1
|
Treble-Barna A, Petersen BA, Stec Z, Conley YP, Fink EL, Kochanek PM. Brain-Derived Neurotrophic Factor in Pediatric Acquired Brain Injury and Recovery. Biomolecules 2024; 14:191. [PMID: 38397427 PMCID: PMC10886547 DOI: 10.3390/biom14020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
We review emerging preclinical and clinical evidence regarding brain-derived neurotrophic factor (BDNF) protein, genotype, and DNA methylation (DNAm) as biomarkers of outcomes in three important etiologies of pediatric acquired brain injury (ABI), traumatic brain injury, global cerebral ischemia, and stroke. We also summarize evidence suggesting that BDNF is (1) involved in the biological embedding of the psychosocial environment, (2) responsive to rehabilitative therapies, and (3) potentially modifiable. BDNF's unique potential as a biomarker of neuroplasticity and neural repair that is reflective of and responsive to both pre- and post-injury environmental influences separates it from traditional protein biomarkers of structural brain injury with exciting potential to advance pediatric ABI management by increasing the accuracy of prognostic tools and informing clinical decision making through the monitoring of therapeutic effects.
Collapse
Affiliation(s)
- Amery Treble-Barna
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (B.A.P.); (Z.S.)
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.L.F.); (P.M.K.)
| | - Bailey A. Petersen
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (B.A.P.); (Z.S.)
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.L.F.); (P.M.K.)
| | - Zachary Stec
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (B.A.P.); (Z.S.)
| | - Yvette P. Conley
- Department of Health Promotion & Development, University of Pittsburgh School of Nursing, Pittsburgh, PA 15213, USA;
| | - Ericka L. Fink
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.L.F.); (P.M.K.)
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.L.F.); (P.M.K.)
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Race NS, Moschonas EH, Kline AE, Bondi CO. Cognition and Behavior in the Aging Brain Following TBI: Surveying the Preclinical Evidence. ADVANCES IN NEUROBIOLOGY 2024; 42:219-240. [PMID: 39432045 DOI: 10.1007/978-3-031-69832-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Elderly individuals (65 years and older) represent the fastest-growing demographic of new clinical traumatic brain injury (TBI) cases, yet there is a paucity of preclinical research in aged animals. The limited preclinical work available aligns with the clinical literature in that there appear to be significant differences in pathophysiology, recovery potential, and response to medications between animals at different points across the age spectrum. The aim of this review is to discuss the limited studies and highlight critical age-related differences in affective, cognitive, and neurobehavioral deficits, to discuss factors that influence functional outcomes, and to identify targets for future research. The consensus is that aged rodents face challenges related to dysregulated inflammation, reduced neuroplasticity, and age-related cellular changes, which hinder their recovery after TBI. The most successful intervention studies in animal models to date, of the limited array available, have explored interventions targeting inflammatory downregulation. Current standards of neuropsychopharmacology for post-TBI neurocognitive recovery have not been investigated in a significant capacity. In addition, currently available animal models do not sufficiently account for important age-related comorbidities, dual insults, or differences in TBI mechanism of injury in elderly individuals. TBI in the aged population is more likely to lead to additional neurodegenerative diseases that further complicate recovery. The findings underscore the need for tailored therapeutic interventions to improve outcomes in both adult and elderly populations.
Collapse
Affiliation(s)
- Nicholas S Race
- Department of Physical Medicine & Rehabilitation and Safar Center for Resuscitation Research, Association of Academic Physiatrists Rehabilitation Medicine Scientist Training Program,University of Pittsburgh, Pittsburgh, PA, USA
| | - Eleni H Moschonas
- Department of Physical Medicine & Rehabilitation, Center for Neuroscience, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony E Kline
- Departments of Physical Medicine & Rehabilitation, Critical Care Medicine, and Psychology, Center for Neuroscience, Center for the Neural Basis of Cognition, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Corina O Bondi
- Departments of Physical Medicine & Rehabilitation and Neurobiology, Center for Neuroscience, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Mallah K, Zibara K, Kerbaj C, Eid A, Khoshman N, Ousseily Z, Kobeissy A, Cardon T, Cizkova D, Kobeissy F, Fournier I, Salzet M. Neurotrauma investigation through spatial omics guided by mass spectrometry imaging: Target identification and clinical applications. MASS SPECTROMETRY REVIEWS 2023; 42:189-205. [PMID: 34323300 DOI: 10.1002/mas.21719] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Traumatic brain injury (TBI) represents one of the major public health concerns worldwide due to the increase in TBI incidence as a result of injuries from daily life accidents such as sports and motor vehicle transportation as well as military-related practices. This type of central nervous system trauma is known to predispose patients to several neurological disorders such as Parkinson's disease, Alzheimer's disease, chronic trauamatic encephalopathy, and age-related Dementia. Recently, several proteomic and lipidomic platforms have been applied on different TBI studies to investigate TBI-related mechanisms that have broadened our understanding of its distinct neuropathological complications. In this study, we provide an updated comprehensive overview of the current knowledge and novel perspectives of the spatially resolved microproteomics and microlipidomics approaches guided by mass spectrometry imaging used in TBI studies and its applications in the neurotrauma field. In this regard, we will discuss the use of the spatially resolved microproteomics and assess the different microproteomic sampling methods such as laser capture microdissection, parafilm assisted microdissection, and liquid microjunction extraction as accurate and precise techniques in the field of neuroproteomics. Additionally, we will highlight lipid profiling applications and their prospective potentials in characterizing molecular processes involved in the field of TBI. Specifically, we will discuss the phospholipid metabolism acting as a precursor for proinflammatory molecules such as eicosanoids. Finally, we will survey the current state of spatial neuroproteomics and microproteomics applications and present the various studies highlighting their findings in these fields.
Collapse
Affiliation(s)
- Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
- PRASE, Lebanese University, Beirut, Lebanon
- Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Kazem Zibara
- PRASE, Lebanese University, Beirut, Lebanon
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Coline Kerbaj
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Ali Eid
- Department of Basic Medical Sciences, QU Health, Qatar University, Doha, Qatar
| | - Nour Khoshman
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Zahraa Ousseily
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Abir Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tristan Cardon
- Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Dasa Cizkova
- Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
- Center for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Isabelle Fournier
- Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
- Institut Universitaire de France, Paris, France
| | - Michel Salzet
- Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
4
|
Iboaya A, Harris JL, Arickx AN, Nudo RJ. Models of Traumatic Brain Injury in Aged Animals: A Clinical Perspective. Neurorehabil Neural Repair 2019; 33:975-988. [PMID: 31722616 PMCID: PMC6920554 DOI: 10.1177/1545968319883879] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality in the United States, with advanced age being one of the major predictors of poor prognosis. To replicate the mechanisms and multifaceted complexities of human TBI and develop prospective therapeutic treatments, various TBI animal models have been developed. These models have been essential in furthering our understanding of the pathophysiology and biochemical effects on brain mechanisms following TBI. Despite these advances, translating preclinical results to clinical application, particularly in elderly individuals, continues to be challenging. This review aims to provide a clinical perspective, identifying relevant variables currently not replicated in TBI animal models, to potentially improve translation to clinical practice, especially as it applies to elderly populations. As background for this clinical perspective, we reviewed articles indexed on PubMed from 1970 to 2019 that used aged animal models for studying TBI. These studies examined end points relevant for clinical translation, such as neurocognitive effects, sensorimotor behavior, physiological mechanisms, and efficacy of neuroprotective therapies. However, compared with the higher incidence of TBI in older individuals, animal studies on the basic science of aging and TBI remain remarkably scarce. Moreover, a fundamental disconnect remains between experiments in animal models of TBI and successful translation of findings for treating the older TBI population. In this article, we aim to provide a clinical perspective on the unique attributes of TBI in older individuals and a critical appraisal of the research to date on TBI in aged animal models as well as recommendations for future studies.
