuclear SL RNA, the SL donor in trans splicing. The factors that form the PIC are extremely divergent orthologues of the small nuclear RNA-activating complex, TBP, TFIIA, TFIIB, TFIIH, TFIIE and Mediator. Here, we functionally characterized a heterodimeric complex of unannotated, nuclear proteins that interacts with RNA pol II and is essential for PIC formation, SL RNA synthesis in vivo, SLRNA transcription in vitro, and parasite viability. These functional attributes suggest that the factor represents TFIIF although the amino acid sequences are too divergent to firmly make this conclusion. This work strongly indicates that early-diverged trypanosomes have orthologues of each and every general transcription factor, requiring them for the synthesis of SL RNA.
Collapse
Affiliation(s)
- Ankita Srivastava
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Nitika Badjatia
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Ju Huck Lee
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Bing Hao
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-3305, USA
| | - Arthur Günzl
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| |
Collapse
|
17
|
Mattos EC, Canuto G, Manchola NC, Magalhães RDM, Crozier TWM, Lamont DJ, Tavares MFM, Colli W, Ferguson MAJ, Alves MJM. Reprogramming of Trypanosoma cruzi metabolism triggered by parasite interaction with the host cell extracellular matrix. PLoS Negl Trop Dis 2019; 13:e0007103. [PMID: 30726203 PMCID: PMC6380580 DOI: 10.1371/journal.pntd.0007103] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/19/2019] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas' disease, affects 8 million people predominantly living in socioeconomic underdeveloped areas. T. cruzi trypomastigotes (Ty), the classical infective stage, interact with the extracellular matrix (ECM), an obligatory step before invasion of almost all mammalian cells in different tissues. Here we have characterized the proteome and phosphoproteome of T. cruzi trypomastigotes upon interaction with ECM (MTy) and the data are available via ProteomeXchange with identifier PXD010970. Proteins involved with metabolic processes (such as the glycolytic pathway), kinases, flagellum and microtubule related proteins, transport-associated proteins and RNA/DNA binding elements are highly represented in the pool of proteins modified by phosphorylation. Further, important metabolic switches triggered by this interaction with ECM were indicated by decreases in the phosphorylation of hexokinase, phosphofructokinase, fructose-2,6-bisphosphatase, phosphoglucomutase, phosphoglycerate kinase in MTy. Concomitantly, a decrease in the pyruvate and lactate and an increase of glucose and succinate contents were detected by GC-MS. These observations led us to focus on the changes in the glycolytic pathway upon binding of the parasite to the ECM. Inhibition of hexokinase, pyruvate kinase and lactate dehydrogenase activities in MTy were observed and this correlated with the phosphorylation levels of the respective enzymes. Putative kinases involved in protein phosphorylation altered upon parasite incubation with ECM were suggested by in silico analysis. Taken together, our results show that in addition to cytoskeletal changes and protease activation, a reprogramming of the trypomastigote metabolism is triggered by the interaction of the parasite with the ECM prior to cell invasion and differentiation into amastigotes, the multiplicative intracellular stage of T. cruzi in the vertebrate host.
Collapse
Affiliation(s)
- Eliciane C. Mattos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Gisele Canuto
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Nubia C. Manchola
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Rubens D. M. Magalhães
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thomas W. M. Crozier
- Wellcome Centre for Anti-Infectives Research, School of Life Science, University of Dundee, Dundee, United Kingdom
| | - Douglas J. Lamont
- Fingerprints Proteomics Facility, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Marina F. M. Tavares
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Walter Colli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Michael A. J. Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Science, University of Dundee, Dundee, United Kingdom
| | - Maria Júlia M. Alves
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Hilton NA, Sladewski TE, Perry JA, Pataki Z, Sinclair-Davis AN, Muniz RS, Tran HL, Wurster JI, Seo J, de Graffenried CL. Identification of TOEFAZ1-interacting proteins reveals key regulators of Trypanosoma brucei cytokinesis. Mol Microbiol 2018; 109:306-326. [PMID: 29781112 PMCID: PMC6359937 DOI: 10.1111/mmi.13986] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2018] [Indexed: 01/07/2023]
Abstract
The protist parasite Trypanosoma brucei is an obligate extracellular pathogen that retains its highly polarized morphology during cell division and has evolved a novel cytokinetic process independent of non-muscle myosin II. The polo-like kinase homolog TbPLK is essential for transmission of cell polarity during division and for cytokinesis. We previously identified a putative TbPLK substrate named Tip of the Extending FAZ 1 (TOEFAZ1) as an essential kinetoplastid-specific component of the T. brucei cytokinetic machinery. We performed a proximity-dependent biotinylation identification (BioID) screen using TOEFAZ1 as a means to identify additional proteins that are involved in cytokinesis. Using quantitative proteomic methods, we identified nearly 500 TOEFAZ1-proximal proteins and characterized 59 in further detail. Among the candidates, we identified an essential putative phosphatase that regulates the expression level and localization of both TOEFAZ1 and TbPLK, a previously uncharacterized protein that is necessary for the assembly of a new cell posterior, and a microtubule plus-end directed orphan kinesin that is required for completing cleavage furrow ingression. The identification of these proteins provides new insight into T. brucei cytokinesis and establishes TOEFAZ1 as a key component of this essential and uniquely configured process in kinetoplastids.
