1
|
Jiao Z, Chen M, Zhao W, Wu Y, Guo G. Serine protease mediates Ovomermis sinensis-inhibited host immune responses by inducing apoptosis: implications for successful parasitism and host mortality. PEST MANAGEMENT SCIENCE 2024; 80:1968-1980. [PMID: 38105114 DOI: 10.1002/ps.7931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Mermithid nematodes are entomopathogens that parasitize and kill insect hosts and are used for biological control. It is widely believed that mermithid nematodes kill their host upon nematode emergence, unlike other parasites that depend on virulence factors. In this study, we disproved this theory by demonstrating that the mermithid nematode Ovomermis sinensis mediates host mortality by serine protease-induced apoptosis. RESULTS Successful parasitism of O. sinensis increased with the infection rate, and the inhibition of host immunity by O. sinensis increased with the parasitic load. A serine protease was identified from the host hemolymph. This protease belongs to the trypsin-like serine protease family, which is an apoptosis-inducing serine protease. Specifically, Os-sp was highly expressed only during the parasitic stage and could be induced by host hemocytes and the fat body. Importantly, host immune effectors (melanization, phenoloxidase activity, and encapsulation) were suppressed by the recombinant protein rOs-sp that induced apoptosis of hemocytes and fat body in a dose-dependent manner, which contributes to host death. CONCLUSION Serine protease mediates O. sinensis-inhibited host immune responses by inducing apoptosis that is lethal to the insect host. Our findings have broader implications for understanding the mechanism of successful parasitism and killing of host by nematodes. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenlong Jiao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Mingming Chen
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Wenjing Zhao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Yuanming Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Guo Guo
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Bugyna L, Kendra S, Bujdáková H. Galleria mellonella-A Model for the Study of aPDT-Prospects and Drawbacks. Microorganisms 2023; 11:1455. [PMID: 37374956 PMCID: PMC10301295 DOI: 10.3390/microorganisms11061455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Galleria mellonella is a promising in vivo model insect used for microbiological, medical, and pharmacological research. It provides a platform for testing the biocompatibility of various compounds and the kinetics of survival after an infection followed by subsequent treatment, and for the evaluation of various parameters during treatment, including the host-pathogen interaction. There are some similarities in the development of pathologies with mammals. However, a limitation is the lack of adaptive immune response. Antimicrobial photodynamic therapy (aPDT) is an alternative approach for combating microbial infections, including biofilm-associated ones. aPDT is effective against Gram-positive and Gram-negative bacteria, viruses, fungi, and parasites, regardless of whether they are resistant to conventional treatment. The main idea of this comprehensive review was to collect information on the use of G. mellonella in aPDT. It provides a collection of references published in the last 10 years from this area of research, complemented by some practical experiences of the authors of this review. Additionally, the review summarizes in brief information on the G. mellonella model, its advantages and methods used in the processing of material from these larvae, as well as basic knowledge of the principles of aPDT.
Collapse
Affiliation(s)
| | | | - Helena Bujdáková
- Faculty of Natural Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovicova 6, 84215 Bratislava, Slovakia; (L.B.); (S.K.)
| |
Collapse
|
3
|
Galleria mellonella as a Novel In Vivo Model to Screen Natural Product-Derived Modulators of Innate Immunity. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136587] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunomodulators are drugs that either stimulate or suppress the immune system in response to an immunopathological disease or cancer. The majority of clinically approved immunomodulators are either chemically synthesised (e.g., dexamethasone) or protein-based (e.g., monoclonal antibodies), whose uses are limited due to toxicity issues, poor bioavailability, or prohibitive cost. Nature is an excellent source of novel compounds, as it is estimated that almost half of all licenced medicines are derived from nature or inspired by natural product (NP) structures. The clinical success of the fungal-derived immunosuppressant cyclosporin A demonstrates the potential of natural products as immunomodulators. Conventionally, the screening of NP molecules for immunomodulation is performed in small animal models; however, there is a growing impetus to replace animal models with more ethical alternatives. One novel approach is the use of Galleria melonella larvae as an in vivo model of immunity. Despite lacking adaptive antigen-specific immunity, this insect possesses an innate immune system comparable to mammals. In this review, we will describe studies that have used this alternative in vivo model to assess the immunomodulating activity of synthetic and NP-derived compounds, outline the array of bioassays employed, and suggest strategies to enhance the use of this model in future research.
Collapse
|
4
|
Rodríguez-Saavedra C, Morgado-Martínez LE, Burgos-Palacios A, King-Díaz B, López-Coria M, Sánchez-Nieto S. Moonlighting Proteins: The Case of the Hexokinases. Front Mol Biosci 2021; 8:701975. [PMID: 34235183 PMCID: PMC8256278 DOI: 10.3389/fmolb.2021.701975] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Moonlighting proteins are defined as proteins with two or more functions that are unrelated and independent to each other, so that inactivation of one of them should not affect the second one and vice versa. Intriguingly, all the glycolytic enzymes are described as moonlighting proteins in some organisms. Hexokinase (HXK) is a critical enzyme in the glycolytic pathway and displays a wide range of functions in different organisms such as fungi, parasites, mammals, and plants. This review discusses HXKs moonlighting functions in depth since they have a profound impact on the responses to nutritional, environmental, and disease challenges. HXKs’ activities can be as diverse as performing metabolic activities, as a gene repressor complexing with other proteins, as protein kinase, as immune receptor and regulating processes like autophagy, programmed cell death or immune system responses. However, most of those functions are particular for some organisms while the most common moonlighting HXK function in several kingdoms is being a glucose sensor. In this review, we also analyze how different regulation mechanisms cause HXK to change its subcellular localization, oligomeric or conformational state, the response to substrate and product concentration, and its interactions with membrane, proteins, or RNA, all of which might impact the HXK moonlighting functions.