Collapse
Affiliation(s)
- Aiwane Iboaya
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Janna L Harris
- University of Kansas Medical Center, Kansas City, KS, USA
| | | | | |
Collapse
|
5
|
Boone DR, Weisz HA, Willey HE, Torres KEO, Falduto MT, Sinha M, Spratt H, Bolding IJ, Johnson KM, Parsley MA, DeWitt DS, Prough DS, Hellmich HL. Traumatic brain injury induces long-lasting changes in immune and regenerative signaling. PLoS One 2019; 14:e0214741. [PMID: 30943276 PMCID: PMC6447179 DOI: 10.1371/journal.pone.0214741] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
There are no existing treatments for the long-term degenerative effects of traumatic brain injury (TBI). This is due, in part, to our limited understanding of chronic TBI and uncertainty about which proposed mechanisms for long-term neurodegeneration are amenable to treatment with existing or novel drugs. Here, we used microarray and pathway analyses to interrogate TBI-induced gene expression in the rat hippocampus and cortex at several acute, subchronic and chronic intervals (24 hours, 2 weeks, 1, 2, 3, 6 and 12 months) after parasagittal fluid percussion injury. We used Ingenuity pathway analysis (IPA) and Gene Ontology enrichment analysis to identify significantly expressed genes and prominent cell signaling pathways that are dysregulated weeks to months after TBI and potentially amenable to therapeutic modulation. We noted long-term, coordinated changes in expression of genes belonging to canonical pathways associated with the innate immune response (i.e., NF-κB signaling, NFAT signaling, Complement System, Acute Phase Response, Toll-like receptor signaling, and Neuroinflammatory signaling). Bioinformatic analysis suggested that dysregulation of these immune mediators—many are key hub genes—would compromise multiple cell signaling pathways essential for homeostatic brain function, particularly those involved in cell survival and neuroplasticity. Importantly, the temporal profile of beneficial and maladaptive immunoregulatory genes in the weeks to months after the initial TBI suggests wider therapeutic windows than previously indicated.
Collapse
Affiliation(s)
- Deborah R. Boone
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Harris A. Weisz
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hannah E. Willey
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | - Michael T. Falduto
- GenUs Biosystems, Northbrook, Illinois, United States of America
- Paradise Genomics, Inc., Northbrook, Illinois, United States of America
| | - Mala Sinha
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Heidi Spratt
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ian J. Bolding
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kathea M. Johnson
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Margaret A. Parsley
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Douglas S. DeWitt
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Donald S. Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Helen L. Hellmich
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Laser Capture Microdissection in Traumatic Brain Injury Research: Obtaining Hippocampal Subregions and Pools of Injured Neurons for Genomic Analyses. Methods Mol Biol 2019. [PMID: 29344864 DOI: 10.1007/978-1-4939-7558-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The methods presented here are based on our laboratory's 15 years of experience using laser capture microdissection to obtain samples for the study of gene expression after traumatic brain injury (TBI) using a well-established rat model of experimental TBI. Here, we describe how to use the ArcturusXT laser capture microdissection system to capture swaths of specific regions of the rat hippocampus as well as specific neuronal populations defined by Fluoro-Jade C staining. Staining with Fluoro-Jade C identifies a neuron that is in the process of degeneration. We have optimized our protocols for Fluoro-Jade C tissue staining and laser capture microdissection to maintain RNA integrity which is essential for a variety of downstream applications, such as microarray, PCR array, and quantitative real-time PCR analyses.
Collapse
|
7
|
Boone DR, Leek JM, Falduto MT, Torres KEO, Sell SL, Parsley MA, Cowart JC, Uchida T, Micci MA, DeWitt DS, Prough DS, Hellmich HL. Effects of AAV-mediated knockdown of nNOS and GPx-1 gene expression in rat hippocampus after traumatic brain injury. PLoS One 2017; 12:e0185943. [PMID: 29016640 PMCID: PMC5634593 DOI: 10.1371/journal.pone.0185943] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023] Open
Abstract
Virally mediated RNA interference (RNAi) to knock down injury-induced genes could improve functional outcome after traumatic brain injury (TBI); however, little is known about the consequences of gene knockdown on downstream cell signaling pathways and how RNAi influences neurodegeneration and behavior. Here, we assessed the effects of adeno-associated virus (AAV) siRNA vectors that target two genes with opposing roles in TBI pathogenesis: the allegedly detrimental neuronal nitric oxide synthase (nNOS) and the potentially protective glutathione peroxidase 1 (GPx-1). In rat hippocampal progenitor cells, three siRNAs that target different regions of each gene (nNOS, GPx-1) effectively knocked down gene expression. However, in vivo, in our rat model of fluid percussion brain injury, the consequences of AAV-siRNA were variable. One nNOS siRNA vector significantly reduced the number of degenerating hippocampal neurons and showed a tendency to improve working memory. GPx-1 siRNA treatment did not alter TBI-induced neurodegeneration or working memory deficits. Nevertheless, microarray analysis of laser captured, virus-infected neurons showed that knockdown of nNOS or GPx-1 was specific and had broad effects on downstream genes. Since nNOS knockdown only modestly ameliorated TBI-induced working memory deficits, despite widespread genomic changes, manipulating expression levels of single genes may not be sufficient to alter functional outcome after TBI.
Collapse
Affiliation(s)
- Deborah R. Boone
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jeanna M. Leek
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | | | - Stacy L. Sell
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Margaret A. Parsley
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jeremy C. Cowart
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tatsuo Uchida
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maria-Adelaide Micci
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Douglas S. DeWitt
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Donald S. Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Helen L. Hellmich
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
8
|
Weisz HA, Boone DR, Sell SL, Hellmich HL. Stereotactic Atlas-Guided Laser Capture Microdissection of Brain Regions Affected by Traumatic Injury. J Vis Exp 2017:56134. [PMID: 28930995 PMCID: PMC5752209 DOI: 10.3791/56134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The ability to isolate specific brain regions of interest can be impeded in tissue disassociation techniques that do not preserve their spatial distribution. Such techniques also potentially skew gene expression analysis because the process itself can alter expression patterns in individual cells. Here we describe a laser capture microdissection (LCM) method to selectively collect specific brain regions affected by traumatic brain injury (TBI) by using a modified Nissl (cresyl violet) staining protocol and the guidance of a rat brain atlas. LCM provides access to brain regions in their native positions and the ability to use anatomical landmarks for identification of each specific region. To this end, LCM has been used previously to examine brain region specific gene expression in TBI. This protocol allows examination of TBI-induced alterations in gene and microRNA expression in distinct brain areas within the same animal. The principles of this protocol can be amended and applied to a wide range of studies examining genomic expression in other disease and/or animal models.
Collapse
Affiliation(s)
- Harris A Weisz
- Department of Anesthesiology, University of Texas Medical Branch
| | - Deborah R Boone
- Department of Anesthesiology, University of Texas Medical Branch
| | - Stacy L Sell
- Department of Anesthesiology, University of Texas Medical Branch
| | - Helen L Hellmich
- Department of Anesthesiology, University of Texas Medical Branch;
| |
Collapse
|
9
|
Aging of cerebral white matter. Ageing Res Rev 2017; 34:64-76. [PMID: 27865980 DOI: 10.1016/j.arr.2016.11.006] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/21/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022]
Abstract
White matter (WM) occupies a large volume of the human cerebrum and is mainly composed of myelinated axons and myelin-producing glial cells. The myelinated axons within WM are the structural foundation for efficient neurotransmission between cortical and subcortical areas. Similar to neuron-enriched gray matter areas, WM undergoes a series of changes during the process of aging. WM malfunction can induce serious neurobehavioral and cognitive impairments. Thus, age-related changes in WM may contribute to the functional decline observed in the elderly. In addition, aged WM becomes more susceptible to neurological disorders, such as stroke, traumatic brain injury (TBI), and neurodegeneration. In this review, we summarize the structural and functional alterations of WM in natural aging and speculate on the underlying mechanisms. We also discuss how age-related WM changes influence the progression of various brain disorders, including ischemic and hemorrhagic stroke, TBI, Alzheimer's disease, and Parkinson's disease. Although the physiology of WM is still poorly understood relative to gray matter, WM is a rational therapeutic target for a number of neurological and psychiatric conditions.
