1
|
Lee JE, Lee H, Baek E, Choi B, Yun HS, Yoo YK, Lee YS, Song GJ, Cho KS. The role of glial and neuronal Eph/ephrin signaling in Drosophila mushroom body development and sleep and circadian behavior. Biochem Biophys Res Commun 2024; 720:150072. [PMID: 38749187 DOI: 10.1016/j.bbrc.2024.150072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024]
Abstract
The Eph receptor, a prototypically large receptor protein tyrosine kinase, interacts with ephrin ligands, forming a bidirectional signaling system that impacts diverse brain functions. Eph receptors and ephrins mediate forward and reverse signaling, affecting neurogenesis, axon guidance, and synaptic signaling. While mammalian studies have emphasized their roles in neurogenesis and synaptic plasticity, the Drosophila counterparts are less studied, especially in glial cells, despite structural similarities. Using RNAi to modulate Eph/ephrin expression in Drosophila neurons and glia, we studied their roles in brain development and sleep and circadian behavior. Knockdown of neuronal ephrin disrupted mushroom body development, while glial knockdown had minimal impact. Surprisingly, disrupting ephrin in neurons or glial cells altered sleep and circadian rhythms, indicating a direct involvement in these behaviors independent from developmental effects. Further analysis revealed distinct sleep phenotypes between neuronal and glial knockdowns, underscoring the intricate interplay within the neural circuits that govern behavior. Glia-specific knockdowns showed altered sleep patterns and reduced circadian rhythmicity, suggesting an intricate role of glia in sleep regulation. Our findings challenge simplistic models of Eph/ephrin signaling limited to neuron-glia communication and emphasize the complexity of the regulatory networks modulating behavior. Future investigations targeting specific glial subtypes will enhance our understanding of Eph/ephrin signaling's role in sleep regulation across species.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyungi Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Eunji Baek
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Byoungyun Choi
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yong Kyoung Yoo
- Department of Electronic Engineering, Catholic Kwandong University, Gangneung, Gangwon-do, 25601, Republic of Korea
| | - Young-Sun Lee
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, 25601, Republic of Korea; Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, 22711, Republic of Korea
| | - Gyun Jee Song
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, 25601, Republic of Korea; Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, 22711, Republic of Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea; Korea Hemp Institute, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
2
|
Moretti J, Rodger J. A little goes a long way: Neurobiological effects of low intensity rTMS and implications for mechanisms of rTMS. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100033. [PMID: 36685761 PMCID: PMC9846462 DOI: 10.1016/j.crneur.2022.100033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/26/2022] [Accepted: 02/15/2022] [Indexed: 01/25/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a widespread technique in neuroscience and medicine, however its mechanisms are not well known. In this review, we consider intensity as a key therapeutic parameter of rTMS, and review the studies that have examined the biological effects of rTMS using magnetic fields that are orders of magnitude lower that those currently used in the clinic. We discuss how extensive characterisation of "low intensity" rTMS has set the stage for translation of new rTMS parameters from a mechanistic evidence base, with potential for innovative and effective therapeutic applications. Low-intensity rTMS demonstrates neurobiological effects across healthy and disease models, which include depression, injury and regeneration, abnormal circuit organisation, tinnitus etc. Various short and long-term changes to metabolism, neurotransmitter release, functional connectivity, genetic changes, cell survival and behaviour have been investigated and we summarise these key changes and the possible mechanisms behind them. Mechanisms at genetic, molecular, cellular and system levels have been identified with evidence that low-intensity rTMS and potentially rTMS in general acts through several key pathways to induce changes in the brain with modulation of internal calcium signalling identified as a major mechanism. We discuss the role that preclinical models can play to inform current clinical research as well as uncover new pathways for investigation.