Collapse
Affiliation(s)
- Carolina Rodríguez-Saavedra
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Enrique Morgado-Martínez
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Andrés Burgos-Palacios
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Beatriz King-Díaz
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Montserrat López-Coria
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sobeida Sánchez-Nieto
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
5
|
Karkowska-Kuleta J, Wronowska E, Satala D, Zawrotniak M, Bras G, Kozik A, Nobbs AH, Rapala-Kozik M. Als3-mediated attachment of enolase on the surface of Candida albicans cells regulates their interactions with host proteins. Cell Microbiol 2020; 23:e13297. [PMID: 33237623 DOI: 10.1111/cmi.13297] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
The multifunctional protein enolase has repeatedly been identified on the surface of numerous cell types, including a variety of pathogenic microorganisms. In Candida albicans-one of the most common fungal pathogens in humans-a surface-exposed enolase form has been previously demonstrated to play an important role in candidal pathogenicity. In our current study, the presence of enolase at the fungal cell surface under different growth conditions was examined, and a higher abundance of enolase at the surface of C. albicans hyphal forms compared to yeast-like cells was found. Affinity chromatography and chemical cross-linking indicated a member of the agglutinin-like sequence protein family-Als3-as an important potential partner required for the surface display of enolase. Analysis of Saccharomyces cerevisiae cells overexpressing Als3 with site-specific deletions showed that the Ig-like N-terminal region of Als3 (aa 166-225; aa 218-285; aa 270-305; aa 277-286) and the central repeat domain (aa 434-830) are essential for the interaction of this adhesin with enolase. In addition, binding between enolase and Als3 influenced subsequent docking of host plasma proteins-high molecular mass kininogen and plasminogen-on the candidal cell surface, thus supporting the hypothesis that C. albicans can modulate plasma proteolytic cascades to affect homeostasis within the host and propagate inflammation during infection.
Collapse
Affiliation(s)
- Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Dorota Satala
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
6
|
Bobardt SD, Dillman AR, Nair MG. The Two Faces of Nematode Infection: Virulence and Immunomodulatory Molecules From Nematode Parasites of Mammals, Insects and Plants. Front Microbiol 2020; 11:577846. [PMID: 33343521 PMCID: PMC7738434 DOI: 10.3389/fmicb.2020.577846] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Helminths stage a powerful infection that allows the parasite to damage host tissue through migration and feeding while simultaneously evading the host immune system. This feat is accomplished in part through the release of a diverse set of molecules that contribute to pathogenicity and immune suppression. Many of these molecules have been characterized in terms of their ability to influence the infectious capabilities of helminths across the tree of life. These include nematodes that infect insects, known as entomopathogenic nematodes (EPN) and plants with applications in agriculture and medicine. In this review we will first discuss the nematode virulence factors, which aid parasite colonization or tissue invasion, and cause many of the negative symptoms associated with infection. These include enzymes involved in detoxification, factors essential for parasite development and growth, and highly immunogenic ES proteins. We also explore how these parasites use several classes of molecules (proteins, carbohydrates, and nucleic acids) to evade the host's immune defenses. For example, helminths release immunomodulatory molecules in extracellular vesicles that may be protective in allergy and inflammatory disease. Collectively, these nematode-derived molecules allow parasites to persist for months or even years in a host, avoiding being killed or expelled by the immune system. Here, we evaluate these molecules, for their individual and combined potential as vaccine candidates, targets for anthelminthic drugs, and therapeutics for allergy and inflammatory disease. Last, we evaluate shared virulence and immunomodulatory mechanisms between mammalian and non-mammalian plant parasitic nematodes and EPNs, and discuss the utility of EPNs as a cost-effective model for studying nematode-derived molecules. Better knowledge of the virulence and immunomodulatory molecules from both entomopathogenic nematodes and soil-based helminths will allow for their use as beneficial agents in fighting disease and pests, divorced from their pathogenic consequences.