Collapse
Affiliation(s)
- Nicholas A. Hilton
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Thomas E. Sladewski
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Jenna A. Perry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Zemplen Pataki
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Amy N. Sinclair-Davis
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Richard S. Muniz
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Holly L. Tran
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Jenna I. Wurster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Jiwon Seo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912
| | | |
Collapse
|
19
|
Norris-Mullins B, Krivda JS, Smith KL, Ferrell MJ, Morales MA. Leishmania phosphatase PP5 is a regulator of HSP83 phosphorylation and essential for parasite pathogenicity. Parasitol Res 2018; 117:2971-2985. [PMID: 29982859 DOI: 10.1007/s00436-018-5994-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/28/2018] [Indexed: 01/21/2023]
Abstract
Leishmania parasites are responsible for important neglected diseases in humans and animals, ranging from self-healing cutaneous lesions to fatal visceral manifestations. During the infectious cycle, Leishmania differentiates from the extracellular flagellated promastigote to the intracellular pathogenic amastigote. Parasite differentiation is triggered by changes in environmental cues, mainly pH and temperature. In general, extracellular signals are translated into stage-specific gene expression by a cascade of reversible protein phosphorylation regulated by protein kinases and phosphatases. Though protein kinases have been actively studied as potential anti-parasitic drug targets, our understanding of the biology of protein phosphatases in Leishmania is poor. We have previously reported the principal analysis of a novel protein phosphatase 5 (PP5) in Leishmania species. Here, we assessed the role of PP5 in parasite pathogenicity, where we uncovered, using transgenic PP5 over-expressing and PP5 null-mutant parasites, its importance in metacyclogeneisis, maintaining HSP83 phosphorylation homeostasis and virulence. All together, our results indicate the importance of PP5 in regulating parasite stress and adaptation during differentiation, making this protein an attractive potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Brianna Norris-Mullins
- Eck Institute for Global Health, Department of Biological Sciences, 278 Galvin Life Science, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Joseph S Krivda
- Eck Institute for Global Health, Department of Biological Sciences, 278 Galvin Life Science, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kathryn L Smith
- Eck Institute for Global Health, Department of Biological Sciences, 278 Galvin Life Science, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Micah J Ferrell
- Eck Institute for Global Health, Department of Biological Sciences, 278 Galvin Life Science, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Miguel A Morales
- Eck Institute for Global Health, Department of Biological Sciences, 278 Galvin Life Science, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
20
|
Zhou Q, Dong G, Li Z. Flagellum inheritance in Trypanosoma brucei requires a kinetoplastid-specific protein phosphatase. J Biol Chem 2018; 293:8508-8520. [PMID: 29666191 DOI: 10.1074/jbc.ra118.002106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/16/2018] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei causes sleeping sickness in humans and nagana in cattle in sub-Saharan Africa and alternates between its mammalian hosts and its insect vector, the tsetse fly. T. brucei uses a flagellum for motility, cell division, and cell-cell communication. Proper positioning and attachment of the newly assembled flagellum rely on the faithful duplication and segregation of flagellum-associated cytoskeletal structures. These processes are regulated by the polo-like kinase homolog TbPLK, whose activity and abundance are under stringent control to ensure spatiotemporally regulated phosphorylation of its substrates. However, it remains unclear whether a protein phosphatase that counteracts TbPLK activity is also involved in this regulation. Here, we report that a putative kinetoplastid-specific protein phosphatase, named KPP1, has essential roles in regulating flagellum positioning and attachment in T. brucei KPP1 localized to multiple flagellum-associated cytoskeletal structures and co-localized with TbPLK in several cytoskeletal structures at different cell-cycle stages. KPP1 depletion abolished basal body segregation, inhibited the duplication of the centrin arm and the hook complex of the bilobe structure, and disrupted the elongation of the flagellum attachment zone, leading to flagellum misplacement and detachment and cytokinesis arrest. Importantly, KPP1-depleted cells lacked dephosphorylation of TbCentrin2, a TbPLK substrate, at late cell-cycle stages. Together, these results suggest that KPP1-mediated protein dephosphorylation regulates the duplication and segregation of flagellum-associated cytoskeletal structures, thereby promoting flagellum positioning and attachment. These findings highlight the requirement of reversible protein phosphorylation, mediated by TbPLK and KPP1, in regulating flagellum inheritance in T. brucei.
Collapse
Affiliation(s)
- Qing Zhou
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030 and
| | - Gang Dong
- the Max F. Perutz Laboratories, Vienna Bio-center, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Ziyin Li
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030 and
| |
Collapse
|
21
|
Soulat D, Bogdan C. Function of Macrophage and Parasite Phosphatases in Leishmaniasis. Front Immunol 2017; 8:1838. [PMID: 29312331 PMCID: PMC5743797 DOI: 10.3389/fimmu.2017.01838] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/05/2017] [Indexed: 01/23/2023] Open
Abstract
The kinetoplastid protozoan parasites belonging to the genus Leishmania are the causative agents of different clinical forms of leishmaniasis, a vector-borne infectious disease with worldwide prevalence. The protective host immune response against Leishmania parasites relies on myeloid cells such as dendritic cells and macrophages in which upon stimulation by cytokines (e.g., interferon-γ) a complex network of signaling pathways is switched on leading to strong antimicrobial activities directed against the intracellular parasite stage. The regulation of these pathways classically depends on post-translational modifications of proteins, with phosphorylation events playing a cardinal role. Leishmania parasites deactivate their phagocytic host cells by inducing specific mammalian phosphatases that are capable to impede signaling. On the other hand, there is now also evidence that Leishmania spp. themselves express phosphatases that might target host cell molecules and thereby facilitate the intracellular survival of the parasite. This review will present an overview on the modulation of host phosphatases by Leishmania parasites as well as on the known families of Leishmania phosphatases and their possible function as virulence factors. A more detailed understanding of the role of phosphatases in Leishmania–host cell interactions might open new avenues for the treatment of non-healing, progressive forms of leishmaniasis.
Collapse
Affiliation(s)
- Didier Soulat
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Interdisciplinary Center of the FAU, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Interdisciplinary Center of the FAU, Erlangen, Germany
| |
Collapse
|
22
|
Characterization of the Protein Tyrosine Phosphatase LmPRL-1 Secreted by Leishmania major via the Exosome Pathway. Infect Immun 2017; 85:IAI.00084-17. [PMID: 28507071 DOI: 10.1128/iai.00084-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/11/2017] [Indexed: 01/02/2023] Open
Abstract
Similar to other intracellular pathogens, Leishmania parasites are known to evade the antimicrobial effector functions of host immune cells. To date, however, only a few virulence factors have been described for Leishmania major, one of the causative agents of cutaneous leishmaniasis. Here, we have characterized the expression and function of an L. major phosphatase, which we termed LmPRL-1. This enzyme shows a strong structural similarity to the human phosphatases of regenerating liver (PRL-1, -2, and -3) that regulate the proliferation, differentiation, and motility of cells. The biochemical characterization of the L. major phosphatase revealed that the enzyme is redox sensitive. When analyzing the subcellular localization of LmPRL-1 in promastigotes, amastigotes, and infected macrophages, we found that the phosphatase was predominantly expressed and secreted by promastigotes via the exosome route. Finally, we observed that ectopic expression of LmPRL-1 in L. major led to an increased number of parasites in macrophages. From these data, we conclude that the L. major phosphatase LmPRL-1 contributes to the intracellular survival of the parasites in macrophages.