Collapse
Affiliation(s)
- Jessica Moretti
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia,Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia,Perron Institute for Neurological and Translational Science, Perth, WA, Australia,Corresponding author. School of Biological Sciences M317, The University of Western Australia, 35 Stirling Highway, Crawley WA, 6009, Australia.
| |
Collapse
|
3
|
Moretti J, Poh EZ, Bolland SJ, Harvey AR, Albrecht MA, Rodger J. Concurrent LI-rTMS induces changes in c-Fos expression but not behavior during a progressive ratio task with adult ephrin-A2A5 -/- mice. Behav Brain Res 2020; 400:113011. [PMID: 33181182 DOI: 10.1016/j.bbr.2020.113011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/04/2020] [Accepted: 11/05/2020] [Indexed: 12/28/2022]
Abstract
Changes within the dopaminergic system induced by repetitive transcranial magnetic stimulation (rTMS) may contribute to its therapeutic effects; however, dopamine-related behavioral effects of rTMS have not been widely investigated. We recently showed that ephrin-A2A5-/- mice completed significantly fewer trials in a visual task than wildtype mice, and that concurrent low-intensity (LI-) rTMS during the task could partially rescue the abnormal behavior [Poh et al. 2018, eNeuro, vol. 5]. Here, we investigated whether the behavioral differences in ephrin-A2A5-/- mice are due to abnormal motivation, primarily a dopamine-modulated behavior, and whether LI-rTMS would increase motivation. Ephrin-A2A5-/- and wildtype mice underwent 14 daily sessions of progressive ratio (PR) tasks and received either sham or LI-rTMS during the first 10 min. Ephrin-A2A5-/- mice responded more than wildtype comparisons, and LI-rTMS did not influence task performance for either strain. Therefore concurrent stimulation does not influence motivation in a PR task. However, ephrin-A2A5-/- mice did have abnormal performance in the PR tasks after a change in the PR schedule which suggests perseverative behavior. We stained for c-Fos in the prelimbic area (PrL), ventral tegmental area and nucleus accumbens (NAc) core and shell to examine neuronal activity from the final PR session. Sham ephrin-A2A5-/- mice had lower c-Fos expression in the PrL and NAc vs. wildtype mice. Ephrin-A2A5-/- mice that received LI-rTMS showed c-Fos expression closer to wildtype levels in the NAc. Combined with high PR performance, ephrin-A2A5-/- mice show an abnormal shift to habitual responding and LI-rTMS may attenuate this shift.
Collapse
Affiliation(s)
- Jessica Moretti
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia; School of Human Sciences, The University of Western Australia, Perth, WA, Australia; Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Eugenia Z Poh
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia; School of Human Sciences, The University of Western Australia, Perth, WA, Australia; Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Samuel J Bolland
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia; Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia; Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | | | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia; Perron Institute for Neurological and Translational Science, Perth, WA, Australia.
| |
Collapse
|
4
|
Nguyen AQ, Koeppen J, Woodruff S, Mina K, Figueroa Z, Ethell IM. Astrocytic Ephrin-B1 Controls Synapse Formation in the Hippocampus During Learning and Memory. Front Synaptic Neurosci 2020; 12:10. [PMID: 32256333 PMCID: PMC7092624 DOI: 10.3389/fnsyn.2020.00010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/24/2020] [Indexed: 01/20/2023] Open
Abstract
Astrocytes play a fundamental role in synapse formation, pruning, and plasticity, which are associated with learning and memory. However, the role of astrocytes in learning and memory is still largely unknown. Our previous study showed that astrocyte-specific ephrin-B1 knock-out (KO) enhanced but ephrin-B1 overexpression (OE) in hippocampal astrocytes impaired contextual memory recall following fear conditioning. The goal of this study was to understand the mechanism by which astrocytic ephrin-B1 influences learning; specifically, learning-induced remodeling of synapses and dendritic spines in CA1 hippocampus using fear-conditioning paradigm. While we found a higher dendritic spine density and clustering on c-Fos-positive (+) neurons activated during contextual memory recall in both wild-type (WT) and KO mice, overall spine density and mEPSC amplitude were increased in CA1 neurons of KO compared to WT. In contrast, ephrin-B1 OE in hippocampal astrocytes impaired dendritic spine formation and clustering, specifically on c-Fos(+) neurons, coinciding with an overall decrease in vGlut1/PSD95 co-localization. Although astrocytic ephrin-B1 influenced learning-induced spine formation, the changes in astrocytic ephrin-B1 levels did not affect spine enlargement as no genotype differences in spine volume were observed between trained WT, KO, and OE groups. Our results suggest that a reduced formation of new spines rather than spine maturation in activated CA1 hippocampal neurons is most likely responsible for impaired contextual learning in OE mice due to abundantly high ephrin-B1 levels in astrocytes. The ability of astrocytic ephrin-B1 to negatively influence new spine formation during learning can potentially regulate new synapse formation at specific dendritic domains and underlie memory encoding.