Collapse
|
10
|
Alder J, Fujioka W, Giarratana A, Wissocki J, Thakkar K, Vuong P, Patel B, Chakraborty T, Elsabeh R, Parikh A, Girn HS, Crockett D, Thakker-Varia S. Genetic and pharmacological intervention of the p75NTR pathway alters morphological and behavioural recovery following traumatic brain injury in mice. Brain Inj 2015; 30:48-65. [PMID: 26579945 DOI: 10.3109/02699052.2015.1088963] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PRIMARY OBJECTIVE Neurotrophin levels are elevated after TBI, yet there is minimal regeneration. It was hypothesized that the pro-neurotrophin/p75NTR pathway is induced more than the mature neurotrophin/Trk pathway and that interfering with p75 signalling improves recovery following TBI. RESEARCH DESIGN Lateral Fluid Percussion (LFP) injury was performed on wildtype and p75 mutant mice. In addition, TrkB agonist 7,8 Dihydroxyflavone or p75 antagonist TAT-Pep5 were tested. Western blot and immunohistochemistry revealed biochemical and cellular changes. Morris Water Maze and Rotarod tests demonstrated cognitive and vestibulomotor function. MAIN OUTCOMES AND RESULTS p75 was up-regulated and TrkB was down-regulated 1 day post-LFP. p75 mutant mice as well as mice treated with the p75 antagonist or the TrkB agonist exhibited reduced neuronal death and degeneration and less astrocytosis. The cells undergoing apoptosis appear to be neurons rather than glia. There was improved motor function and spatial learning in p75 mutant mice and mice treated with the p75 antagonist. CONCLUSIONS Many of the pathological and behavioural consequences of TBI might be due to activation of the pro-neurotrophin/p75 toxic pathway overriding the protective mechanisms of the mature neurotrophin/Trk pathway. Targeting p75 can be a novel strategy to counteract the damaging effects of TBI.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- Astrocytes/metabolism
- Astrocytes/pathology
- Brain Injuries, Traumatic/drug therapy
- Brain Injuries, Traumatic/genetics
- Brain Injuries, Traumatic/metabolism
- Brain-Derived Neurotrophic Factor/metabolism
- Cognition/physiology
- Flavones/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Nerve Growth Factors/metabolism
- Receptor, trkB/agonists
- Receptor, trkB/genetics
- Receptor, trkB/metabolism
- Receptors, Nerve Growth Factor/antagonists & inhibitors
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Sensory Receptor Cells/metabolism
- Sensory Receptor Cells/pathology
Collapse
Affiliation(s)
- Janet Alder
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Wendy Fujioka
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Anna Giarratana
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Jenna Wissocki
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Keya Thakkar
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Phung Vuong
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Bijal Patel
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | | | - Rami Elsabeh
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Ankit Parikh
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Hartaj S Girn
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - David Crockett
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | | |
Collapse
|
11
|
Boone DR, Micci MA, Taglialatela IG, Hellmich JL, Weisz HA, Bi M, Prough DS, DeWitt DS, Hellmich HL. Pathway-focused PCR array profiling of enriched populations of laser capture microdissected hippocampal cells after traumatic brain injury. PLoS One 2015; 10:e0127287. [PMID: 26016641 PMCID: PMC4446038 DOI: 10.1371/journal.pone.0127287] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/13/2015] [Indexed: 12/22/2022] Open
Abstract
Cognitive deficits in survivors of traumatic brain injury (TBI) are associated with irreversible neurodegeneration in brain regions such as the hippocampus. Comparative gene expression analysis of dying and surviving neurons could provide insight into potential therapeutic targets. We used two pathway-specific PCR arrays (RT2 Profiler Apoptosis and Neurotrophins & Receptors PCR arrays) to identify and validate TBI-induced gene expression in dying (Fluoro-Jade-positive) or surviving (Fluoro-Jade- negative) pyramidal neurons obtained by laser capture microdissection (LCM). In the Apoptosis PCR array, dying neurons showed significant increases in expression of genes associated with cell death, inflammation, and endoplasmic reticulum (ER) stress compared with adjacent, surviving neurons. Pro-survival genes with pleiotropic functions were also significantly increased in dying neurons compared to surviving neurons, suggesting that even irreversibly injured neurons are able to mount a protective response. In the Neurotrophins & Receptors PCR array, which consists of genes that are normally expected to be expressed in both groups of hippocampal neurons, only a few genes were expressed at significantly different levels between dying and surviving neurons. Immunohistochemical analysis of selected, differentially expressed proteins supported the gene expression data. This is the first demonstration of pathway-focused PCR array profiling of identified populations of dying and surviving neurons in the brain after TBI. Combining precise laser microdissection of identifiable cells with pathway-focused PCR array analysis is a practical, low-cost alternative to microarrays that provided insight into neuroprotective signals that could be therapeutically targeted to ameliorate TBI-induced neurodegeneration.
Collapse
Affiliation(s)
- Deborah R. Boone
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Maria-Adelaide Micci
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Isabella G. Taglialatela
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Judy L. Hellmich
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Harris A. Weisz
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Min Bi
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Donald S. Prough
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Douglas S. DeWitt
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Helen L. Hellmich
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
- * E-mail:
| |
Collapse
|
12
|
Thakker-Varia S, Behnke J, Doobin D, Dalal V, Thakkar K, Khadim F, Wilson E, Palmieri A, Antila H, Rantamaki T, Alder J. VGF (TLQP-62)-induced neurogenesis targets early phase neural progenitor cells in the adult hippocampus and requires glutamate and BDNF signaling. Stem Cell Res 2014; 12:762-77. [PMID: 24747217 PMCID: PMC4991619 DOI: 10.1016/j.scr.2014.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/24/2014] [Accepted: 03/18/2014] [Indexed: 01/19/2023] Open
Abstract
The neuropeptide VGF (non-acronymic), which has antidepressant-like effects, enhances adult hippocampal neurogenesis as well as synaptic activity and plasticity in the hippocampus, however the interaction between these processes and the mechanism underlying this regulation remain unclear. In this study, we demonstrate that VGF-derived peptide TLQP-62 specifically enhances the generation of early progenitor cells in nestin-GFP mice. Specifically, TLQP-62 significantly increases the number of Type 2a neural progenitor cells (NPCs) while reducing the number of more differentiated Type 3 cells. The effect of TLQP-62 on proliferation rather than differentiation was confirmed using NPCs in vitro; TLQP-62 but not scrambled peptide PEHN-62 increases proliferation in a cell line as well as in primary progenitors from adult hippocampus. Moreover, TLQP-62 but not scrambled peptide increases Cyclin D mRNA expression. The proliferation of NPCs induced by TLQP-62 requires synaptic activity, in particular through NMDA and metabotropic glutamate receptors. The activation of glutamate receptors by TLQP-62 activation induces phosphorylation of CaMKII through NMDA receptors and protein kinase D through metabotropic glutamate receptor 5 (mGluR5). Furthermore, pharmacological antagonists to CaMKII and PKD inhibit TLQP-62-induced proliferation of NPCs indicating that these signaling molecules downstream of glutamate receptors are essential for the actions of TLQP-62 on neurogenesis. We also show that TLQP-62 gradually activates Brain-Derived Neurotrophic Factor (BDNF)-receptor TrkB in vitro and that Trk signaling is required for TLQP-62-induced proliferation of NPCs. Understanding the precise molecular mechanism of how TLQP-62 influences neurogenesis may reveal mechanisms by which VGF-derived peptides act as antidepressant-like agents.
Collapse
Affiliation(s)
- Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Joseph Behnke
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - David Doobin
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Vidhi Dalal
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Keya Thakkar
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Farah Khadim
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Elizabeth Wilson
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Alicia Palmieri
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Hanna Antila
- Neuroscience Center, University of Helsinki, P.O. Box 56, Viikinkaari 4, 00014 Helsinki, Finland.
| | - Tomi Rantamaki
- Neuroscience Center, University of Helsinki, P.O. Box 56, Viikinkaari 4, 00014 Helsinki, Finland.
| | - Janet Alder
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
13
|
Bouchard R, Chong T, Pugazhenthi S. Laser capture microdissection of neurons from differentiated human neuroprogenitor cells in culture. J Vis Exp 2013:e50487. [PMID: 24084642 DOI: 10.3791/50487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neuroprogenitor cells (NPCs) isolated from the human fetal brain were expanded under proliferative conditions in the presence of epidermal growth factor (EGF) and fibroblast growth factor (FGF) to provide an abundant supply of cells. NPCs were differentiated in the presence of a new combination of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), dibutyryl cAMP (DBC) and retinoic acid on dishes coated with poly-L-lysine and mouse laminin to obtain neuron-rich cultures. NPCs were also differentiated in the absence of neurotrophins, DBC and retinoic acid and in the presence of ciliary neurotrophic factor (CNTF) to yield astrocyte-rich cultures. Differentiated NPCs were characterized by immunofluorescence staining for a panel of neuronal markers including NeuN, synapsin, acetylcholinesterase, synaptophysin and GAP43. Glial fibrillary acidic protein (GFAP) and STAT3, astrocyte markers, were detected in 10-15% of differentiated NPCs. To facilitate cell-type specific molecular characterization, laser capture microdissection was performed to isolate neurons cultured on polyethylene naphthalate (PEN) membrane slides. The methods described in this study provide valuable tools to advance our understanding of the molecular mechanism of neurodegeneration.