Collapse
|
23
|
De Carvalho FO, Silva ÉR, Felipe FA, Teixeira LGB, Zago LBS, Nunes PS, Shanmugam S, Serafini MR, Araújo AADS. Natural and synthetic products used for the treatment of smoke inhalation: a patent review. Expert Opin Ther Pat 2017; 27:877-886. [DOI: 10.1080/13543776.2017.1339790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Érika Ramos Silva
- Post-graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | - Fernanda Araújo Felipe
- Post-graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | | - Paula Santos Nunes
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Saravanan Shanmugam
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | |
Collapse
|
24
|
Deep Insight into the Phosphatomes of Parasitic Protozoa and a Web Resource ProtozPhosDB. PLoS One 2016; 11:e0167594. [PMID: 27930683 PMCID: PMC5145157 DOI: 10.1371/journal.pone.0167594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/16/2016] [Indexed: 11/19/2022] Open
Abstract
Phosphorylation dynamically regulates the function of proteins by maintaining a balance between protein kinase and phosphatase activity. A comprehensive understanding of the role phosphatases in cellular signaling is lacking in case of protozoans of medical and veterinary importance worldwide. The drugs used to treat protozoal diseases have many undesired effects and the development of resistance, highlights the need for new effective and safer antiprotozoal agents. In the present study we have analyzed phosphatomes of 15 protozoans of medical significance. We identified ~2000 phosphatases, out of which 21% are uncharacterized proteins. A significant positive correlation between phosphatome and proteome size was observed except for E. histolytica, having highest density of phosphatases irrespective of its proteome size. A difference in the number of phosphatases among different genera shows the variation in the signaling pathways they are involved in. The phosphatome of parasites is dominated by ser/thr phosphatases contrary to the vertebrate host dominated by tyrosine phosphatases. Phosphatases were widely distributed throughout the cell suggesting physiological adaptation of the parasite to regulate its host. 20% to 45% phosphatome of different protozoa consists of ectophosphatases, i.e. crucial for the survival of parasites. A database and a webserver "ProtozPhosDB" can be used to explore the phosphatomes of protozoans of medical significance.
Collapse
|
25
|
Dutra FL, Oliveira MM, Santos RS, Silva WS, Alviano DS, Vieira DP, Lopes AH. Effects of linalool and eugenol on the survival of Leishmania (L.) infantum chagasi within macrophages. Acta Trop 2016; 164:69-76. [PMID: 27591136 DOI: 10.1016/j.actatropica.2016.08.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/12/2016] [Accepted: 08/29/2016] [Indexed: 12/14/2022]
Abstract
The most commonly used drugs against visceral leishmaniasis are based on pentavalent antimonial compounds, which have played a fundamental role in therapy for over 70 years. However, the treatment is painful and has severe toxic side effects that can be fatal. Antimonial resistance is spreading and reaching alarming proportions. Linalool and eugenol have been shown to kill Leishmania (L.) amazonensis and Trypanosoma cruzi at low doses. In the present study, we demonstrate the effects of linalool and eugenol, components of essential oils, on Leishmania (L.) infantum chagasi, one of the causative agents of visceral leishmaniasis. We compared the effects of those compounds to the effects of glucantime, a positive control. In L. infantum chagasi killing assays, the LD50 for eugenol was 220μg/ml, and that for linalool was 550μg/ml. L. infantum chagasi was added to cultures of peritoneal mouse macrophages for four hours prior to drug treatment. Eugenol and linalool significantly decreased the number of parasites within the macrophages. Eugenol and linalool enhanced the activities of the L. infantum chagasi protein kinases PKA and PKC. Linalool also decreased L. infantum chagasi oxygen consumption. In conclusion, both linalool and eugenol promoted a decrease in the proliferation and viability of L. infantum chagasi. These effects were more pronounced during the interaction between the parasites and peritoneal mouse macrophages.
Collapse
|
26
|
Albataineh MT, Kadosh D. Regulatory roles of phosphorylation in model and pathogenic fungi. Med Mycol 2015; 54:333-52. [PMID: 26705834 PMCID: PMC4818690 DOI: 10.1093/mmy/myv098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/01/2015] [Indexed: 12/25/2022] Open
Abstract
Over the past 20 years, considerable advances have been made toward our understanding
of how post-translational modifications affect a wide variety of biological
processes, including morphology and virulence, in medically important fungi.
Phosphorylation stands out as a key molecular switch and regulatory modification that
plays a critical role in controlling these processes. In this article, we first
provide a comprehensive and up-to-date overview of the regulatory roles that both
Ser/Thr and non-Ser/Thr kinases and phosphatases play in model and pathogenic fungi.
Next, we discuss the impact of current global approaches that are being used to
define the complete set of phosphorylation targets (phosphoproteome) in medically
important fungi. Finally, we provide new insights and perspectives into the potential
use of key regulatory kinases and phosphatases as targets for the development of
novel and more effective antifungal strategies.
Collapse
Affiliation(s)
- Mohammad T Albataineh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - David Kadosh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|
27
|
Moreira DDS, Pescher P, Laurent C, Lenormand P, Späth GF, Murta SMF. Phosphoproteomic analysis of wild-type and antimony-resistant Leishmania braziliensis lines by 2D-DIGE technology. Proteomics 2015; 15:2999-3019. [PMID: 25959087 DOI: 10.1002/pmic.201400611] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/30/2015] [Accepted: 05/07/2015] [Indexed: 12/21/2022]
Abstract
Protein phosphorylation is one of the most studied post-translational modifications that is involved in different cellular events in Leishmania. In this study, we performed a comparative phosphoproteomics analysis of potassium antimonyl tartrate (SbIII)-resistant and -susceptible lines of Leishmania braziliensis using a 2D-DIGE approach followed by MS. In order to investigate the differential phosphoprotein abundance associated with the drug-induced stress response and SbIII-resistance mechanisms, we compared nontreated and SbIII-treated samples of each line. Pair wise comparisons revealed a total of 116 spots that showed a statistically significant difference in phosphoprotein abundance, including 11 and 34 spots specifically correlated with drug treatment and resistance, respectively. We identified 48 different proteins distributed into seven biological process categories. The category "protein folding/chaperones and stress response" is mainly implicated in response to SbIII treatment, while the categories "antioxidant/detoxification," "metabolic process," "RNA/DNA processing," and "protein biosynthesis" are modulated in the case of antimony resistance. Multiple sequence alignments were performed to validate the conservation of phosphorylated residues in nine proteins identified here. Western blot assays were carried out to validate the quantitative phosphoproteome analysis. The results revealed differential expression level of three phosphoproteins in the lines analyzed. This novel study allowed us to profile the L. braziliensis phosphoproteome, identifying several potential candidates for biochemical or signaling networks associated with antimony resistance phenotype in this parasite.