Collapse
Affiliation(s)
- Amanda Q. Nguyen
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, United States
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Jordan Koeppen
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, United States
- Cell, Molecular, and Developmental Biology Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Simone Woodruff
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, United States
| | - Karen Mina
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, United States
| | - Zoe Figueroa
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, United States
| | - Iryna M. Ethell
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, United States
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
- Cell, Molecular, and Developmental Biology Graduate Program, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
5
|
Apellániz-Ruiz M, Tejero H, Inglada-Pérez L, Sánchez-Barroso L, Gutiérrez-Gutiérrez G, Calvo I, Castelo B, Redondo A, García-Donás J, Romero-Laorden N, Sereno M, Merino M, Currás-Freixes M, Montero-Conde C, Mancikova V, Åvall-Lundqvist E, Green H, Al-Shahrour F, Cascón A, Robledo M, Rodríguez-Antona C. Targeted Sequencing Reveals Low-Frequency Variants in EPHA Genes as Markers of Paclitaxel-Induced Peripheral Neuropathy. Clin Cancer Res 2016; 23:1227-1235. [PMID: 27582484 DOI: 10.1158/1078-0432.ccr-16-0694] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/29/2016] [Accepted: 08/16/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Neuropathy is the dose-limiting toxicity of paclitaxel and a major cause for decreased quality of life. Genetic factors have been shown to contribute to paclitaxel neuropathy susceptibility; however, the major causes for interindividual differences remain unexplained. In this study, we identified genetic markers associated with paclitaxel-induced neuropathy through massive sequencing of candidate genes.Experimental Design: We sequenced the coding region of 4 EPHA genes, 5 genes involved in paclitaxel pharmacokinetics, and 30 Charcot-Marie-Tooth genes, in 228 cancer patients with no/low neuropathy or high-grade neuropathy during paclitaxel treatment. An independent validation series included 202 paclitaxel-treated patients. Variation-/gene-based analyses were used to compare variant frequencies among neuropathy groups, and Cox regression models were used to analyze neuropathy along treatment.Results: Gene-based analysis identified EPHA6 as the gene most significantly associated with paclitaxel-induced neuropathy. Low-frequency nonsynonymous variants in EPHA6 were present exclusively in patients with high neuropathy, and all affected the ligand-binding domain of the protein. Accumulated dose analysis in the discovery series showed a significantly higher neuropathy risk for EPHA5/6/8 low-frequency nonsynonymous variant carriers [HR, 14.60; 95% confidence interval (CI), 2.33-91.62; P = 0.0042], and an independent cohort confirmed an increased neuropathy risk (HR, 2.07; 95% CI, 1.14-3.77; P = 0.017). Combining the series gave an estimated 2.5-fold higher risk of neuropathy (95% CI, 1.46-4.31; P = 9.1 × 10-4).Conclusions: This first study sequencing EPHA genes revealed that low-frequency variants in EPHA6, EPHA5, and EPHA8 contribute to the susceptibility to paclitaxel-induced neuropathy. Furthermore, EPHA's neuronal injury repair function suggests that these genes might constitute important neuropathy markers for many neurotoxic drugs. Clin Cancer Res; 23(5); 1227-35. ©2016 AACR.