Collapse
Affiliation(s)
- Ron Bouchard
- Section of Endocrinology, Denver VA Medical Center
| | | | | |
Collapse
|
14
|
Boone DR, Sell SL, Hellmich HL. Laser capture microdissection of enriched populations of neurons or single neurons for gene expression analysis after traumatic brain injury. J Vis Exp 2013. [PMID: 23603738 PMCID: PMC3653564 DOI: 10.3791/50308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Long-term cognitive disability after TBI is associated with injury-induced neurodegeneration in the hippocampus-a region in the medial temporal lobe that is critical for learning, memory and executive function.1,2 Hence our studies focus on gene expression analysis of specific neuronal populations in distinct subregions of the hippocampus. The technique of laser capture microdissection (LCM), introduced in 1996 by Emmert-Buck, et al.,3 has allowed for significant advances in gene expression analysis of single cells and enriched populations of cells from heterogeneous tissues such as the mammalian brain that contains thousands of functional cell types.4 We use LCM and a well established rat model of traumatic brain injury (TBI) to investigate the molecular mechanisms that underlie the pathogenesis of TBI. Following fluid-percussion TBI, brains are removed at pre-determined times post-injury, immediately frozen on dry ice, and prepared for sectioning in a cryostat. The rat brains can be embedded in OCT and sectioned immediately, or stored several months at -80 °C before sectioning for laser capture microdissection. Additionally, we use LCM to study the effects of TBI on circadian rhythms. For this, we capture neurons from the suprachiasmatic nuclei that contain the master clock of the mammalian brain. Here, we demonstrate the use of LCM to obtain single identified neurons (injured and degenerating, Fluoro-Jade-positive, or uninjured, Fluoro-Jade-negative) and enriched populations of hippocampal neurons for subsequent gene expression analysis by real time PCR and/or whole-genome microarrays. These LCM-enabled studies have revealed that the selective vulnerability of anatomically distinct regions of the rat hippocampus are reflected in the different gene expression profiles of different populations of neurons obtained by LCM from these distinct regions. The results from our single-cell studies, where we compare the transcriptional profiles of dying and adjacent surviving hippocampal neurons, suggest the existence of a cell survival rheostat that regulates cell death and survival after TBI.
Collapse
Affiliation(s)
- Deborah R Boone
- Department of Anesthesiology, University of Texas Medical Branch, USA
| | | | | |
Collapse
|
15
|
Pathway analysis reveals common pro-survival mechanisms of metyrapone and carbenoxolone after traumatic brain injury. PLoS One 2013; 8:e53230. [PMID: 23326402 PMCID: PMC3541279 DOI: 10.1371/journal.pone.0053230] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 11/26/2012] [Indexed: 11/19/2022] Open
Abstract
Developing new pharmacotherapies for traumatic brain injury (TBI) requires elucidation of the neuroprotective mechanisms of many structurally and functionally diverse compounds. To test our hypothesis that diverse neuroprotective drugs similarly affect common gene targets after TBI, we compared the effects of two drugs, metyrapone (MT) and carbenoxolone (CB), which, though used clinically for noncognitive conditions, improved learning and memory in rats and humans. Although structurally different, both MT and CB inhibit a common molecular target, 11β hydroxysteroid dehydrogenase type 1, which converts inactive cortisone to cortisol, thereby effectively reducing glucocorticoid levels. We examined injury-induced signaling pathways to determine how the effects of these two compounds correlate with pro-survival effects in surviving neurons of the injured rat hippocampus. We found that treatment of TBI rats with MT or CB acutely induced in hippocampal neurons transcriptional profiles that were remarkably similar (i.e., a coordinated attenuation of gene expression across multiple injury-induced cell signaling networks). We also found, to a lesser extent, a coordinated increase in cell survival signals. Analysis of injury-induced gene expression altered by MT and CB provided additional insight into the protective effects of each. Both drugs attenuated expression of genes in the apoptosis, death receptor and stress signaling pathways, as well as multiple genes in the oxidative phosphorylation pathway such as subunits of NADH dehydrogenase (Complex1), cytochrome c oxidase (Complex IV) and ATP synthase (Complex V). This suggests an overall inhibition of mitochondrial function. Complex 1 is the primary source of reactive oxygen species in the mitochondrial oxidative phosphorylation pathway, thus linking the protective effects of these drugs to a reduction in oxidative stress. The net effect of the drug-induced transcriptional changes observed here indicates that suppressing expression of potentially harmful genes, and also, surprisingly, reduced expression of pro-survival genes may be a hallmark of neuroprotective therapeutic effects.
Collapse
|
16
|
Traumatic brain injury-induced dysregulation of the circadian clock. PLoS One 2012; 7:e46204. [PMID: 23056261 PMCID: PMC3463592 DOI: 10.1371/journal.pone.0046204] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/28/2012] [Indexed: 01/08/2023] Open
Abstract
Circadian rhythm disturbances are frequently reported in patients recovering from traumatic brain injury (TBI). Since circadian clock output is mediated by some of the same molecular signaling cascades that regulate memory formation (cAMP/MAPK/CREB), cognitive problems reported by TBI survivors may be related to injury-induced dysregulation of the circadian clock. In laboratory animals, aberrant circadian rhythms in the hippocampus have been linked to cognitive and memory dysfunction. Here, we addressed the hypothesis that circadian rhythm disruption after TBI is mediated by changes in expression of clock genes in the suprachiasmatic nuclei (SCN) and hippocampus. After fluid-percussion TBI or sham surgery, male Sprague-Dawley rats were euthanized at 4 h intervals, over a 48 h period for tissue collection. Expression of circadian clock genes was measured using quantitative real-time PCR in the SCN and hippocampus obtained by laser capture and manual microdissection respectively. Immunofluorescence and Western blot analysis were used to correlate TBI-induced changes in circadian gene expression with changes in protein expression. In separate groups of rats, locomotor activity was monitored for 48 h. TBI altered circadian gene expression patterns in both the SCN and the hippocampus. Dysregulated expression of key circadian clock genes, such as Bmal1 and Cry1, was detected, suggesting perturbation of transcriptional-translational feedback loops that are central to circadian timing. In fact, disruption of circadian locomotor activity rhythms in injured animals occurred concurrently. These results provide an explanation for how TBI causes disruption of circadian rhythms as well as a rationale for the consideration of drugs with chronobiotic properties as part of a treatment strategy for TBI.
Collapse
|
17
|
Marklund N, Hillered L. Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here? Br J Pharmacol 2011; 164:1207-29. [PMID: 21175576 PMCID: PMC3229758 DOI: 10.1111/j.1476-5381.2010.01163.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/02/2010] [Accepted: 12/06/2010] [Indexed: 11/26/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability in young adults. Survivors of TBI frequently suffer from long-term personality changes and deficits in cognitive and motor performance, urgently calling for novel pharmacological treatment options. To date, all clinical trials evaluating neuroprotective compounds have failed in demonstrating clinical efficacy in cohorts of severely injured TBI patients. The purpose of the present review is to describe the utility of animal models of TBI for preclinical evaluation of pharmacological compounds. No single animal model can adequately mimic all aspects of human TBI owing to the heterogeneity of clinical TBI. To successfully develop compounds for clinical TBI, a thorough evaluation in several TBI models and injury severities is crucial. Additionally, brain pharmacokinetics and the time window must be carefully evaluated. Although the search for a single-compound, 'silver bullet' therapy is ongoing, a combination of drugs targeting various aspects of neuroprotection, neuroinflammation and regeneration may be needed. In summary, finding drugs and prove clinical efficacy in TBI is a major challenge ahead for the research community and the drug industry. For a successful translation of basic science knowledge to the clinic to occur we believe that a further refinement of animal models and functional outcome methods is important. In the clinical setting, improved patient classification, more homogenous patient cohorts in clinical trials, standardized treatment strategies, improved central nervous system drug delivery systems and monitoring of target drug levels and drug effects is warranted.