Collapse
Affiliation(s)
- Douglas de Souza Moreira
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisas René Rachou CPqRR/Fiocruz, Belo Horizonte, MG, Brazil
| | - Pascale Pescher
- Institut Pasteur, CNRS URA2581, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Christine Laurent
- Department of Structural Biology and Chemistry, Pasteur-Genopole Ile-de-France, Plate-forme de Protéomique, Institut Pasteur, Paris, France
| | - Pascal Lenormand
- Department of Structural Biology and Chemistry, Pasteur-Genopole Ile-de-France, Plate-forme de Protéomique, Institut Pasteur, Paris, France
| | - Gerald F Späth
- Institut Pasteur, CNRS URA2581, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Silvane M F Murta
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisas René Rachou CPqRR/Fiocruz, Belo Horizonte, MG, Brazil
| |
Collapse
|
28
|
Norris-Mullins B, Vacchina P, Morales MA. Catalytic activity of a novel serine/threonine protein phosphatase PP5 from Leishmania major. ACTA ACUST UNITED AC 2014; 21:25. [PMID: 24890370 PMCID: PMC4042446 DOI: 10.1051/parasite/2014027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/24/2014] [Indexed: 11/14/2022]
Abstract
Leishmaniasis is a vector-borne disease caused by protozoan parasites of the genus Leishmania. Our knowledge of protein phosphatases (PPs) and their implication in signaling events is very limited. Here we report the expression, characterization and mutagenesis analysis of a novel protein phosphatase 5 (PP5) in Leishmania major. Recombinant PP5 is a bona fide phosphatase and is enzymatically active. Site-directed mutagenesis revealed auto-inhibitory roles of the N-terminal region. This is a rational first approach to understand the role of PP5 in the biology of the parasite better as well as its potential future applicability to anti-parasitic intervention.
Collapse
Affiliation(s)
- Brianna Norris-Mullins
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paola Vacchina
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Miguel A Morales
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
29
|
Stress induces changes in the phosphorylation of Trypanosoma cruzi RNA polymerase II, affecting its association with chromatin and RNA processing. EUKARYOTIC CELL 2014; 13:855-65. [PMID: 24813189 DOI: 10.1128/ec.00066-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The phosphorylation of the carboxy-terminal heptapeptide repeats of the largest subunit of RNA polymerase II (Pol II) controls several transcription-related events in eukaryotes. Trypanosomatids lack these typical repeats and display an unusual transcription control. RNA Pol II associates with the transcription site of the spliced leader (SL) RNA, which is used in the trans-splicing of all mRNAs transcribed on long polycistronic units. We found that Trypanosoma cruzi RNA Pol II associated with chromatin is highly phosphorylated. When transcription is inhibited by actinomycin D, the enzyme runs off from SL genes, remaining hyperphosphorylated and associated with polycistronic transcription units. Upon heat shock, the enzyme is dephosphorylated and remains associated with the chromatin. Transcription is partially inhibited with the accumulation of housekeeping precursor mRNAs, except for heat shock genes. DNA damage caused dephosphorylation and transcription arrest, with RNA Pol II dissociating from chromatin although staying at the SL. In the presence of calyculin A, the hyperphosphorylated form detached from chromatin, including the SL loci. These results indicate that in trypanosomes, the unusual RNA Pol II is phosphorylated during the transcription of SL and polycistronic operons. Different types of stresses modify its phosphorylation state, affecting pre-RNA processing.
Collapse
|
30
|
Rothberg KG, Jetton N, Hubbard JG, Powell DA, Pandarinath V, Ruben L. Identification of a protein phosphatase 2A family member that regulates cell cycle progression in Trypanosoma brucei. Mol Biochem Parasitol 2014; 194:48-52. [PMID: 24780109 DOI: 10.1016/j.molbiopara.2014.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 04/12/2014] [Accepted: 04/18/2014] [Indexed: 11/30/2022]
Abstract
The cell cycle consists of an orderly sequence of events, whose purpose is to faithfully replicate and segregate cellular components. Many events in the cell cycle are triggered by protein kinases and counteracting phosphoprotein phosphatases (PPP). In Trypanosoma brucei, RNAi has been used to characterize numerous regulatory kinases, while the role of protein phosphatases has primarily been deduced with inhibitors such as okadaic acid and calyculin. In the present study, we identify for the first time a protein phosphatase 2A family member (TbPP2A-1) whose knockdown with RNAi phenocopies the effects of okadaic acid (OKA). In bloodstream forms (BF) and insect stage procyclic forms (PF) RNAi of TbPP2A-1 generates a cell population characterized by: an inhibition of cell growth, a block in cytokinesis; continued synthesis of nuclear DNA leading to aneuploidy; continued mitosis leading to cells with N>2, and an unusual phenotype where number of kinetoplasts (and flagella) is less than the number of nuclei. An engineered cell line was constructed to further study TbPP2A-1 and to facilitate the discovery of other cell cycle regulatory genes.
Collapse
Affiliation(s)
- Karen G Rothberg
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, United States
| | - Neal Jetton
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, United States
| | - James G Hubbard
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, United States
| | - Daniel A Powell
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, United States
| | - Vidya Pandarinath
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, United States
| | - Larry Ruben
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, United States.
| |
Collapse
|
31
|
Ma GX, Zhou RQ, Hu SJ, Huang HC, Zhu T, Xia QY. Molecular characterization and functional analysis of serine/threonine protein phosphatase of Toxocara canis. Exp Parasitol 2014; 141:55-61. [PMID: 24657583 DOI: 10.1016/j.exppara.2014.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/12/2014] [Indexed: 11/19/2022]
Abstract
Toxocara canis (T. canis) is a widely prevalent zoonotic parasite that infects a wide range of mammalian hosts, including humans. We generated the full-length complementary DNA (cDNA) of the serine/threonine phosphatase gene of T. canis (Tc stp) using 5' rapid amplification of the cDNA ends. The 1192-bp sequence contained a continuous 942-nucleotide open reading frame, encoding a 313-amino-acid polypeptide. The Tc STP polypeptide shares a high level of amino-acid sequence identity with the predicted STPs of Loa loa (89%), Brugia malayi (86%), Oesophagostomum columbianum (76%), and Oesophagostomumdentatum (76%). The Tc STP contains GDXHG, GDXVDRG, GNHE motifs, which are characteristic of members of the phosphoprotein phosphatase family. Our quantitative real-time polymerase chain reaction analysis showed that the Tc STP was expressed in six different tissues in the adult male, with high-level expression in the spermary, vas deferens, and musculature, but was not expressed in the adult female, suggesting that Tc STP might be involved in spermatogenesis and mating behavior. Thus, STP might represent a potential molecular target for controlling T. canis reproduction.