Collapse
Affiliation(s)
- Sarah D. Bobardt
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Adler R. Dillman
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
7
|
Dong Y, Li X, Duan J, Qin Y, Yang X, Ren J, Li G. Improving the Yield of Xenocoumacin 1 Enabled by In Situ Product Removal. ACS OMEGA 2020; 5:20391-20398. [PMID: 32832792 PMCID: PMC7439382 DOI: 10.1021/acsomega.0c02357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Xenocoumacin 1 (Xcn1), a major antimicrobial compound produced by Xenorhabdus nematophila CB6, has great potential to be developed into a novel biofungicide. However, its low yield in the producing cells has limited its possible commercial applications. In this study, we explored the effect of in situ product removal (ISPR), a well-established recovery technique, with the use of macroporous resin X-5 on the production of Xcn1 in a fermentation setting. Relative to the routine fermentation process, the yield of Xcn1 was improved from 42.5 to 73.8 μg/mL (1.7-fold) and 12.9 to 60.3 μg/mL (4.7-fold) in three and ten days, respectively. By agar diffusion plate and growth inhibition assays, the antibiotic activity against Bacillus subtilis and Alternaria solani was also found to be improved. Further study revealed that protection of Xcn1 against degradation and decrease in cell self-toxicity as well as upregulation of biosynthesis-related genes of Xcn1 at the transcription level contributed to yield improvement of Xcn1. In addition, resin X-5 significantly altered the metabolite profile of X. nematophila CB6, which could promote the discovery of new antibiotics.
Collapse
Affiliation(s)
- Yijie Dong
- State
Key Laboratory for Biology of Plant Diseases and Insect Pests/Key
Laboratory of Control of Biological Hazard Factors (Plant Origin)
for Agri-product Quality and Safety, Ministry of Agriculture, Institute
of Plant Protection, Chinese Academy of
Agricultural Sciences, Beijing 100081, People’s Republic
of China
- Guangdong
Provincial Key Laboratory of Microbial Culture Collection and Application,
State Key Laboratory of Applied Microbiology Southern China, Guangdong
Institute of Microbiology, Guangdong Academy
of Sciences, Guangzhou 510070, People’s Republic of China
| | - Xiaohui Li
- State
Key Laboratory for Biology of Plant Diseases and Insect Pests/Key
Laboratory of Control of Biological Hazard Factors (Plant Origin)
for Agri-product Quality and Safety, Ministry of Agriculture, Institute
of Plant Protection, Chinese Academy of
Agricultural Sciences, Beijing 100081, People’s Republic
of China
| | - Jiaqi Duan
- State
Key Laboratory for Biology of Plant Diseases and Insect Pests/Key
Laboratory of Control of Biological Hazard Factors (Plant Origin)
for Agri-product Quality and Safety, Ministry of Agriculture, Institute
of Plant Protection, Chinese Academy of
Agricultural Sciences, Beijing 100081, People’s Republic
of China
| | - Youcai Qin
- State
Key Laboratory for Biology of Plant Diseases and Insect Pests/Key
Laboratory of Control of Biological Hazard Factors (Plant Origin)
for Agri-product Quality and Safety, Ministry of Agriculture, Institute
of Plant Protection, Chinese Academy of
Agricultural Sciences, Beijing 100081, People’s Republic
of China
| | - Xiufen Yang
- State
Key Laboratory for Biology of Plant Diseases and Insect Pests/Key
Laboratory of Control of Biological Hazard Factors (Plant Origin)
for Agri-product Quality and Safety, Ministry of Agriculture, Institute
of Plant Protection, Chinese Academy of
Agricultural Sciences, Beijing 100081, People’s Republic
of China
| | - Jie Ren
- State
Key Laboratory for Biology of Plant Diseases and Insect Pests/Key
Laboratory of Control of Biological Hazard Factors (Plant Origin)
for Agri-product Quality and Safety, Ministry of Agriculture, Institute
of Plant Protection, Chinese Academy of
Agricultural Sciences, Beijing 100081, People’s Republic
of China
| | - Guangyue Li
- State
Key Laboratory for Biology of Plant Diseases and Insect Pests/Key
Laboratory of Control of Biological Hazard Factors (Plant Origin)
for Agri-product Quality and Safety, Ministry of Agriculture, Institute
of Plant Protection, Chinese Academy of
Agricultural Sciences, Beijing 100081, People’s Republic
of China
| |
Collapse
|
8
|
Immunoreactive Proteins in the Esophageal Gland Cells of Anisakis Simplex Sensu Stricto Detected by MALDI-TOF/TOF Analysis. Genes (Basel) 2020; 11:genes11060683. [PMID: 32580523 PMCID: PMC7349779 DOI: 10.3390/genes11060683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/15/2023] Open
Abstract
In plant and animal nematode parasites, proteins derived from esophageal gland cells have been shown to be important in the host-nematodes relationship but little is known about the allergenic potential of these proteins in the genus Anisakis. Taking into account the increase of anisakiasis and allergies related to these nematodes, immunoreactive properties of gland cell proteins were investigated. Two hundred ventricles were manually dissected from L3 stage larvae of Aniskakis simplex s.s. to allow direct protein analysis. Denaturing gel electrophoresis followed by monochromatic silver staining which revealed the presence of differential (enriched) proteins when compared to total nematode extracts. Such comparison was performed by means of 1D and 2D electrophoresis. Pooled antisera from Anisakis spp.-allergic patients were used in western blots revealing the presence of 13 immunoreactive bands in the ventricular extracts in 1D, with 82 spots revealed in 2D. The corresponding protein bands and spots were excised from the silver-stained gel and protein assignation was made by MALDI-TOF/TOF. A total of 13 (including proteoforms) were unambiguously identified. The majority of these proteins are known to be secreted by nematodes into the external environment, of which three are described as being major allergens in other organisms with different phylogenetic origin and one is an Anisakis simplex allergen.