Collapse
Affiliation(s)
- Niklas Marklund
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala University Hospital, Uppsala, Sweden.
| | | |
Collapse
|
18
|
Avila MA, Sell SL, Hawkins BE, Hellmich HL, Boone DR, Crookshanks JM, Prough DS, DeWitt DS. Cerebrovascular connexin expression: effects of traumatic brain injury. J Neurotrauma 2011; 28:1803-11. [PMID: 21895483 PMCID: PMC3172862 DOI: 10.1089/neu.2011.1900] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) results in dysfunction of the cerebrovasculature. Gap junctions coordinate vasomotor responses and evidence suggests that they are involved in cerebrovascular dysfunction after TBI. Gap junctions are comprised of connexin proteins (Cxs), of which Cx37, Cx40, Cx43, and Cx45 are expressed in vascular tissue. This study tests the hypothesis that TBI alters Cx mRNA and protein expression in cerebral vascular smooth muscle and endothelial cells. Anesthetized (1.5% isoflurane) male Sprague-Dawley rats received sham or fluid-percussion TBI. Two, 6, and 24 h after, cerebral arteries were harvested, fresh-frozen for RNA isolation, or homogenized for Western blot analysis. Cerebral vascular endothelial and smooth muscle cells were selected from frozen sections using laser capture microdissection. RNA was quantified by ribonuclease protection assay. The mRNA for all four Cx genes showed greater expression in the smooth muscle layer compared to the endothelial layer. Smooth muscle Cx43 mRNA expression was reduced 2 h and endothelial Cx45 mRNA expression was reduced 24 h after injury. Western blot analysis revealed that Cx40 protein expression increased, while Cx45 protein expression decreased 24 h after injury. These studies revealed significant changes in the mRNA and protein expression of specific vascular Cxs after TBI. This is the first demonstration of cell type-related differential expression of Cx mRNA in cerebral arteries, and is a first step in evaluating the effects of TBI on gap junction communication in the cerebrovasculature.
Collapse
Affiliation(s)
| | | | - Bridget E. Hawkins
- Charles Allen Laboratories, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Helen L. Hellmich
- Charles Allen Laboratories, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Debbie R. Boone
- Charles Allen Laboratories, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Jeanna M. Crookshanks
- Charles Allen Laboratories, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Donald S. Prough
- Charles Allen Laboratories, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Douglas S. DeWitt
- Charles Allen Laboratories, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
19
|
Rojo DR, Prough DS, Falduto MT, Boone DR, Micci MA, Kahrig KM, Crookshanks JM, Jimenez A, Uchida T, Cowart JC, Hawkins BE, Avila M, DeWitt DS, Hellmich HL. Influence of stochastic gene expression on the cell survival rheostat after traumatic brain injury. PLoS One 2011; 6:e23111. [PMID: 21853077 PMCID: PMC3154935 DOI: 10.1371/journal.pone.0023111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/06/2011] [Indexed: 12/31/2022] Open
Abstract
Experimental evidence suggests that random, spontaneous (stochastic) fluctuations in gene expression have important biological consequences, including determination of cell fate and phenotypic variation within isogenic populations. We propose that fluctuations in gene expression represent a valuable tool to explore therapeutic strategies for patients who have suffered traumatic brain injury (TBI), for which there is no effective drug therapy. We have studied the effects of TBI on the hippocampus because TBI survivors commonly suffer cognitive problems that are associated with hippocampal damage. In our previous studies we separated dying and surviving hippocampal neurons by laser capture microdissection and observed unexplainable variations in post-TBI gene expression, even though dying and surviving neurons were adjacent and morphologically identical. We hypothesized that, in hippocampal neurons that subsequently are subjected to TBI, randomly increased pre-TBI expression of genes that are associated with neuroprotection predisposes neurons to survival; conversely, randomly decreased expression of these genes predisposes neurons to death. Thus, to identify genes that are associated with endogenous neuroprotection, we performed a comparative, high-resolution transcriptome analysis of dying and surviving hippocampal neurons in rats subjected to TBI. We found that surviving hippocampal neurons express a distinct molecular signature — increased expression of networks of genes that are associated with regeneration, cellular reprogramming, development, and synaptic plasticity. In dying neurons we found decreased expression of genes in those networks. Based on these data, we propose a hypothetical model in which hippocampal neuronal survival is determined by a rheostat that adds injury-induced genomic signals to expression of pro-survival genes, which pre-TBI varies randomly and spontaneously from neuron to neuron. We suggest that pharmacotherapeutic strategies that co-activate multiple survival signals and enhance self-repair mechanisms have the potential to shift the cell survival rheostat to favor survival and therefore improve functional outcome after TBI.
Collapse
Affiliation(s)
- Daniel R. Rojo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Donald S. Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | - Deborah R. Boone
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maria-Adelaide Micci
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kristen M. Kahrig
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jeanna M. Crookshanks
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Arnaldo Jimenez
- Vel-Lab Research, Missouri City, Texas, United States of America
| | - Tatsuo Uchida
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jeremy C. Cowart
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bridget E. Hawkins
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Marcela Avila
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Douglas S. DeWitt
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Helen L. Hellmich
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Schönberger M, Ponsford J, Reutens D, Beare R, O'Sullivan R. The Relationship between age, injury severity, and MRI findings after traumatic brain injury. J Neurotrauma 2010; 26:2157-67. [PMID: 19624261 DOI: 10.1089/neu.2009.0939] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Age and injury severity are among the most significant predictors of outcome after traumatic brain injury (TBI). However, only a few studies have investigated the association between, age, injury severity, and the extent of brain damage in TBI. The purpose of this study was to investigate the association between age, measures of injury severity, and brain lesion volumes, as well as viable brain volumes, following TBI. Ninety-eight individuals with mild to very severe TBI (75.5% male, mean age at injury 34.5 years) underwent a structural MRI scan, performed with a 1.5-Tesla machine, on average 2.3 years post-injury. Lesion volumes were highly skewed in their distribution and were dichotomized for statistical purposes. Measures of injury severity were Glasgow Coma Scale score (GCS) and duration of post-traumatic amnesia (PTA). Logistic regression analyses predicting lesion volumes, controlling for participants' gender, cause of injury, time from injury to MRI scan, and total brain volume, revealed that both older age and longer PTA were associated with larger lesion volumes in both grey and white matter in almost all brain regions. Older age was also associated with smaller viable grey matter volumes in most neo-cortical brain regions, while longer PTA was associated with smaller viable white matter volumes in most brain regions. The results suggest that older age worsens the impact of TBI on the brain. They also indicate the validity of duration of PTA as a measure of injury severity that is not just related to one particular injury location.
Collapse
Affiliation(s)
- Michael Schönberger
- School of Psychology, Psychiatry, and Psychological Medicine, Monash University Melbourne , Clayton Campus, and Monash-Epworth Rehabilitation Research Centre, Epworth Hospital, Clayton, Victoria, Australia.
| | | | | | | | | |
Collapse
|
21
|
Isolating RNAs from rat facial motor neurons with laser capture microdissection after facial–facial anastomosis. Neurosci Lett 2010; 468:316-9. [DOI: 10.1016/j.neulet.2009.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 10/24/2009] [Accepted: 11/09/2009] [Indexed: 11/17/2022]
|
22
|
Xi D, Keeler B, Zhang W, Houle JD, Gao WJ. NMDA receptor subunit expression in GABAergic interneurons in the prefrontal cortex: application of laser microdissection technique. J Neurosci Methods 2009; 176:172-81. [PMID: 18845188 PMCID: PMC2740488 DOI: 10.1016/j.jneumeth.2008.09.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 08/28/2008] [Accepted: 09/09/2008] [Indexed: 11/16/2022]
Abstract
The selective involvement of a subset of neurons in many psychiatric disorders, such as gamma-aminobutyric acid (GABA)-ergic interneurons in schizophrenia, creates a significant need for in-depth analysis of these cells. Here we introduce a combination of techniques to examine the relative gene expression of N-methyl-d-aspartic acid (NMDA) receptor subtypes in GABAergic interneurons from the rat prefrontal cortex. Neurons were identified by immunostaining, isolated by laser microdissection and RNA was prepared for reverse transcription polymerase chain reaction (RT-PCR) and real-time PCR. These experimental procedures have been described individually; however, we found that this combination of techniques is powerful for the analysis of gene expression in individual identified neurons. This approach provides the means to analyze relevant molecular mechanisms that are involved in the neuropathological process of a devastating brain disorder.