Collapse
Affiliation(s)
- María Apellániz-Ruiz
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Héctor Tejero
- Translational Bioinformatics Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - Lucía Inglada-Pérez
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Lara Sánchez-Barroso
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Isabel Calvo
- Medical Oncology Department, Hospital Montepríncipe, Madrid, Spain.,Medical Oncology Department, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - Beatriz Castelo
- Medical Oncology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Andrés Redondo
- Medical Oncology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Jesús García-Donás
- Gynecological and Genitourinary Tumors Programme, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - Nuria Romero-Laorden
- Gynecological and Genitourinary Tumors Programme, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - María Sereno
- Medical Oncology Department, Hospital Universitario Infanta Sofía, Madrid, Spain
| | - María Merino
- Medical Oncology Department, Hospital Universitario Infanta Sofía, Madrid, Spain
| | - María Currás-Freixes
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Veronika Mancikova
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elisabeth Åvall-Lundqvist
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköpings Universitet, Linköping, Sweden
| | - Henrik Green
- Clinical Pharmacology, Division of Drug Research, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköpings Universitet, Linköping, Sweden.,Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Fátima Al-Shahrour
- Translational Bioinformatics Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - Alberto Cascón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Cristina Rodríguez-Antona
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. .,ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| |
Collapse
|
6
|
Das G, Yu Q, Hui R, Reuhl K, Gale NW, Zhou R. EphA5 and EphA6: regulation of neuronal and spine morphology. Cell Biosci 2016; 6:48. [PMID: 27489614 PMCID: PMC4971699 DOI: 10.1186/s13578-016-0115-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022] Open
Abstract
Background The Eph family of receptor tyrosine kinases plays important roles in neural development. Previous studies have implicated Eph receptors and their ligands, the ephrins, in neuronal migration, axon bundling and guidance to specific targets, dendritic spine formation and neural plasticity. However, specific contributions of EphA5 and EphA6 receptors to the regulation of neuronal cell morphology have not been well studied. Results Here we show that deletion of EphA5 and EphA6 results in abnormal Golgi staining patterns of cells in the brain, and abnormal spine morphology. Conclusion These observations suggest novel functions of these Eph receptors in the regulation of neuronal and spine structure in brain development and function.
Collapse
Affiliation(s)
- Gitanjali Das
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | - Qili Yu
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | - Ryan Hui
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | - Kenneth Reuhl
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | | | - Renping Zhou
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| |
Collapse
|
7
|
Dines M, Lamprecht R. The Role of Ephs and Ephrins in Memory Formation. Int J Neuropsychopharmacol 2015; 19:pyv106. [PMID: 26371183 PMCID: PMC4851260 DOI: 10.1093/ijnp/pyv106] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/10/2015] [Indexed: 12/22/2022] Open
Abstract
The ability to efficiently store memories in the brain is a fundamental process and its impairment is associated with multiple human mental disorders. Evidence indicates that long-term memory formation involves alterations of synaptic efficacy produced by modifications in neural transmission and morphology. The Eph receptors and their cognate ephrin ligands have been shown to be involved in these key neuronal processes by regulating events such as presynaptic transmitter release, postsynaptic glutamate receptor conductance and trafficking, synaptic glutamate reuptake, and dendritic spine morphogenesis. Recent findings show that Ephs and ephrins are needed for memory formation in different organisms. These proteins participate in the formation of various types of memories that are subserved by different neurons and brain regions. Ephs and ephrins are involved in brain disorders and diseases with memory impairment symptoms, including Alzheimer's disease and anxiety. Drugs that agonize or antagonize Ephs/ephrins signaling have been developed and could serve as therapeutic agents to treat such diseases. Ephs and ephrins may therefore induce cellular alterations mandatory for memory formation and serve as a target for pharmacological intervention for treatment of memory-related brain diseases.
Collapse
Affiliation(s)
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Israel.
| |
Collapse
|
8
|
Hegarty SV, Collins LM, Gavin AM, Roche SL, Wyatt SL, Sullivan AM, O'Keeffe GW. Canonical BMP-Smad signalling promotes neurite growth in rat midbrain dopaminergic neurons. Neuromolecular Med 2014; 16:473-89. [PMID: 24682653 DOI: 10.1007/s12017-014-8299-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/07/2014] [Indexed: 01/01/2023]
Abstract
Ventral midbrain (VM) dopaminergic (DA) neurons project to the dorsal striatum via the nigrostriatal pathway to regulate voluntary movements, and their loss leads to the motor dysfunction seen in Parkinson's disease (PD). Despite recent progress in the understanding of VM DA neurogenesis, the factors regulating nigrostriatal pathway development remain largely unknown. The bone morphogenetic protein (BMP) family regulates neurite growth in the developing nervous system and may contribute to nigrostriatal pathway development. Two related members of this family, BMP2 and growth differentiation factor (GDF)5, have neurotrophic effects, including promotion of neurite growth, on cultured VM DA neurons. However, the molecular mechanisms regulating their effects on DA neurons are unknown. By characterising the temporal expression profiles of endogenous BMP receptors (BMPRs) in the developing and adult rat VM and striatum, this study identified BMP2 and GDF5 as potential regulators of nigrostriatal pathway development. Furthermore, through the use of noggin, dorsomorphin and BMPR/Smad plasmids, this study demonstrated that GDF5- and BMP2-induced neurite outgrowth from cultured VM DA neurons is dependent on BMP type I receptor activation of the Smad 1/5/8 signalling pathway.