Collapse
|
9
|
Spodoptera frugiperda transcriptional response to infestation by Steinernema carpocapsae. Sci Rep 2019; 9:12879. [PMID: 31501491 PMCID: PMC6733877 DOI: 10.1038/s41598-019-49410-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/24/2019] [Indexed: 12/28/2022] Open
Abstract
Steinernema carpocapsae is an entomopathogenic nematode (EPN) used in biological control of agricultural pest insects. It enters the hemocoel of its host via the intestinal tract and releases its symbiotic bacterium Xenorhabdus nematophila. In order to improve our knowledge about the physiological responses of its different hosts, we examined the transcriptional responses to EPN infestation of the fat body, the hemocytes and the midgut in the lepidopteran pest Spodoptera frugiperda. The tissues poorly respond to the infestation at an early time post-infestation of 8 h with only 5 genes differentially expressed in the fat body of the caterpillars. Strong transcriptional responses are observed at a later time point of 15 h post-infestation in all three tissues. Few genes are differentially expressed in the midgut but tissue-specific panels of induced metalloprotease inhibitors, immune receptors and antimicrobial peptides together with several uncharacterized genes are up-regulated in the fat body and the hemocytes. Among the most up-regulated genes, we identified new potential immune effectors, unique to Lepidoptera, which show homology with bacterial genes of unknown function. Altogether, these results pave the way for further functional studies of the responsive genes' involvement in the interaction with the EPN.
Collapse
|
10
|
Maeda Y, Palomares-Rius JE, Hino A, Afrin T, Mondal SI, Nakatake A, Maruyama H, Kikuchi T. Secretome analysis of Strongyloides venezuelensis parasitic stages reveals that soluble and insoluble proteins are involved in its parasitism. Parasit Vectors 2019; 12:21. [PMID: 30626426 PMCID: PMC6327390 DOI: 10.1186/s13071-018-3266-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/12/2018] [Indexed: 11/22/2022] Open
Abstract
Background Parasites excrete and secrete a wide range of molecules that act as the primary interface with their hosts and play critical roles in establishing parasitism during different stages of infection. Strongyloides venezuelensis is a gastrointestinal parasite of rats that is widely used as a laboratory model and is known to produce both soluble and insoluble (adhesive) secretions during its parasitic stages. However, little is known about the constituents of these secretions. Results Using mass spectrometry, we identified 436 proteins from the infective third-stage larvae (iL3s) and 196 proteins from the parasitic females of S. venezuelensis. The proteins that were secreted by the iL3s were enriched with peptidase activity, embryo development and the oxidation-reduction process, while those of the parasitic females were associated with glycolysis, DNA binding (histones) and other unknown functions. Trypsin inhibitor-like domain-containing proteins were identified as the main component of the adhesive secretion from parasitic females. An absence of secretion signals in many of the proteins indicated that they are secreted via non-classical secretion pathways. Conclusions We found that S. venezuelensis secretes a wide range of proteins to establish parasitism. This includes proteins that have previously been identified as being involved in parasitism in other helminths as well as proteins that are unique to this species. These findings provide insights into the molecular mechanisms underlying Strongyloides parasitism. Electronic supplementary material The online version of this article (10.1186/s13071-018-3266-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasunobu Maeda
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Juan Emilio Palomares-Rius
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan.,Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Akina Hino
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan.,Department of Environmental Parasitology, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Tanzila Afrin
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Shakhinur Islam Mondal
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Ayako Nakatake
- HTLV-1/ATL Research Facility, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Haruhiko Maruyama
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Taisei Kikuchi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan.
| |
Collapse
|
11
|
Characterizing posttranslational modifications in prokaryotic metabolism using a multiscale workflow. Proc Natl Acad Sci U S A 2018; 115:11096-11101. [PMID: 30301795 DOI: 10.1073/pnas.1811971115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding the complex interactions of protein posttranslational modifications (PTMs) represents a major challenge in metabolic engineering, synthetic biology, and the biomedical sciences. Here, we present a workflow that integrates multiplex automated genome editing (MAGE), genome-scale metabolic modeling, and atomistic molecular dynamics to study the effects of PTMs on metabolic enzymes and microbial fitness. This workflow incorporates complementary approaches across scientific disciplines; provides molecular insight into how PTMs influence cellular fitness during nutrient shifts; and demonstrates how mechanistic details of PTMs can be explored at different biological scales. As a proof of concept, we present a global analysis of PTMs on enzymes in the metabolic network of Escherichia coli Based on our workflow results, we conduct a more detailed, mechanistic analysis of the PTMs in three proteins: enolase, serine hydroxymethyltransferase, and transaldolase. Application of this workflow identified the roles of specific PTMs in observed experimental phenomena and demonstrated how individual PTMs regulate enzymes, pathways, and, ultimately, cell phenotypes.