Collapse
Affiliation(s)
- Dong Xi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
- Department of Pediatric Surgery, Qilu Hospital and College of Medicine, Shandong University, China, 250012
| | - Benjamin Keeler
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Wentong Zhang
- Department of Pediatric Surgery, Qilu Hospital and College of Medicine, Shandong University, China, 250012
| | - John D. Houle
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
23
|
Abstract
In the acute-care setting, it is widely accepted that elderly patients have increased morbidity and mortality compared with young healthy patients. The reasons for this, however, are largely unknown. Although animal modeling has helped improve treatment strategies for young patients, there are a scarce number of studies attempting to understand the mechanisms of systemic insults such as trauma, burn, and sepsis in aged individuals. This review aims to highlight the relevance of using animals to study the pathogenesis of these insults in the aged and, despite the deficiency of information, to summarize what is currently known in this field.
Collapse
Affiliation(s)
- Vanessa Nomellini
- The Burn and Shock Trauma Institute and the Immunology and Aging Program, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | | | | | |
Collapse
|
24
|
Hellmich HL, Eidson K, Cowart J, Crookshanks J, Boone DK, Shah S, Uchida T, DeWitt DS, Prough DS. Chelation of neurotoxic zinc levels does not improve neurobehavioral outcome after traumatic brain injury. Neurosci Lett 2008; 440:155-9. [PMID: 18556117 PMCID: PMC2532498 DOI: 10.1016/j.neulet.2008.05.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/16/2008] [Accepted: 05/17/2008] [Indexed: 11/17/2022]
Abstract
Increases of synaptically released zinc and intracellular accumulation of zinc in hippocampal neurons after traumatic or ischemic brain injury is neurotoxic and chelation of zinc has been shown to reduce neurodegeneration. Although our previous studies showed that zinc chelation in traumatically brain-injured rats correlated with an increase in whole-brain expression of several neuroprotective genes and reduced numbers of apoptotic neurons, the effect on functional outcome has not been determined, and the question of whether this treatment may actually be clinically relevant has not been answered. In the present study, we show that treatment of TBI rats with the zinc chelator calcium EDTA reduces the numbers of injured, Fluoro-Jade-positive neurons in the rat hippocampus 24 h after injury but does not improve neurobehavioral outcome (spatial memory deficits) 2 weeks post-injury. Our data suggest that zinc chelation, despite providing short-term histological neuroprotection, fails to improve long-term functional outcome, perhaps because long-term disruptions in homeostatic levels of zinc adversely influence hippocampus-dependent spatial memory.
Collapse
Affiliation(s)
- Helen L Hellmich
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0830, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kosuge Y, Imai T, Kawaguchi M, Kihara T, Ishige K, Ito Y. Subregion-specific vulnerability to endoplasmic reticulum stress-induced neurotoxicity in rat hippocampal neurons. Neurochem Int 2008; 52:1204-11. [DOI: 10.1016/j.neuint.2007.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 12/14/2007] [Accepted: 12/19/2007] [Indexed: 12/13/2022]
|
26
|
Onyszchuk G, He YY, Berman NEJ, Brooks WM. Detrimental effects of aging on outcome from traumatic brain injury: a behavioral, magnetic resonance imaging, and histological study in mice. J Neurotrauma 2008; 25:153-71. [PMID: 18260798 DOI: 10.1089/neu.2007.0430] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Considerable evidence indicates that outcomes from traumatic brain injury (TBI) are worse in the elderly, but there has been little preclinical research to explore potential mechanisms. In this study, we examined the age-related effects on outcome in a mouse model of controlled cortical impact (CCI) injury. We compared the responses of adult (5-6 months old) and aged (21-24 months old) male mice following a moderate lateral CCI injury to the sensorimotor cortex. Sensorimotor function was evaluated with the rotarod, gridwalk and spontaneous forelimb behavioral tests. Acute edema was assessed from hyperintensity on T2-weighted magnetic resonance images. Blood-brain barrier opening was measured using anti-mouse immunoglobulin G (IgG) immunohistochemistry. Neurodegeneration was assessed by amino-cupric silver staining, and lesion cavity volumes were measured from histological images. Indicators of injury were generally worse in the aged than the adult mice. Acute edema, measured at 24 and 48 h post-injury, resolved more slowly in the aged mice (p < 0.01). Rotarod recovery (p < 0.05) and gridwalk deficits (p < 0.01) were significantly worse in aged mice. There was greater (p < 0.01 at 3 days) and more prolonged post-acute opening of the blood-brain barrier in the aged mice. Neurodegeneration was greater in the aged mice (p < 0.01 at 3 days). In contrast, lesion cavity volumes, measured at 3 days post-injury, were not different between injured groups. These results suggest that following moderate controlled cortical impact injury, the aged brain is more vulnerable than the adult brain to neurodegeneration, resulting in greater loss of function. Tissue loss at the impact site does not explain the increased functional deficits seen in the aged animals. Prolonged acute edema, increased opening of the blood-brain barrier and increased neurodegeneration found in the aged animals implicate secondary processes in age-related differences in outcome.
Collapse
Affiliation(s)
- Gregory Onyszchuk
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
27
|
Vasey DB, Wolf CR, MacArtney T, Brown K, Whitelaw CBA. p21-LacZ reporter mice reflect p53-dependent toxic insult. Toxicol Appl Pharmacol 2008; 227:440-50. [PMID: 18215733 DOI: 10.1016/j.taap.2007.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 11/05/2007] [Accepted: 11/25/2007] [Indexed: 11/19/2022]
Abstract
There is an urgent need to discover less toxic and more selective drugs to treat disease. The use of transgenic mice that report on toxic insult-induced transcription can provide a valuable tool in this regard. To exemplify this strategy, we have generated transgenic mice carrying a p21-LacZ transgene. Transgene activity reflected endogenous p21 gene activation in various tissues, displayed compound-specific spatial expression signatures in the brain and immune tissues and enabled p53-dependent and p53-independent responses to be identified. We discuss the application of these mice in delineating the molecular events in normal cellular growth and disease and for the evaluation of drug toxicity.
Collapse
Affiliation(s)
- Douglas B Vasey
- Division of Gene Function and Development, Roslin Institute, Roslin, Midlothian, EH25 9PS, UK.
| | | | | | | | | |
Collapse
|
28
|
Hoogerwerf WA, Hellmich HL, Cornélissen G, Halberg F, Shahinian VB, Bostwick J, Savidge TC, Cassone VM. Clock gene expression in the murine gastrointestinal tract: endogenous rhythmicity and effects of a feeding regimen. Gastroenterology 2007; 133:1250-60. [PMID: 17919497 DOI: 10.1053/j.gastro.2007.07.009] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 06/28/2007] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Based on observations that the gastrointestinal tract is subject to various 24-hour rhythmic processes, it is conceivable that some of these rhythms are under circadian clock gene control. We hypothesized that clock genes are present in the gastrointestinal tract and that they are part of a functional molecular clock that coordinates rhythmic physiologic functions. METHODS The effects of timed feeding and vagotomy on temporal clock gene expression (clock, bmal1, per1-3, cry1-2) in the gastrointestinal tract and suprachiasmatic nucleus (bmal, per2) of C57BL/6J mice were examined using real-time polymerase chain reaction and Western blotting (BMAL, PER2). Colonic clock gene localization was examined using immunohistochemistry (BMAL, PER1-2). RESULTS Clock immunoreactivity was observed in the myenteric plexus and epithelial crypt cells. Clock genes were expressed rhythmically throughout the gastrointestinal tract. Timed feeding shifted clock gene expression at the RNA and protein level but did not shift clock gene expression in the central clock. Vagotomy did not alter gastric clock gene expression compared with sham-treated controls. CONCLUSIONS The murine gastrointestinal tract contains functional clock genes, which are molecular core components of the circadian clock. Daytime feeding in nocturnal rodents is a strong synchronizer of gastrointestinal clock genes. This synchronization occurs independently of the central clock. Gastric clock gene expression is not mediated through the vagal nerve. The presence of clock genes in the myenteric plexus and epithelial cells suggests a role for clock genes in circadian coordination of gastrointestinal functions such as motility, cell proliferation, and migration.