Collapse
Affiliation(s)
- Guang Xu Ma
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
| | - Rong Qiong Zhou
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China.
| | - Shi Jun Hu
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
| | - Han Cheng Huang
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
| | - Tao Zhu
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
| | - Qing You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
32
|
Porcel BM, Denoeud F, Opperdoes F, Noel B, Madoui MA, Hammarton TC, Field MC, Da Silva C, Couloux A, Poulain J, Katinka M, Jabbari K, Aury JM, Campbell DA, Cintron R, Dickens NJ, Docampo R, Sturm NR, Koumandou VL, Fabre S, Flegontov P, Lukeš J, Michaeli S, Mottram JC, Szöőr B, Zilberstein D, Bringaud F, Wincker P, Dollet M. The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. PLoS Genet 2014; 10:e1004007. [PMID: 24516393 PMCID: PMC3916237 DOI: 10.1371/journal.pgen.1004007] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
Members of the family Trypanosomatidae infect many organisms, including animals, plants and humans. Plant-infecting trypanosomes are grouped under the single genus Phytomonas, failing to reflect the wide biological and pathological diversity of these protists. While some Phytomonas spp. multiply in the latex of plants, or in fruit or seeds without apparent pathogenicity, others colonize the phloem sap and afflict plants of substantial economic value, including the coffee tree, coconut and oil palms. Plant trypanosomes have not been studied extensively at the genome level, a major gap in understanding and controlling pathogenesis. We describe the genome sequences of two plant trypanosomatids, one pathogenic isolate from a Guianan coconut and one non-symptomatic isolate from Euphorbia collected in France. Although these parasites have extremely distinct pathogenic impacts, very few genes are unique to either, with the vast majority of genes shared by both isolates. Significantly, both Phytomonas spp. genomes consist essentially of single copy genes for the bulk of their metabolic enzymes, whereas other trypanosomatids e.g. Leishmania and Trypanosoma possess multiple paralogous genes or families. Indeed, comparison with other trypanosomatid genomes revealed a highly streamlined genome, encoding for a minimized metabolic system while conserving the major pathways, and with retention of a full complement of endomembrane organelles, but with no evidence for functional complexity. Identification of the metabolic genes of Phytomonas provides opportunities for establishing in vitro culturing of these fastidious parasites and new tools for the control of agricultural plant disease. Some plant trypanosomes, single-celled organisms living in phloem sap, are responsible for important palm diseases, inducing frequent expensive and toxic insecticide treatments against their insect vectors. Other trypanosomes multiply in latex tubes without detriment to their host. Despite the wide range of behaviors and impacts, these trypanosomes have been rather unceremoniously lumped into a single genus: Phytomonas. A battery of molecular probes has been used for their characterization but no clear phylogeny or classification has been established. We have sequenced the genomes of a pathogenic phloem-specific Phytomonas from a diseased South American coconut palm and a latex-specific isolate collected from an apparently healthy wild euphorb in the south of France. Upon comparison with each other and with human pathogenic trypanosomes, both Phytomonas revealed distinctive compact genomes, consisting essentially of single-copy genes, with the vast majority of genes shared by both isolates irrespective of their effect on the host. A strong cohort of enzymes in the sugar metabolism pathways was consistent with the nutritional environments found in plants. The genetic nuances may reveal the basis for the behavioral differences between these two unique plant parasites, and indicate the direction of our future studies in search of effective treatment of the crop disease parasites.
Collapse
Affiliation(s)
- Betina M. Porcel
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
- Université d'Evry, UMR 8030, Evry, France
- Centre National de Recherche Scientifique (CNRS), UMR 8030, Evry, France
- * E-mail: (BMP); (MD)
| | - France Denoeud
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
- Université d'Evry, UMR 8030, Evry, France
- Centre National de Recherche Scientifique (CNRS), UMR 8030, Evry, France
| | - Fred Opperdoes
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Benjamin Noel
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Mohammed-Amine Madoui
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Tansy C. Hammarton
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mark C. Field
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Corinne Da Silva
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Arnaud Couloux
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Julie Poulain
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Michael Katinka
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Kamel Jabbari
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
- Université d'Evry, UMR 8030, Evry, France
- Centre National de Recherche Scientifique (CNRS), UMR 8030, Evry, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - David A. Campbell
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Roxana Cintron
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Nicholas J. Dickens
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Nancy R. Sturm
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | | | - Sandrine Fabre
- CIRAD, TA A-98/F, Campus International de Baillarguet, Montpellier, France
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Shulamit Michaeli
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Jeremy C. Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Balázs Szöőr
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Dan Zilberstein
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Frédéric Bringaud
- Centre de Résonance Magnétique des Systèmes Biologiques, Université Bordeaux Segalen, CNRS UMR-5536, Bordeaux, France
| | - Patrick Wincker
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
- Université d'Evry, UMR 8030, Evry, France
- Centre National de Recherche Scientifique (CNRS), UMR 8030, Evry, France
| | - Michel Dollet
- CIRAD, TA A-98/F, Campus International de Baillarguet, Montpellier, France
- * E-mail: (BMP); (MD)
| |
Collapse
|
33
|
Biochemical properties and possible roles of ectophosphatase activities in fungi. Int J Mol Sci 2014; 15:2289-304. [PMID: 24509700 PMCID: PMC3958851 DOI: 10.3390/ijms15022289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/27/2013] [Accepted: 01/14/2014] [Indexed: 12/31/2022] Open
Abstract
Ectophosphatases are surface membrane-bound proteins whose active sites face the extracellular medium. These enzymes have been reported in several microorganisms including a large number of medically relevant fungal species. An effective technique for identifying ectophosphatases is performing phosphatase activity assays using living intact cells. Biochemical characterization of these activities has shown their differential modulation by classical phosphatase inhibitors, divalent metals and pH range. The physiological roles of ectophosphatases are not well established; however, it has been suggested that these enzymes play important roles in nutrition, proliferation, differentiation, adhesion, virulence and infection. Adhesion to host cells is the first step in establishing a fungal infection and ectophosphatases may be one of the first parasite proteins that come into contact with the host cells. Several results indicate that ectophosphatase activities increase the capacity of fungi to adhere to the host cells. In this context, the present review provides an overview of recent discoveries related to the occurrence and possible roles of ectophosphatase activities in fungal cells.