Collapse
|
12
|
Huerta-Ocampo JA, García-Muñoz MS, Velarde-Salcedo AJ, Hernández-Domínguez EE, González-Escobar JL, Barrera-Pacheco A, Grajales-Lagunes A, Barba de la Rosa AP. The proteome map of the escamolera ant (Liometopum apiculatum Mayr) larvae reveals immunogenic proteins and several hexamerin proteoforms. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:107-121. [PMID: 30149319 DOI: 10.1016/j.cbd.2018.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
Abstract
The larvae of escamolera ant (Liometopum apiculatum Mayr) have been considered a delicacy since Pre-Hispanic times. The increased demand for this stew has led to massive collection of ant nests. Yet biological aspects of L. apiculatum larvae remain unknown, and mapping the proteome of this species is important for understanding its biological characteristics. Two-dimensional gel electrophoresis (2-DE) followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was used to characterize the larvae proteome profile. From 380 protein spots analyzed, 174 were identified by LC-MS/MS and homology search against the Hymenoptera subset of the NCBInr protein database using the Mascot search engine. Peptide de novo sequencing and homology-based alignment allowed the identification of 36 additional protein spots. Identified proteins were classified by cellular location, molecular function, and biological process according to the Gene Ontology annotation. Immunity- and defense-related proteins were identified including PPIases, FK506, PEBP, and chitinases. Several hexamerin proteoforms were identified and the cDNA of the most abundant protein detected in the 2-DE map was isolated and characterized. L. apiculatum hexamerin (LaHEX, GeneBank accession no. MH256667) contains an open reading frame of 2199 bp encoding a polypeptide of 733 amino acid residues with a calculated molecular mass of 82.41 kDa. LaHEX protein is more similar to HEX110 than HEX70 from Apis mellifera. Down-regulation of LaHEX was observed throughout ant development. This work represents the first proteome map as well as the first hexamerin characterized from L. apiculatum larvae.
Collapse
Affiliation(s)
- José A Huerta-Ocampo
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, 78216 San Luis Potosí, S.L.P, Mexico; CONACYT-Centro de Investigación en Alimentación y Desarrollo A.C., Carretera a La Victoria Km 0.6, Edificio C, C.P 83304 Hermosillo, Sonora, Mexico
| | - María S García-Muñoz
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Nava No.6, Zona Universitaria, C.P. 78200 San Luis Potosí, S.L.P, Mexico
| | - Aída J Velarde-Salcedo
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, 78216 San Luis Potosí, S.L.P, Mexico
| | - Eric E Hernández-Domínguez
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, 78216 San Luis Potosí, S.L.P, Mexico
| | - Jorge L González-Escobar
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, 78216 San Luis Potosí, S.L.P, Mexico
| | - Alberto Barrera-Pacheco
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, 78216 San Luis Potosí, S.L.P, Mexico
| | - Alicia Grajales-Lagunes
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Nava No.6, Zona Universitaria, C.P. 78200 San Luis Potosí, S.L.P, Mexico.
| | - Ana P Barba de la Rosa
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, 78216 San Luis Potosí, S.L.P, Mexico.
| |
Collapse
|
13
|
Jeffery CJ. Protein moonlighting: what is it, and why is it important? Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0523. [PMID: 29203708 DOI: 10.1098/rstb.2016.0523] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2017] [Indexed: 12/23/2022] Open
Abstract
Members of the GroEL/HSP60 protein family have been studied for many years because of their critical roles as ATP-dependent molecular chaperones, so it might come as a surprise that some have important functions in ATP-poor conditions, for example, when secreted outside the cell. At least some members of each of the HSP10, HSP70, HSP90, HSP100 and HSP110 heat shock protein families are also 'moonlighting proteins'. Moonlighting proteins exhibit more than one physiologically relevant biochemical or biophysical function within one polypeptide chain. In this class of multifunctional proteins, the multiple functions are not due to gene fusions or multiple proteolytic fragments. Several hundred moonlighting proteins have been identified, and they include a diverse set of proteins with a large variety of functions. Some participate in multiple biochemical processes by using an active site pocket for catalysis and a different part of the protein's surface to interact with other proteins. Moonlighting proteins play a central role in many diseases, and the development of novel treatments would be aided by more information addressing current questions, for example, how some are targeted to multiple cellular locations and how a single function can be targeted by therapeutics without targeting a function not involved in disease.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Constance J Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
14
|
Brivio MF, Toscano A, De Pasquale SM, De Lerma Barbaro A, Giovannardi S, Finzi G, Mastore M. Surface protein components from entomopathogenic nematodes and their symbiotic bacteria: effects on immune responses of the greater wax moth, Galleria mellonella (Lepidoptera: Pyralidae). PEST MANAGEMENT SCIENCE 2018; 74:2089-2099. [PMID: 29516671 DOI: 10.1002/ps.4905] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/06/2018] [Accepted: 03/02/2018] [Indexed: 02/28/2024]
Abstract