Collapse
Affiliation(s)
- Willemijntje A Hoogerwerf
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, VA Ann Arbor Healthcare System, Ann Arbor, Michigan 48105, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Popa-Wagner A, Badan I, Walker L, Groppa S, Patrana N, Kessler C. Accelerated infarct development, cytogenesis and apoptosis following transient cerebral ischemia in aged rats. Acta Neuropathol 2007; 113:277-93. [PMID: 17131130 DOI: 10.1007/s00401-006-0164-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 10/23/2006] [Accepted: 10/23/2006] [Indexed: 01/04/2023]
Abstract
Old age is associated with a deficient recovery from stroke, but the cellular mechanisms underlying such phenomena are poorly understood. To address this issue, focal cerebral ischemia was produced by reversible occlusion of the right middle cerebral artery in 3- and 20-month-old male Sprague-Dawley rats. Aged rats showed a delayed and suboptimal functional recovery in the post-stroke period. Using BrdU-labeling, quantitative immunohistochemistry and 3-D reconstruction of confocal images, we found that aged rats are predisposed to rapidly develop an infarct within the first few days after ischemia. The emergence of the necrotic zone is associated with a high rate of cellular degeneration, premature accumulation of proliferating BrdU-positive cells that appear to emanate from capillaries in the infarcted area, and a large number of apoptotic cells. With double labeling techniques, we were able to identify, for the first time, over 60% of BrdU-positive cells either as reactive microglia (45%), oligodendrocyte progenitors (17%), astrocytes (23%), CD8+ lymphocytes (4%), or apoptotic cells (<1%). Paradoxically, despite a robust reactive phenotype of microglia and astrocytes in aged rats, at 1-week post-stroke, the number of proliferating microglia and astrocytes was lower in aged rats than in young rats. Our data indicate that aging is associated with rapid infarct development and a poor prognosis for full recovery from stroke that is correlated with premature cellular proliferation and increased cellular degeneration and apoptosis in the infarcted area.
Collapse
Affiliation(s)
- Aurel Popa-Wagner
- Department of Neurology, University of Greifswald, Ellernholzstr. 1-2, 17487, Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Hellmich HL, Eidson KA, Capra BA, Garcia JM, Boone DR, Hawkins BE, Uchida T, Dewitt DS, Prough DS. Injured Fluoro-Jade-positive hippocampal neurons contain high levels of zinc after traumatic brain injury. Brain Res 2007; 1127:119-26. [PMID: 17109824 PMCID: PMC2896019 DOI: 10.1016/j.brainres.2006.09.094] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 09/12/2006] [Accepted: 09/13/2006] [Indexed: 10/23/2022]
Abstract
Hippocampal damage contributes to cognitive dysfunction after traumatic brain injury (TBI). We previously showed that Fluoro-Jade, a fluorescent stain that labels injured, degenerating brain neurons, quantifies the extent of hippocampal injury after experimental fluid percussion TBI in rats. Coincidentally, we observed that injured neurons in the rat hippocampus also stained with Newport Green, a fluorescent dye specific for free ionic zinc. Here, we show that, regardless of injury severity or therapeutic intervention, the post-TBI population of injured neurons in rat hippocampal subfields CA1, CA3 and dentate gyrus is indistinguishable, both in numbers and anatomical distribution, from the population of neurons containing high levels of zinc. Treatment with lamotrigine, which inhibits presynaptic release of glutamate and presumably zinc that is co-localized with glutamate, reduced numbers of Fluoro-Jade-positive and Newport Green-positive neurons equally as did treatment with nicardipine, which blocks voltage-gated calcium channels through which zinc enters neurons. To confirm using molecular techniques that Fluoro-Jade and Newport Green-positive neurons are equivalent populations, we isolated total RNA from 25 Fluoro-Jade-positive and 25 Newport Green-positive pyramidal neurons obtained by laser capture microdissection (LCM) from the CA3 subfield, linearly amplified the mRNA and used quantitative ribonuclease protection analysis to demonstrate similar expression of mRNA for selected TBI-induced genes. Our data suggest that therapeutic interventions aimed at reducing neurotoxic zinc levels after TBI may reduce hippocampal neuronal injury.
Collapse
Affiliation(s)
- Helen L Hellmich
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0830, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Shao YY, Wang L, Hicks DG, Ballock RT. Analysis of gene expression in mineralized skeletal tissues by laser capture microdissection and RT-PCR. J Transl Med 2006; 86:1089-95. [PMID: 16940962 DOI: 10.1038/labinvest.3700459] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The analysis of gene expression by growth plate chondrocytes in vivo has been hampered by the inherent difficulty in performing in situ hybridization on mineralized tissues. The combination of laser capture microdissection and reverse transcription-polymerase chain reaction (RT-PCR) allows analysis of gene expression by cells selectively removed from histologic sections by laser ablation. In order to apply this method to mineralized tissues, a decalcification process is required. The object of this study was to determine the optimal method for tissue decalcification prior to laser capture microdissection RT-PCR that will preserve integrity of the mRNA population. Acetone, 10% formalin, and methacarn were evaluated as fixatives, while Surgipath Decalicifier I, 10% ethylenediaminetetraacetic acid (EDTA), and 20% EDTA were evaluated as decalcifying reagents. Our results demonstrate that the optimal RNA quality was preserved by a decalcification protocol consisting of 20% EDTA for decalcification followed by fixation in methacarn, although this method is also associated with a reduction in RNA quantity.
Collapse
Affiliation(s)
- Yvonne Y Shao
- Orthopaedic Research Center, Department of Orthopaedic Surgery, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
32
|
Shah SA, Prough DS, Garcia JM, DeWitt DS, Hellmich HL. Molecular correlates of age-specific responses to traumatic brain injury in mice. Exp Gerontol 2006; 41:1201-5. [PMID: 16978820 DOI: 10.1016/j.exger.2006.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 07/18/2006] [Accepted: 07/28/2006] [Indexed: 11/22/2022]
Abstract
Aged traumatic brain injury (TBI) patients suffer higher rates of mortality and disability than younger patients. Cognitive problems common to TBI patients are associated with damage to the hippocampus, a central locus of learning and memory. To investigate the molecular mechanisms of age-related vulnerability to brain injury in a mouse model of TBI, we studied the effects of TBI on hippocampal gene expression in young and aged mice. Young and aged male C57Bl/6 mice were subjected to sham injury or TBI and sacrificed 24 h post-injury. We used laser capture microdissection to obtain pure populations of neurons from the CA1, CA3, and dentate gyrus subfields of the hippocampus. We compared injury-induced gene expression in hippocampal neurons of young and aged mice using quantitative ribonuclease protection assay analysis of linearly amplified mRNA from laser captured neurons. Both increased age and TBI were associated with increased expression of neuroprotective (brain-derived neurotrophic factor), pro-inflammatory (interleukin-1beta), and proapoptotic (caspase-3) genes in mouse hippocampal neurons. Our data support previous reports that suggested the CA3 subregion is highly susceptible to fluid percussion TBI and that age-related changes in gene expression are one potential mechanism of increased vulnerability of the aged brain to TBI.
Collapse
Affiliation(s)
- Syed A Shah
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0830, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
The complexity of the brain makes the investigation of anatomically defined regions using manual dissection techniques problematic. With these manual dissection techniques, only a mixture of many different cell types can be obtained. This leads to averaging the contents of all the different cell types, making it nearly impossible to observe effects that are specific to one type of cell. Laser microdissection enables individual cell-types to be dissected accurately from the brain for subsequent analysis of the genome, proteome or, most frequently, the transcriptome. Investigating only functionally relevant cells with high specificity provides unambiguous data, resulting in faster identification of potential targets, the elucidation of drug mode-of-action, as well as aiding identification of biomarkers for diagnostics use.
Collapse
Affiliation(s)
- Christine Böhm
- Axaron Bioscience AG, Im Neuenheimer Feld 515, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
34
|
Testa JA, Malec JF, Moessner AM, Brown AW. Outcome after traumatic brain injury: effects of aging on recovery. Arch Phys Med Rehabil 2005; 86:1815-23. [PMID: 16181948 DOI: 10.1016/j.apmr.2005.03.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To identify differences in outcome after traumatic brain injury (TBI) compared with orthopedic injuries as a function of age. DESIGN Longitudinal data analyses from an inception cohort. SETTING Outpatient rehabilitation program. PARTICIPANTS Eighty-two orthopedic injury patients and 195 TBI patients. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Independent living, employment, and level of functioning 1 to 2 years after injury. RESULTS Older patients and those with TBI were more likely to have increased dependence postinjury. Older TBI patients were more likely to have changes in employment status compared with orthopedic injury patients younger or TBI. The Mayo-Portland Adaptability Inventory and Disability Rating Scale were moderately predictive of level of functioning, return to employment, and independent living status 1 to 2 years postinjury. Injury severity was only mildly predictive of outcome. CONCLUSIONS The effect of age on outcome affects recovery from neurologic injuries and, to a lesser extent, orthopedic injuries. Outcome after TBI is best predicted by patients' age and estimates of level of function at discharge. Findings suggest that older patients and those with TBI have a greater likelihood of becoming physically and financially dependent on others. Rehabilitation efforts should focus on maximizing levels of independence to limit financial and emotional costs to patients and their families.