Collapse
Affiliation(s)
- Shane V Hegarty
- Department of Anatomy and Neuroscience, Biosciences Institute, University College Cork, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
9
|
Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development. Dev Biol 2013; 379:123-38. [PMID: 23603197 DOI: 10.1016/j.ydbio.2013.04.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/27/2013] [Accepted: 04/12/2013] [Indexed: 12/21/2022]
Abstract
Dopaminergic (DA) neurons of the ventral midbrain (VM) play vital roles in the regulation of voluntary movement, emotion and reward. They are divided into the A8, A9 and A10 subgroups. The development of the A9 group of DA neurons is an area of intense investigation to aid the generation of these neurons from stem cell sources for cell transplantation approaches to Parkinson's disease (PD). This review discusses the molecular processes that are involved in the identity, specification, maturation, target innervation and survival of VM DA neurons during development. The complex molecular interactions of a number of genetic pathways are outlined, as well as recent advances in the mechanisms that regulate subset identity within the VM DA neuronal pool. A thorough understanding of the cellular and molecular mechanisms involved in the development of VM DA neurons will greatly facilitate the use of cell replacement therapy for the treatment of PD.
Collapse
|
10
|
Prestoz L, Jaber M, Gaillard A. Dopaminergic axon guidance: which makes what? Front Cell Neurosci 2012; 6:32. [PMID: 22866028 PMCID: PMC3408579 DOI: 10.3389/fncel.2012.00032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 07/15/2012] [Indexed: 01/30/2023] Open
Abstract
Mesotelencephalic pathways in the adult central nervous system have been studied in great detail because of their implication in major physiological functions as well as in psychiatric, neurological, and neurodegenerative diseases. However, the ontogeny of these pathways and the molecular mechanisms that guide dopaminergic axons during embryogenesis have been only recently studied. This line of research is of crucial interest for the repair of lesioned circuits in adulthood following neurodegenerative diseases or common traumatic injuries. For instance, in the adult, the anatomic and functional repair of the nigrostriatal pathway following dopaminergic embryonic neuron transplantation suggests that specific guidance cues exist which govern embryonic fibers outgrowth, and suggests that axons from transplanted embryonic cells are able to respond to theses cues, which then guide them to their final targets. In this review, we first synthesize the work that has been performed in the last few years on developing mesotelencephalic pathways, and summarize the current knowledge on the identity of cellular and molecular signals thought to be involved in establishing mesotelencephalic dopaminergic neuronal connectivity during embryogenesis in the central nervous system of rodents. Then, we review the modulation of expression of these molecular signals in the lesioned adult brain and discuss their potential role in remodeling the mesotelencephalic dopaminergic circuitry, with a particular focus on Parkinson's disease (PD). Identifying guidance molecules involved in the connection of grafted cells may be useful for cellular therapy in Parkinsonian patients, as these molecules may help direct axons from grafted cells along the long distance they have to travel from the substantia nigra to the striatum.
Collapse
Affiliation(s)
- Laetitia Prestoz
- Experimental and Clinical Neurosciences Laboratory, Research Group on Cellular Therapies in Brain Diseases, INSERM U1084, University of PoitiersPoitiers, France.