BACKGROUND Steinernema carpocapsae is a nematocomplex widely used as an alternative to chemicals for the biological control of insect pests; this nematode is symbiotically associated with the bacterium Xenorhabdus nematophila and both contribute to host death. The architecture and functions of structures and molecular components of the surface of nematodes and their symbiont bacteria are integral to early interactions with their hosts; thus, we assessed the role of protein pools isolated from the surface of S. carpocapsae and from phase I X. nematophila against Galleria mellonella. RESULTS Using high-salt treatments, we isolated the surface proteins and assayed them on G. mellonella haemocytes; haemocyte viability and phagocytic activity were investigated in the presence of surface proteins from nematodes or bacteria. Proteins from live S. carpocapsae possessed mild cytotoxicity on the haemocytes, whereas those from live X. nematophila markedly affected the host cells' viability. Bacterial proteins inhibited phagocytic activity, although they strongly triggered the host proPO (prophenoloxidase-phenoloxidase) system. CONCLUSION Nematocomplex surface compounds play a key role in immunoevasion/depression of insect hosts, causing a severe physiological disorder. Natural compounds newly identified as active against pests could improve the pest management of species potentially harmful to plants in urban green spaces and agriculture. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maurizio Francesco Brivio
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Andrea Toscano
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Simone Maria De Pasquale
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Andrea De Lerma Barbaro
- Laboratory of Comparative Physiopathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Stefano Giovannardi
- Laboratory of Comparative Physiopathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giovanna Finzi
- Department of Pathology, University Hospital ASST-Settelaghi, Varese, Italy
| | - Maristella Mastore
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
15
|
Bisch G, Ogier JC, Médigue C, Rouy Z, Vincent S, Tailliez P, Givaudan A, Gaudriault S. Comparative Genomics between Two Xenorhabdus bovienii Strains Highlights Differential Evolutionary Scenarios within an Entomopathogenic Bacterial Species. Genome Biol Evol 2016; 8:148-60. [PMID: 26769959 PMCID: PMC4758244 DOI: 10.1093/gbe/evv248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria of the genus Xenorhabdus are symbionts of soil entomopathogenic nematodes of the genus Steinernema. This symbiotic association constitutes an insecticidal complex active against a wide range of insect pests. Within Xenorhabdus bovienii species, the X. bovienii CS03 strain (Xb CS03) is nonvirulent when directly injected into lepidopteran insects, and displays a low virulence when associated with its Steinernema symbiont. The genome of Xb CS03 was sequenced and compared with the genome of a virulent strain, X. bovienii SS-2004 (Xb SS-2004). The genome size and content widely differed between the two strains. Indeed, Xb CS03 had a large genome containing several specific loci involved in the inhibition of competitors, including a few NRPS-PKS loci (nonribosomal peptide synthetases and polyketide synthases) producing antimicrobial molecules. Consistently, Xb CS03 had a greater antimicrobial activity than Xb SS-2004. The Xb CS03 strain contained more pseudogenes than Xb SS-2004. Decay of genes involved in the host invasion and exploitation (toxins, invasins, or extracellular enzymes) was particularly important in Xb CS03. This may provide an explanation for the nonvirulence of the strain when injected into an insect host. We suggest that Xb CS03 and Xb SS-2004 followed divergent evolutionary scenarios to cope with their peculiar life cycle. The fitness strategy of Xb CS03 would involve competitor inhibition, whereas Xb SS-2004 would quickly and efficiently kill the insect host. Hence, Xenorhabdus strains would have widely divergent host exploitation strategies, which impact their genome structure.
Collapse
Affiliation(s)
- Gaëlle Bisch
- Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Institut National De La Recherche Agronomique, Montpellier Cedex, France Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier, France
| | - Jean-Claude Ogier
- Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Institut National De La Recherche Agronomique, Montpellier Cedex, France Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier, France
| | - Claudine Médigue
- CEA, Genoscope & CNRS-UMR 8030, Laboratoire D'analyse Bioinformatique En Génomique Et Métabolisme, Evry Cedex, France
| | - Zoé Rouy
- CEA, Genoscope & CNRS-UMR 8030, Laboratoire D'analyse Bioinformatique En Génomique Et Métabolisme, Evry Cedex, France
| | - Stéphanie Vincent
- CEA, Genoscope & CNRS-UMR 8030, Laboratoire D'analyse Bioinformatique En Génomique Et Métabolisme, Evry Cedex, France
| | - Patrick Tailliez
- Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Institut National De La Recherche Agronomique, Montpellier Cedex, France Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier, France
| | - Alain Givaudan
- Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Institut National De La Recherche Agronomique, Montpellier Cedex, France Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier, France
| | - Sophie Gaudriault
- Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Institut National De La Recherche Agronomique, Montpellier Cedex, France Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier, France
| |
Collapse
|
16
|
Insect Immunity to Entomopathogenic Nematodes and Their Mutualistic Bacteria. Curr Top Microbiol Immunol 2016; 402:123-156. [PMID: 27995342 DOI: 10.1007/82_2016_52] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Entomopathogenic nematodes are important organisms for the biological control of insect pests and excellent models for dissecting the molecular basis of the insect immune response against both the nematode parasites and their mutualistic bacteria. Previous research involving the use of various insects has found distinct differences in the number and nature of immune mechanisms that are activated in response to entomopathogenic nematode parasites containing or lacking their associated bacteria. Recent studies using model insects have started to reveal the identity of certain molecules with potential anti-nematode or antibacterial activity as well as the molecular components that nematodes and their bacteria employ to evade or defeat the insect immune system. Identification and characterization of the genes that regulate the insect immune response to nematode-bacteria complexes will contribute significantly to the development of improved practices to control insects of agricultural and medical importance, and potentially nematode parasites that infect mammals, perhaps even humans.