Collapse
Affiliation(s)
- Julie A Testa
- Department of Psychiatry, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
35
|
Thompson HJ, Lifshitz J, Marklund N, Grady MS, Graham DI, Hovda DA, McIntosh TK. Lateral fluid percussion brain injury: a 15-year review and evaluation. J Neurotrauma 2005; 22:42-75. [PMID: 15665602 DOI: 10.1089/neu.2005.22.42] [Citation(s) in RCA: 398] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This article comprehensively reviews the lateral fluid percussion (LFP) model of traumatic brain injury (TBI) in small animal species with particular emphasis on its validity, clinical relevance and reliability. The LFP model, initially described in 1989, has become the most extensively utilized animal model of TBI (to date, 232 PubMed citations), producing both focal and diffuse (mixed) brain injury. Despite subtle variations in injury parameters between laboratories, universal findings are evident across studies, including histological, physiological, metabolic, and behavioral changes that serve to increase the reliability of the model. Moreover, demonstrable histological damage and severity-dependent behavioral deficits, which partially recover over time, validate LFP as a clinically-relevant model of human TBI. The LFP model, also has been used extensively to evaluate potential therapeutic interventions, including resuscitation, pharmacologic therapies, transplantation, and other neuroprotective and neuroregenerative strategies. Although a number of positive studies have identified promising therapies for moderate TBI, the predictive validity of the model may be compromised when findings are translated to severely injured patients. Recently, the clinical relevance of LFP has been enhanced by combining the injury with secondary insults, as well as broadening studies to incorporate issues of gender and age to better approximate the range of human TBI within study design. We conclude that the LFP brain injury model is an appropriate tool to study the cellular and mechanistic aspects of human TBI that cannot be addressed in the clinical setting, as well as for the development and characterization of novel therapeutic interventions. Continued translation of pre-clinical findings to human TBI will enhance the predictive validity of the LFP model, and allow novel neuroprotective and neuroregenerative treatment strategies developed in the laboratory to reach the appropriate TBI patients.
Collapse
Affiliation(s)
- Hilaire J Thompson
- Traumatic Brain Injury Laboratory, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Hellmich HL, Capra B, Eidson K, Garcia J, Kennedy D, Uchida T, Parsley M, Cowart J, DeWitt DS, Prough DS. Dose-dependent neuronal injury after traumatic brain injury. Brain Res 2005; 1044:144-54. [PMID: 15885213 DOI: 10.1016/j.brainres.2005.02.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 02/07/2005] [Accepted: 02/12/2005] [Indexed: 10/25/2022]
Abstract
The Fluoro-Jade (FJ) stain reliably identifies degenerating neurons after multiple mechanisms of brain injury. We modified the FJ staining protocol to quickly stain frozen hippocampal rat brain sections and to permit systematic counts of stained, injured neurons at 4 and 24 h after mild, moderate or severe fluid percussion traumatic brain injury (TBI). In adjacent sections, laser capture microdissection was used to collect uninjured (FJ negative) CA3 hippocampal neurons to assess the effect of injury severity on mRNA levels of selected genes. Rats were anesthetized, intubated, mechanically ventilated and randomized to sham, mild (1.2 atm), moderate (2.0 atm) or severe (2.3 atm) TBI. Four or 24 h post-TBI, ten frozen sections (10 microm thick, every 15th section) were collected from the hippocampus of each rat, stained with FJ and counterstained with cresyl violet. Fluoro-Jade-positive neurons were counted in hippocampal subfields CA1, CA3 and the dentate gyrus/dentate hilus. At both 4 and 24 h post-TBI, numbers of FJ-positive neurons in all hippocampal regions increased dose-dependently in mildly and moderately injured rats but were not significantly more numerous after severe injury. Although analysis of variance demonstrated no overall difference in expression of mRNA levels for heat shock protein 70, bcl-2, caspase 3, caspase 9 and interleukin-1beta in uninjured CA3 neurons at all injury levels, post hoc analysis suggested that TBI induces increases in neuroprotective gene expression that offset concomitant increases in deleterious gene expression.
Collapse
Affiliation(s)
- Helen Lee Hellmich
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0830, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shimamura M, Garcia JM, Prough DS, Dewitt DS, Uchida T, Shah SA, Avila MAA, Hellmich HL. Analysis of long-term gene expression in neurons of the hippocampal subfields following traumatic brain injury in rats. Neuroscience 2005; 131:87-97. [PMID: 15680694 DOI: 10.1016/j.neuroscience.2004.10.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2004] [Indexed: 01/19/2023]
Abstract
After experimental traumatic brain injury (TBI), widespread neuronal loss is progressive and continues in selectively vulnerable brain regions, such as the hippocampus, for months to years after the initial insult. To clarify the molecular mechanisms underlying secondary or delayed cell death in hippocampal neurons after TBI, we compared long-term changes in gene expression in the CA1, CA3 and dentate gyrus (DG) subfields of the rat hippocampus at 24 h and 3, 6, and 12 months after TBI with changes in gene expression in sham-operated rats. We used laser capture microdissection to collect several hundred hippocampal neurons from the CA1, CA3, and DG subfields and linearly amplified the nanogram samples of neuronal RNA with T7 RNA polymerase. Subsequent quantitative analysis of gene expression using ribonuclease protection assay revealed that mRNA expression of the anti-apoptotic gene, Bcl-2, and the chaperone heat shock protein 70 was significantly downregulated at 3, 6 (Bcl-2 only), and 12 months after TBI. Interestingly, the expression of the pro-apoptotic genes caspase-3 and caspase-9 was also significantly decreased at 3, 6 (caspase-9 only), and 12 months after TBI, suggesting that long-term neuronal loss after TBI is not mediated by increased expression of pro-apoptotic genes. The expression of two aging-related genes, p21 and integrin beta3 (ITbeta3), transiently increased 24 h after TBI, returned to baseline levels at 3 months and significantly decreased below sham levels at 12 months (ITbeta3 only). Expression of the gene for the antioxidant glutathione peroxidase-1 also significantly increased 6 months after TBI. These results suggest that decreased levels of neuroprotective genes may contribute to long-term neurodegeneration in animals and human patients after TBI. Conversely, long-term increases in antioxidant gene expression after TBI may be an endogenous neuroprotective response that compensates for the decrease in expression of other neuroprotective genes.
Collapse
Affiliation(s)
- M Shimamura
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0830, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Datson NA, Meijer L, Steenbergen PJ, Morsink MC, van der Laan S, Meijer OC, de Kloet ER. Expression profiling in laser-microdissected hippocampal subregions in rat brain reveals large subregion-specific differences in expression. Eur J Neurosci 2004; 20:2541-54. [PMID: 15548198 DOI: 10.1111/j.1460-9568.2004.03738.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Expression profiling in the hippocampus is hampered by its cellular heterogeneity. The aim of this study was to evaluate the feasibility of using laser-microdissected hippocampal subregions for expression profiling to improve detection of transcripts with a subregion-specific expression. Cornu ammonis (CA)3 and dentate gyrus (DG) subregions were isolated from rat brain slices using laser microdissection, subjected to two rounds of linear amplification and hybridized to rat GeneChips containing approximately 8000 transcripts (RG_U34A; Affymetrix). Analysis of the data using significance analysis of microarrays revealed 724 genes with a significant difference in expression between CA3 and DG with a false discovery rate of 2.1%, of which 264 had higher expression in DG and 460 in CA3. Several transcripts with known differential expression between the subregions were included in the dataset, as well as numerous novel mRNAs and expressed sequence tags. Sorting of the differentially expressed genes according to gene ontology classification revealed that genes involved in glycolysis and general metabolism, neurogenesis and cell adhesion were consistently expressed at higher levels in CA3. Conversely, a large cluster of genes involved in protein biosynthesis were expressed at higher levels in DG. In situ hybridization was used to validate differential expression of a selection of genes. The results of this study demonstrate that the combination of laser microdissection and GeneChip technology is both technically feasible and very promising. Besides providing an extensive inventory of genes showing differential expression between CA3 and DG, this study supports the idea that profiling in hippocampal subregions should improve detection of genes with a subregion-specific expression or regulation.
Collapse
Affiliation(s)
- N A Datson
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|