| | | | | |
Collapse
|
11
|
Eph receptors and ephrins in neuron-astrocyte communication at synapses. Glia 2011; 59:1567-78. [DOI: 10.1002/glia.21226] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 07/05/2011] [Indexed: 12/24/2022]
|
12
|
Kolk SM, Gunput RAF, Tran TS, van den Heuvel DMA, Prasad AA, Hellemons AJCGM, Adolfs Y, Ginty DD, Kolodkin AL, Burbach JPH, Smidt MP, Pasterkamp RJ. Semaphorin 3F is a bifunctional guidance cue for dopaminergic axons and controls their fasciculation, channeling, rostral growth, and intracortical targeting. J Neurosci 2009; 29:12542-57. [PMID: 19812329 PMCID: PMC3097132 DOI: 10.1523/jneurosci.2521-09.2009] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 08/10/2009] [Accepted: 09/01/2009] [Indexed: 01/22/2023] Open
Abstract
Dopaminergic neurons in the mesodiencephalon (mdDA neurons) make precise synaptic connections with targets in the forebrain via the mesostriatal, mesolimbic, and mesoprefrontal pathways. Because of the functional importance of these remarkably complex ascending axon pathways and their implication in human disease, the mechanisms underlying the development of these connections are of considerable interest. Despite extensive in vitro studies, the molecular determinants that ensure the perfect formation of these pathways in vivo remain mostly unknown. Here, we determine the embryonic origin and ontogeny of the mouse mesoprefrontal pathway and use these data to reveal an unexpected requirement for semaphorin 3F (Sema3F) and its receptor neuropilin-2 (Npn-2) during mdDA pathway development using tissue culture approaches and analysis of sema3F(-/-), npn-2(-/-), and npn-2(-/-);TH-Cre mice. We show that Sema3F is a bifunctional guidance cue for mdDA axons, some of which have the remarkable ability to regulate their responsiveness to Sema3F as they develop. During early developmental stages, Sema3F chemorepulsion controls previously uncharacterized aspects of mdDA pathway development through both Npn-2-dependent (axon fasciculation and channeling) and Npn-2-independent (rostral growth) mechanisms. Later on, chemoattraction mediated by Sema3F and Npn-2 is required to orient mdDA axon projections in the cortical plate of the medial prefrontal cortex. This latter finding demonstrates that regulation of axon orientation in the target field occurs by chemoattractive mechanisms, and this is likely to also apply to other neural systems. In all, this study provides a framework for additional dissection of the molecular basis of mdDA pathway development and disease.
Collapse
Affiliation(s)
- Sharon M. Kolk
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| | - Rou-Afza F. Gunput
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| | - Tracy S. Tran
- The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Dianne M. A. van den Heuvel
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| | - Asheeta A. Prasad
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| | - Anita J. C. G. M. Hellemons
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| | - Youri Adolfs
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| | - David D. Ginty
- The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Alex L. Kolodkin
- The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - J. Peter H. Burbach
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| | - Marten P. Smidt
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| | - R. Jeroen Pasterkamp
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| |
Collapse
|
13
|
Cooper MA, Kobayashi K, Zhou R. Ephrin-A5 regulates the formation of the ascending midbrain dopaminergic pathways. Dev Neurobiol 2009; 69:36-46. [PMID: 19003794 DOI: 10.1002/dneu.20685] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dopaminergic neurons from the substantia nigra and the ventral tegmental area of the midbrain project to the caudate/putamen and nucleus accumbens, respectively, establishing the mesostriatal and the mesolimbic pathways. However, the mechanisms underlying the development of these pathways are not well understood. In the current study, the EphA5 receptor and its corresponding ligand, ephrin-A5, were shown to regulate dopaminergic axon outgrowth and influence the formation of the midbrain dopaminergic pathways. Using a strain of mutant mice in which the EphA5 cytoplasmic domain was replaced with beta-galactosidase, EphA5 protein expression was detected in both the ventral tegmental area and the substantia nigra of the midbrain. Ephrin-A5 was found in both the dorsolateral and the ventromedial regions of the striatum, suggesting a role in mediating dopaminergic axon-target interactions. In the presence of ephrin-A5, dopaminergic neurons extended longer neurites in in vitro coculture assays. Furthermore, in mice lacking ephrin-A5, retrograde tracing studies revealed that fewer neurons sent axons to the striatum. These observations indicate that the interactions between ephrin-A ligands and EphA receptors promote growth and targeting of the midbrain dopaminergic axons to the striatum.