Collapse
|
17
|
Bao S, Guo X, Yu S, Ding J, Tan L, Zhang F, Sun Y, Qiu X, Chen G, Ding C. Mycoplasma synoviae enolase is a plasminogen/fibronectin binding protein. BMC Vet Res 2014; 10:223. [PMID: 25253294 PMCID: PMC4189797 DOI: 10.1186/s12917-014-0223-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 09/18/2014] [Indexed: 12/25/2022] Open
Abstract
Background Mycoplasma synoviae is an avian pathogen that can lead to respiratory tract infections and arthritis in chickens and turkeys, resulting in serious economic losses to the poultry industry. Enolase reportedly plays important roles in several bacterial pathogens, but its role in M. synoviae has not been established. Therefore, in this study, the enolase encoding gene (eno) of M. synoviae was amplified from strain WVU1853 and expressed in E. coli BL21 cells. Then the enzymatic activity, immunogenicity and binding activity with chicken plasminogen (Plg) and human fibronectin (Fn) was evaluated. Results We demonstrated that the recombinant M. synoviae enolase protein (rMsEno) can catalyze the conversion of 2-phosphoglycerate (2-PGA) to phosphoenolpyruvate (PEP), the Km and Vmax values of rMsEno were 1.1 × 10−3 M and 0.739 μmol/L/min, respectively. Western blot and immuno-electron microscopy analyses confirmed that enolase was distributed on the surface and within the cytoplasm of M. synoviae cells. The binding assays demonstrated that rMsEno was able to bind to chicken Plg and human Fn proteins. A complement-dependent mycoplasmacidal assay demonstrated that rabbit anti–rMsEno serum had distinct mycoplasmacidal efficacy in the presence of complement, which also confirmed that enolase was distributed on the surface of M. synoviae. An inhibition assay showed that the adherence of M. synoviae to DF-1 cells pre-treated with Plg could be effectively inhibited by treatment with rabbit anti-rMsEno serum. Conclusion These results reveal that M. synoviae enolase has good catalytic activity for conversion of 2-PGA to PEP, and binding activity with chicken Plg and human Fn. Rabbit anti–rMsEno serum displayed an obvious complement-dependent mycoplasmacidal effect and adherent inhibition effect. These results suggested that the M. synoviae enolase plays an important role in M. synoviae metabolism, and could potentially impact M. synoviae infection and immunity. Electronic supplementary material The online version of this article (doi:10.1186/s12917-014-0223-6) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Yu L, Shen J, Mannoor K, Guarnera M, Jiang F. Identification of ENO1 as a potential sputum biomarker for early-stage lung cancer by shotgun proteomics. Clin Lung Cancer 2014; 15:372-378.e1. [PMID: 24984566 DOI: 10.1016/j.cllc.2014.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 01/29/2023]
Abstract
BACKGROUND Lung cancer is the leading cancer killer. Early detection will reduce the related deaths. The objective of this study was to identify potential biomarkers for early-stage lung cancer in sputum supernatant. MATERIALS AND METHODS Using shotgun proteomics, we detected changes in protein profiles that were associated with lung cancer by analyzing sputum supernatants from 6 patients with early-stage lung cancer and 5 cancer-free controls. Using western blotting, we validated the proteomic results in 22 lung cancer cases and 22 controls. Using enzyme-linked immunosorbent assay (ELISA), we evaluated the diagnostic performance of the biomarker candidates in an independent set of 35 cases and 36 controls. RESULTS Proteomics identified 8 biomarker candidates for lung cancer. Western blotting validation of the candidates showed that enolase 1 (ENO1) displayed a higher expression level in patients with cancer than in cancer-free individuals (P = .015). ELISA revealed that the assessment of ENO1 expression in sputum supernatant had 58.33% sensitivity and 80.00% specificity in distinguishing patients with stage I lung cancer from cancer-free individuals. CONCLUSION The analysis of protein biomarkers in sputum may provide a potential approach for the early detection of lung cancer. Future validation of all the candidates defined by shotgun proteomics in a large cohort study may help develop additional biomarkers that can be added to ENO1 to provide more diagnostic efficacy for lung cancer.