Collapse
|
34
|
Orrego PR, Olivares H, Cordero EM, Bressan A, Cortez M, Sagua H, Neira I, González J, da Silveira JF, Yoshida N, Araya JE. A cytoplasmic new catalytic subunit of calcineurin in Trypanosoma cruzi and its molecular and functional characterization. PLoS Negl Trop Dis 2014; 8:e2676. [PMID: 24498455 PMCID: PMC3907409 DOI: 10.1371/journal.pntd.0002676] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 12/18/2013] [Indexed: 12/20/2022] Open
Abstract
Parasitological cure for Chagas disease is considered extremely difficult to achieve because of the lack of effective chemotherapeutic agents against Trypanosoma cruzi at different stages of infection. There are currently only two drugs available. These have several limitations and can produce serious side effects. Thus, new chemotherapeutic targets are much sought after. Among T. cruzi components involved in key processes such as parasite proliferation and host cell invasion, Ca(2+)-dependent molecules play an important role. Calcineurin (CaN) is one such molecule. In this study, we cloned a new isoform of the gene coding for CL strain catalytic subunit CaNA (TcCaNA2) and characterized it molecularly and functionally. There is one copy of the TcCaNA2 gene per haploid genome. It is constitutively transcribed in all T. cruzi developmental forms and is localized predominantly in the cytosol. In the parasite, TcCaNA2 is associated with CaNB. The recombinant protein TcCaNA2 has phosphatase activity that is enhanced by Mn(2+)/Ni(2+). The participation of TcCaNA2 in target cell invasion by metacyclic trypomastigotes was also demonstrated. Metacyclic forms with reduced TcCaNA2 expression following treatment with morpholino antisense oligonucleotides targeted to TcCaNA2 invaded HeLa cells at a lower rate than control parasites treated with morpholino sense oligonucleotides. Similarly, the decreased expression of TcCaNA2 following treatment with antisense morpholino oligonucleotides partially affected the replication of epimastigotes, although to a lesser extent than the decrease in expression following treatment with calcineurin inhibitors. Our findings suggest that the calcineurin activities of TcCaNA2/CaNB and TcCaNA/CaNB, which have distinct cellular localizations (the cytoplasm and the nucleus, respectively), may play a critical role at different stages of T. cruzi development, the former in host cell invasion and the latter in parasite multiplication.
Collapse
Affiliation(s)
- Patricio R. Orrego
- Department of Medical Technology, University of Antofagasta, Antofagasta, Chile
| | - Héctor Olivares
- Biomedical Department, University of Antofagasta, Antofagasta, Chile
| | - Esteban M. Cordero
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Albert Bressan
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Mauro Cortez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Hernán Sagua
- Department of Medical Technology, University of Antofagasta, Antofagasta, Chile
| | - Ivan Neira
- Department of Medical Technology, University of Antofagasta, Antofagasta, Chile
| | - Jorge González
- Department of Medical Technology, University of Antofagasta, Antofagasta, Chile
| | - José Franco da Silveira
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Nobuko Yoshida
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Jorge E. Araya
- Department of Medical Technology, University of Antofagasta, Antofagasta, Chile
| |
Collapse
|
35
|
Freitas-Mesquita AL, Meyer-Fernandes JR. Ecto-nucleotidases and Ecto-phosphatases from Leishmania and Trypanosoma parasites. Subcell Biochem 2014; 74:217-252. [PMID: 24264248 DOI: 10.1007/978-94-007-7305-9_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ecto-enzymes can be defined as membrane-bound proteins that have their active site facing the extracellular millieu. In trypanosomatids, the physiological roles of these enzymes remain to be completed elucidated; however, many important events have already been related to them, such as the survival of parasites during their complex life cycle and the successful establishment of host infection. This chapter focuses on two remarkable classes of ecto-enzymes: ecto-nucleotidases and ecto-phosphatases, summarizing their occurrence and possible physiological roles in Leishmania and Trypanosoma genera. Ecto-nucleotidases are characterized by their ability to hydrolyze extracellular nucleotides, playing an important role in purinergic signaling. By the action of these ecto-enzymes, parasites are capable of modulating the host immune system, which leads to a successful parasite infection. Furthermore, ecto-nucleotidases are also involved in the purine salvage pathway, acting in the generation of nucleosides that are able to cross plasma membrane via specialized transporters. Another important ecto-enzyme present in a vast number of pathogenic organisms is the ecto-phosphatase. These enzymes are able to hydrolyze extracellular phosphorylated substrates, releasing free inorganic phosphate that can be internalized by the cell, crossing the plasma membrane through a Pi-transporter. Ecto-phosphatases are also involved in the invasion and survival of parasite in the host cells. Several alternative functions have been suggested for these enzymes in parasites, such as participation in their proliferation, differentiation, nutrition and protection. In this context, the present chapter provides an overview of recent discoveries related to the occurrence of ecto-nucleotidase and ecto-phosphatase activities in Leishmania and Trypanosoma parasites.
Collapse
|
36
|
Anwar T, Gourinath S. Analysis of the Protein phosphotome of Entamoeba histolytica reveals an intricate phosphorylation network. PLoS One 2013; 8:e78714. [PMID: 24236039 PMCID: PMC3827238 DOI: 10.1371/journal.pone.0078714] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 09/22/2013] [Indexed: 01/06/2023] Open
Abstract
Phosphorylation is the most common mechanism for the propagation of intracellular signals. Protein phosphatases and protein kinases play a dynamic antagonistic role in protein phosphorylation. Protein phosphatases make up a significant fraction of eukaryotic proteome. In this article, we report the identification and analysis of protein phosphatases in the intracellular parasite Entamoeba histolytica. Based on an in silico analysis, we classified 250 non-redundant protein phosphatases in E. histolytica. The phosphotome of E. histolytica is 3.1% of its proteome and 1.3 times of the human phosphotome. In this extensive study, we identified 42 new putative phosphatases (39 hypothetical proteins and 3 pseudophosphatases). The presence of pseudophosphatases may have an important role in virulence of E. histolytica. A comprehensive phosphotome analysis of E. histolytica shows spectacular low similarity to human phosphatases, making them potent candidates for drug target.
Collapse
Affiliation(s)
- Tamanna Anwar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
37
|
González-Marcano E, Mijares A, Quiñones W, Cáceres A, Concepción JL. Post-translational modification of the pyruvate phosphate dikinase from Trypanosoma cruzi. Parasitol Int 2013; 63:80-6. [PMID: 24060543 DOI: 10.1016/j.parint.2013.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/13/2013] [Accepted: 09/11/2013] [Indexed: 11/18/2022]
Abstract
In kinetoplastids such as Trypanosoma cruzi, glycolysis is compartmentalized in peroxisome-like organelles called glycosomes. Pyruvate phosphate dikinase (PPDK), an auxiliary enzyme of glycolysis, is also located in the glycosomes. We have detected that this protein is post-translationally modified by phosphorylation and proteolytic cleavage. On western blots of T. cruzi epimastigotes, two PPDK forms were found with apparent MW of 100 kDa and 75 kDa, the latter one being phosphorylated at Thr481, a residue present in a highly conserved region. In subcellular localization assays the 75 kDa PPDK was located peripherally at the glycosomal membrane. Both PPDK forms were found in all life-cycle stages of the parasite. When probing for both PPDK forms during a growth of epimastigotes in batch culture, an increase in the level of the 75 kDa form and a decrease of the 100 kDa one were observed by western blot analysis, signifying that glucose starvation and the concomitant switch of the metabolism to amino acid catabolism may play a role in the post-translational processing of the PPDK. Either one or both of the processes, phosphorylation and proteolytic cleavage of PPDK, result in inactivation of the enzyme. It remains to be established whether the phenomenon exerts a regulatory function.