Collapse
Affiliation(s)
- Margaret A Cooper
- Department of Chemical Biology, Ernest P. Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
14
|
Axon guidance and synaptic maintenance: preclinical markers for neurodegenerative disease and therapeutics. Trends Neurosci 2009; 32:142-9. [PMID: 19162339 DOI: 10.1016/j.tins.2008.11.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 11/06/2008] [Accepted: 11/07/2008] [Indexed: 11/22/2022]
Abstract
Axon-guidance-pathway molecules are involved in connectivity and repair throughout life (beyond guiding brain wiring during fetal development). One study found that variations (single-nucleotide polymorphisms [SNPs]) in axon-guidance-pathway genes were predictive of three Parkinson's disease (PD) outcomes (susceptibility, survival free of PD and age at onset of PD) in genome-wide association (GWA) datasets. The axon-guidance-pathway genes DCC, EPHB1, NTNG1, SEMA5A and SLIT3 were represented by SNPs predicting PD outcomes. Beyond GWA analyses, we also present relevant neurobiological roles of these axon-guidance-pathway molecules and consider mechanisms by which abnormal axon-guidance-molecule signaling can cause loss of connectivity and, ultimately, PD. Novel drugs and treatments could emerge from this new understanding.
Collapse
|
15
|
Prasad AA, Pasterkamp RJ. Axon guidance in the dopamine system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 651:91-100. [PMID: 19731554 DOI: 10.1007/978-1-4419-0322-8_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Meso-diencephalic dopamine neurons (mdDA) neurons are located in the retrorubral field (RRF), substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) and give rise to prominent ascending axon projections. These so-called mesotelencephalic projections are organized into three main pathways: the mesostriatal, mesocortical and mesolimbic pathways. Mesotelencephalic pathways in the adult nervous system have been studied in much detail as a result of their important physiological functions and their implication in psychiatric, neurological and neurodegenerative disease. In comparison, relatively little is known about the formation of these projection systems during embryonic and postnatal development. However, understanding the formation of mdDA neurons and their projections is essential for the design of effective therapies for mdDA neuron-associated neurological and neurodegenerative disorders. Here we summarize our current knowledge of the ontogeny of mdDA axon projections in subsystems of the developing rodent central nervous system (CNS) and discuss the cellular and molecular mechanisms that mediate mdDA axon guidance in these CNS regions.
Collapse
Affiliation(s)
- Asheeta A Prasad
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
16
|
Changes in attack behavior and activity in EphA5 knockout mice. Brain Res 2008; 1205:91-9. [PMID: 18353288 DOI: 10.1016/j.brainres.2008.02.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 02/14/2008] [Accepted: 02/17/2008] [Indexed: 11/21/2022]
Abstract
During development, Eph tyrosine kinase receptors and their ephrin ligands function as axon guidance molecules while, in adults, these molecules appear to be involved in the regulation of neural plasticity and emotion. The absence of EphA5 receptor mediated forward signaling may cause alterations in connectivity of neural networks and boundary formation during development, including central monoaminergic systems. In the present studies, we demonstrated altered aggressive responses by animals lacking functional EphA5 receptors. These behavioral changes were accompanied by altered concentrations of serotonin (5-HT) and the metabolite, 5-HIAA, in the hypothalamus. The changes of serotonin activity in hypothalamus also result in increase of body weight in EphA5 knockout mice. Furthermore, EphA5 knockout mice exhibited a significant decrease in activity levels following exposure to naïve intruders in their home cages. We conclude that the EphA5 receptor may be involved in mediation of aggressive behavior regulated, in part, by hypothalamic serotonin.