Collapse
Affiliation(s)
- Lei Yu
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Jun Shen
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Kaiissar Mannoor
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Maria Guarnera
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Feng Jiang
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
19
|
Gómez-Arreaza A, Acosta H, Quiñones W, Concepción JL, Michels PAM, Avilán L. Extracellular functions of glycolytic enzymes of parasites: unpredicted use of ancient proteins. Mol Biochem Parasitol 2014; 193:75-81. [PMID: 24602601 DOI: 10.1016/j.molbiopara.2014.02.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/10/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
Abstract
In addition of their usual intracellular localization where they are involved in catalyzing reactions of carbohydrate and energy metabolism by glycolysis, multiple studies have shown that glycolytic enzymes of many organisms, but notably pathogens, can also be present extracellularly. In the case of parasitic protists and helminths, they can be found either secreted or attached to the surface of the parasites. At these extracellular localizations, these enzymes have been shown to perform additional, very different so-called "moonlighting" functions, such as acting as ligands for a variety of components of the host. Due to this recognition, different extracellular glycolytic enzymes participate in various important parasite-host interactions such as adherence and invasion of parasites, modulation of the host's immune and haemostatic systems, promotion of angiogenesis, and acquisition of specific nutrients by the parasites. Accordingly, extracellular glycolytic enzymes are important for the invasion of the parasites and their establishment in the host, and in determining their virulence.
Collapse
Affiliation(s)
- Amaranta Gómez-Arreaza
- Laboratorio de Fisiología Animal, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Hector Acosta
- Laboratorio de Fisiología Animal, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Paul A M Michels
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela; Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JU, Scotland, UK
| | - Luisana Avilán
- Laboratorio de Fisiología Animal, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela.
| |
Collapse
|
20
|
Figuera L, Gómez-Arreaza A, Avilán L. Parasitism in optima forma: exploiting the host fibrinolytic system for invasion. Acta Trop 2013; 128:116-23. [PMID: 23850506 DOI: 10.1016/j.actatropica.2013.06.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 06/20/2013] [Accepted: 06/30/2013] [Indexed: 02/08/2023]
Abstract
The interaction of pathogenic bacteria with the host fibrinolytic system through the plasminogen molecule has been well documented. It has been shown, using animal models, to be important in invasion into the host and establishment of the infection. From a number of recent observations with parasitic protists and helminths, emerges evidence that also in these organisms the interaction with plasminogen may be important for infection and virulence. A group of molecules that act as plasminogen receptors have been identified in parasites. This group comprises the glycolytic enzymes enolase, glyceraldehyde-3-phosphate dehydrogenase and fructose-1,6-biphosphate aldolase, in common with the plasminogen receptors known in prokaryotic pathogens. The interaction with the fibrinolytic system may arm the parasites with the host protease plasmin, thus helping them to migrate and cross barriers, infect cells and avoid clot formation. In this context, plasminogen receptors on the parasite surface or as secreted molecules, may be considered virulence factors. A possible evolutionary scenario for the recruitment of glycolytic enzymes as plasminogen receptors by widely different pathogens is discussed.
Collapse
|
21
|
Toubarro D, Avila MM, Montiel R, Simões N. A pathogenic nematode targets recognition proteins to avoid insect defenses. PLoS One 2013; 8:e75691. [PMID: 24098715 PMCID: PMC3787073 DOI: 10.1371/journal.pone.0075691] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/20/2013] [Indexed: 01/18/2023] Open
Abstract
Steinernemacarpocapsae is a nematode pathogenic in a wide variety of insect species. The great pathogenicity of this nematode has been ascribed to its ability to overcome the host immune response; however, little is known about the mechanisms involved in this process. The analysis of an expressed sequence tags (EST) library in the nematode during the infective phase was performed and a highly abundant contig homologous to serine protease inhibitors was identified. In this work, we show that this contig is part of a 641-bp cDNA that encodes a BPTI-Kunitz family inhibitor (Sc-KU-4), which is up-regulated in the parasite during invasion and installation. Recombinant Sc-KU-4 protein was produced in Escherichia coli and shown to inhibit chymotrypsin and elastase activities in a dose-dependent manner by a competitive mechanism with Ki values of 1.8 nM and 2.6 nM, respectively. Sc-KU-4 also inhibited trypsin and thrombin activities to a lesser extent. Studies of the mode of action of Sc-KU-4 and its effects on insect defenses suggest that although Sc-KU-4 did not inhibit the activation of hemocytes or the formation of clotting fibers, it did inhibit hemocyte aggregation and the entrapment of foreign particles by fibers. Moreover, Sc-KU-4 avoided encapsulation and the deposition of clotting materials, which usually occurs in response to foreign particles. We show by protein-protein interaction that Sc-KU-4 targets recognition proteins of insect immune system such as masquerade-like and serine protease-like homologs. The interaction of Sc-KU-4 with these proteins explains the ability of the nematode to overcome host reactions and its large pathogenic spectrum, once these immune proteins are well conserved in insects. The discovery of this inhibitor targeting insect recognition proteins opens new avenues for the development of S. carpocapsae as a biological control agent and provides a new tool to study host-pathogen interactions.
Collapse
Affiliation(s)
- Duarte Toubarro
- IBB/CBA and CIRN/Departamento de Biologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - Mónica Martinez Avila
- IBB/CBA and CIRN/Departamento de Biologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - Rafael Montiel
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Nelson Simões
- IBB/CBA and CIRN/Departamento de Biologia, Universidade dos Açores, Ponta Delgada, Portugal
- * E-mail:
| |
Collapse
|