Collapse
Affiliation(s)
- Eglys González-Marcano
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, La Hechicera, Mérida 5101, Venezuela.
| | | | | | | | | |
Collapse
|
38
|
de Graffenried CL, Anrather D, Von Raußendorf F, Warren G. Polo-like kinase phosphorylation of bilobe-resident TbCentrin2 facilitates flagellar inheritance in Trypanosoma brucei. Mol Biol Cell 2013; 24:1947-63. [PMID: 23615446 PMCID: PMC3681699 DOI: 10.1091/mbc.e12-12-0911] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/26/2013] [Accepted: 04/16/2013] [Indexed: 11/11/2022] Open
Abstract
In the protist parasite Trypanosoma brucei, the single Polo-like kinase (TbPLK) controls the inheritance of a suite of organelles that help position the parasite's single flagellum. These include the basal bodies, the bilobe, and the flagellar attachment zone (FAZ). TbCentrin2 was previously shown to be a target for TbPLK in vitro, and this is extended in this study to in vivo studies, highlighting a crucial role for serine 54 in the N-terminal domain. Duplication of the bilobe correlates with the presence of TbPLK and phospho-TbCentrin2, identified using phosphospecific antiserum. Mutation of S54 leads to slow growth (S54A) or no growth (S54D), the latter suggesting that dephosphorylation is needed to complete bilobe duplication and subsequent downstream events necessary for flagellum inheritance.
Collapse
|
39
|
Fernandes AC, Soares DC, Saraiva EM, Meyer-Fernandes JR, Souto-Padrón T. Different secreted phosphatase activities inLeishmania amazonensis. FEMS Microbiol Lett 2013; 340:117-28. [DOI: 10.1111/1574-6968.12080] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 12/21/2022] Open
Affiliation(s)
- Anne C.S. Fernandes
- Instituto de Microbiologia Paulo de Góes; Centro de Ciências da Saúde; Universidade Federal do Rio de Janeiro; Rio de Janeiro; Brasil
| | - Deivid C. Soares
- Instituto de Microbiologia Paulo de Góes; Centro de Ciências da Saúde; Universidade Federal do Rio de Janeiro; Rio de Janeiro; Brasil
| | - Elvira M. Saraiva
- Instituto de Microbiologia Paulo de Góes; Centro de Ciências da Saúde; Universidade Federal do Rio de Janeiro; Rio de Janeiro; Brasil
| | - José R. Meyer-Fernandes
- Instituto de Bioquímica Médica; Centro de Ciências da Saúde; Universidade Federal do Rio de Janeiro; Rio de Janeiro; Brasil
| | - Thaïs Souto-Padrón
- Instituto de Microbiologia Paulo de Góes; Centro de Ciências da Saúde; Universidade Federal do Rio de Janeiro; Rio de Janeiro; Brasil
| |
Collapse
|
40
|
Lountos GT, Tropea JE, Waugh DS. Structure of the Trypanosoma cruzi protein tyrosine phosphatase TcPTP1, a potential therapeutic target for Chagas' disease. Mol Biochem Parasitol 2013; 187:1-8. [PMID: 23137716 PMCID: PMC4197799 DOI: 10.1016/j.molbiopara.2012.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/22/2012] [Accepted: 10/26/2012] [Indexed: 12/26/2022]
Abstract
Chagas' disease, a neglected tropical affliction transmitted by the flagellated protozoan Trypanosoma cruzi, is prevalent in Latin America and affects nearly 18 million people worldwide, yet few approved drugs are available to treat the disease. Moreover, the currently available drugs exhibit severe toxicity or are poorly effective in the chronic phase of the disease. This limitation, along with the large population at risk, underscores the urgent need to discover new molecular targets and novel therapeutic agents. Recently, the T. cruzi protein tyrosine phosphatase TcPTP1 has been implicated in the cellular differentiation and infectivity of the parasite and is therefore a promising target for the design of novel anti-parasitic drugs. Here, we report the X-ray crystal structure of TcPTP1 refined to a resolution of 2.18 Å, which provides structural insights into the active site environment that can be used to initiate structure-based drug design efforts to develop specific TcPTP1 inhibitors. Potential strategies to develop such inhibitors are also discussed.
Collapse
Affiliation(s)
- George T. Lountos
- Basic Science Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Macromolecular Crystallography Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Joseph E. Tropea
- Macromolecular Crystallography Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - David S. Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
41
|
Rai R, Singh N, Elesela S, Tiwari S, Rathaur S. MALDI mass sequencing and biochemical characterization of Setaria cervi protein tyrosine phosphatase. Parasitol Res 2012; 112:147-54. [PMID: 23052758 DOI: 10.1007/s00436-012-3118-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 09/05/2012] [Indexed: 01/11/2023]
Abstract
A 30-kDa acid phosphatase with protein tyrosine phosphatase activity was identified in Setaria cervi (ScPTP). The enzyme was purified to homogeneity using three-step column chromatography. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis of purified ScPTP yielded a total of eight peptides matching most closely to phosphoprotein phosphatase of Ricinus communis (RcPP). A hydrophilicity plot of RcPP revealed the presence of these peptides in the hydrophilic region, suggesting their antigenic nature. The substrate specificity of ScPTP with ortho-phospho-L-tyrosine and inhibition with sodium orthovanadate and ammonium molybdate affirmed it as a protein tyrosine phosphatase. ScPTP was also found to be tartrate resistant. The Km and Vmax were 6.60 mM and 83.3 μM/ml/min, respectively, with pNPP and 8.0 mM and 111 μM/ml/min, respectively, with ortho-phospho-L-tyrosine as the substrate. The Ki value with sodium orthovanadate was calculated to be 16.10 mM. Active site modification with DEPC, EDAC and pHMB suggested the presence of histidine, cysteine and aspartate at its active site. Thus, on the basis of MALDI-TOF and biochemical studies, it was confirmed that purified acid phosphatase is a PTP.
Collapse
Affiliation(s)
- Reeta Rai
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India
| | | | | | | | | |
Collapse
|
42
|
Mattos EC, Schumacher RI, Colli W, Alves MJM. Adhesion of Trypanosoma cruzi trypomastigotes to fibronectin or laminin modifies tubulin and paraflagellar rod protein phosphorylation. PLoS One 2012; 7:e46767. [PMID: 23056443 PMCID: PMC3465109 DOI: 10.1371/journal.pone.0046767] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 09/05/2012] [Indexed: 12/21/2022] Open
Abstract
Background The unicellular parasite Trypanosoma cruzi is the causative agent of Chagaś disease in humans. Adherence of the infective stage to elements of the extracellular matrix (ECM), as laminin and fibronectin, is an essential step in host cell invasion. Although members of the gp85/TS, as Tc85, were identified as laminin and fibronectin ligands, the signaling events triggered on the parasite upon binding to these molecules are largely unexplored. Methodology/Principal Findings Viable infective parasites were incubated with laminin, fibronectin or bovine serum albumin for different periods of time and the proteins were separated by bidimensional gels. The phosphoproteins were envisaged by specific staining and the spots showing phosphorylation levels significantly different from the control were excised and identified by MS/MS. The results of interest were confirmed by immunoblotting or immunoprecipitation and the localization of proteins in the parasite was determined by immunofluorescence. Using a host cell-free system, our data indicate that the phosphorylation contents of T. cruzi proteins encompassing different cellular functions are modified upon incubation of the parasite with fibronectin or laminin. Conclusions/Significance Herein it is shown, for the first time, that paraflagellar rod proteins and α-tubulin, major structural elements of the parasite cytoskeleton, are predominantly dephosphorylated during the process, probably involving the ERK1/2 pathway. It is well established that T. cruzi binds to ECM elements during the cell infection process. The fact that laminin and fibronectin induce predominantly dephosphorylation of the main cytoskeletal proteins of the parasite suggests a possible correlation between cytoskeletal modifications and the ability of the parasite to internalize into host cells.
Collapse
Affiliation(s)
- Eliciane C. Mattos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Robert I. Schumacher
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Walter Colli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Julia M. Alves
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
43
|
Abstract
Parasitic protozoa belonging to the genus Leishmania are the cause of a spectrum of diseases in humans, as well as chronic long-term infections. These parasites exhibit a remarkable capacity to survive and proliferate within the phagolysosome compartment of host macrophages. Studies with defined Leishmania mutants in mouse models of infection have highlighted processes that are required for parasite survival in macrophages. Parasite mutants have been identified that (i) are poorly virulent when the insect (promastigote) stage is used to initiate infection, but retain wild-type virulence following transformation to the obligate intracellular amastigote stage, (ii) are highly attenuated when either promastigotes or amastigotes are used, and (iii) are unable to induce characteristic lesion granulomas, but can persist within macrophages in other tissues. From these analyses it can be concluded that promastigote stages of some species require the surface expression of lipophosphoglycan, but not other surface components. Survival and subsequent proliferation of Leishmania in macrophages requires the activation of heat-shock responses (involving the up-regulation and/or phosphorylation of heat-shock proteins), the presence of oxidative and nitrosative defence mechanisms, and uptake and catabolism of carbon sources (glycoproteins, hexoses and amino acids) and essential nutrients (purines, amino acids and vitamins). Parasite mutants with defects in specific kinase/phosphatase-dependent signalling pathways are also severely attenuated in amastigote virulence, highlighting the potential importance of post-translational regulatory mechanisms in parasite adaptation to this host niche.
Collapse
|
44
|
Kramer S. Developmental regulation of gene expression in the absence of transcriptional control: The case of kinetoplastids. Mol Biochem Parasitol 2012; 181:61-72. [PMID: 22019385 DOI: 10.1016/j.molbiopara.2011.10.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 11/25/2022]
|
45
|
Cosentino-Gomes D, Meyer-Fernandes JR. Ecto-phosphatases in protozoan parasites: possible roles in nutrition, growth and ROS sensing. J Bioenerg Biomembr 2011; 43:89-92. [PMID: 21253843 DOI: 10.1007/s10863-011-9334-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cellular plasma membrane contains enzymes whose active sites face the external medium rather than the cytoplasm. The activities of these enzymes, referred to as ecto-enzymes, can be measured using living cells. Ecto-phosphatases are ecto-enzymes that presumably hydrolyze extracellular phosphorylated substrates, releasing free inorganic phosphate. Although, several alternative functions have been suggested for these enzymes, such as participation in proliferation, differentiation, adhesion, virulence, and infection, little is known about the physiological roles of these enzymes in protozoa parasites. In this review, we discuss the principal features of ecto-phosphatases in protozoan parasites that are causative agents of important diseases such as Chagas' disease, leishmaniasis, amoebiasis, giardiasis, trichomoniasis and, sleeping sickness.
Collapse
Affiliation(s)
- Daniela Cosentino-Gomes
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
46
|
Possible roles of ectophosphatases in host-parasite interactions. J Parasitol Res 2011; 2011:479146. [PMID: 21603194 PMCID: PMC3095255 DOI: 10.1155/2011/479146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/07/2011] [Accepted: 03/01/2011] [Indexed: 11/17/2022] Open
Abstract
The interaction and survival of pathogens in hostile environments and in confrontation with host immune responses are important mechanisms for the establishment of infection. Ectophosphatases are enzymes localized at the plasma membrane of cells, and their active sites face the external medium rather than the cytoplasm. Once activated, these enzymes are able to hydrolyze phosphorylated substrates in the extracellular milieu. Several studies demonstrated the presence of surface-located ecto-phosphatases in a vast number of pathogenic organisms, including bacteria, protozoa, and fungi. Little is known about the role of ecto-phosphatases in host-pathogen interactions. The present paper provides an overview of recent findings related to the virulence induced by these surface molecules in protozoa and fungi.
Collapse
|
47
|
Naderer T, Dandash O, McConville MJ. Calcineurin is required for Leishmania major stress response pathways and for virulence in the mammalian host. Mol Microbiol 2011; 80:471-80. [PMID: 21320183 DOI: 10.1111/j.1365-2958.2011.07584.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Leishmania parasites must adapt to elevated temperatures and other environmental stresses during infection of their mammalian hosts. How these environmental cues are sensed is poorly understood. In this study we show that calcium uptake is required for parasite thermotolerance at 34-37°C. To identify potential downstream targets of calcium influx, a Leishmania major mutant lacking the essential regulatory subunit (CnB) of the Ca(2+) /calmodulin-dependent serine/threonine-specific phosphatase, calcineurin, was generated. The Δcnb mutant grew as well as wild-type parasites at 27°C and differentiated normally to infective metacyclic promastigotes. However, Δcnb parasites lost viability when exposed to increased temperature (34°C) and were hypersensitive to endoplasmic reticulum and membrane stress, induced by tunicamycin and inhibitors of sterol and sphingolipid biosynthesis respectively. Δcnb promastigotes were internalized by macrophages, but their differentiation to the heat adapted amastigote stage was delayed and the resulting parasites failed to proliferate. Strikingly, the Δcnb parasites were completely cleared by susceptible BALB/c mice. Complementation of Δcnb parasites with CnB restored thermotolerance and infectivity in both macrophages and animal models. Our results suggest that Ca(2+) influx and calcineurin signalling are required for both early and long-term adaptive parasite responses to environmental stresses encountered in the mammalian host.
Collapse
Affiliation(s)
- Thomas Naderer
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Vic. 3010, Australia
| | | | | |
Collapse
|