Collapse
|
17
|
Lesnick TG, Papapetropoulos S, Mash DC, Ffrench-Mullen J, Shehadeh L, de Andrade M, Henley JR, Rocca WA, Ahlskog JE, Maraganore DM. A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. PLoS Genet 2007; 3:e98. [PMID: 17571925 PMCID: PMC1904362 DOI: 10.1371/journal.pgen.0030098] [Citation(s) in RCA: 299] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 05/02/2007] [Indexed: 11/18/2022] Open
Abstract
While major inroads have been made in identifying the genetic causes of rare Mendelian disorders, little progress has been made in the discovery of common gene variations that predispose to complex diseases. The single gene variants that have been shown to associate reproducibly with complex diseases typically have small effect sizes or attributable risks. However, the joint actions of common gene variants within pathways may play a major role in predisposing to complex diseases (the paradigm of complex genetics). The goal of this study was to determine whether polymorphism in a candidate pathway (axon guidance) predisposed to a complex disease (Parkinson disease [PD]). We mined a whole-genome association dataset and identified single nucleotide polymorphisms (SNPs) that were within axon-guidance pathway genes. We then constructed models of axon-guidance pathway SNPs that predicted three outcomes: PD susceptibility (odds ratio = 90.8, p = 4.64 × 10−38), survival free of PD (hazards ratio = 19.0, p = 5.43 × 10−48), and PD age at onset (R2 = 0.68, p = 1.68 × 10−51). By contrast, models constructed from thousands of random selections of genomic SNPs predicted the three PD outcomes poorly. Mining of a second whole-genome association dataset and mining of an expression profiling dataset also supported a role for many axon-guidance pathway genes in PD. These findings could have important implications regarding the pathogenesis of PD. This genomic pathway approach may also offer insights into other complex diseases such as Alzheimer disease, diabetes mellitus, nicotine and alcohol dependence, and several cancers. Complex diseases are common disorders that are believed to have many causes. Examples include Alzheimer disease, diabetes mellitus, nicotine and alcohol dependence, and several cancers. This study represents a paradigm shift from single gene to pathway studies of complex diseases. We present the example of Parkinson disease (PD) and a complex array of chemical signals that wires the brain during fetal development (the axon guidance pathway). We mined a dataset that studied hundreds of thousands of DNA variations (single nucleotide polymorphisms [SNPs]) in persons with and without PD and identified SNPs that were assigned to axon-guidance pathway genes. We then identified sets of SNPs that were highly predictive of PD susceptibility, survival free of PD, and age at onset of PD. The effect sizes and the statistical significance observed for the pathway were far greater than for any single gene. We validated our findings for the pathway using a second SNP dataset for PD and also a dataset for PD that studied RNA variations. There is prior evidence that the axon guidance pathway might play a role in other brain disorders (e.g., Alzheimer disease, Tourette syndrome, dyslexia, epilepsy, and schizophrenia). A genomic pathway approach may lead to important breakthroughs for many complex diseases.
Collapse
Affiliation(s)
- Timothy G Lesnick
- Division of Biostatistics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Spiridon Papapetropoulos
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Deborah C Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | | | - Lina Shehadeh
- Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Mariza de Andrade
- Division of Biostatistics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - John R Henley
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Walter A Rocca
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - J. Eric Ahlskog
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Demetrius M Maraganore
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Mensah AK, De Luca V, Stachowiak B, Noor A, Windpassinger C, Lam STS, Kennedy JL, Scherer SW, Lo IFM, Vincent JB. Molecular analysis of a chromosome 4 inversion segregating in a large schizophrenia kindred from Hong Kong. Schizophr Res 2007; 95:228-35. [PMID: 17644315 DOI: 10.1016/j.schres.2007.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 06/12/2007] [Accepted: 06/13/2007] [Indexed: 11/26/2022]
Abstract
The present study looks at a paracentric inversion on chromosome 4 [inv(4)(q13;q25)] in members of a large schizophrenia kindred from Hong Kong, and the possibility of a susceptibility gene for schizophrenia at one of the inversion breakpoints. Fluorescence in situ hybridization with BAC and fosmid clones was used to determine the location of the 4q13 and 4q25 breakpoints, however bioinformatic analysis indicated that no known genes are directly disrupted by the breakpoints. We identified several putative genes and expressed sequence tags (ESTs) from around the breakpoint regions, and have characterized them further in order to determine whether they may represent full-length mRNAs that are disrupted by the inversion. Overall, it appears that, while no known genes are disrupted, an as yet undiscovered gene, or indeed, a known gene, may be present near one of the breakpoints and may be disrupted by position effect. We hypothesized that either the 4q13 or 4q25 breakpoint region may contain a common susceptibility gene for schizophrenia. We genotyped 117 schizophrenia families for several short tandem repeat polymorphisms close to the breakpoints. Family based association testing showed no association at the 4q13 breakpoint region, but showed significant allelic association for marker D4S2989 at the 4q25 breakpoint region (p=0.016). This study suggests that the 4q breakpoint regions may harbour a gene that contributes to the illness in the large Hong Kong pedigree, and this 4q25 region should be examined further in other schizophrenia samples.
Collapse
Affiliation(s)
- Albert K Mensah
- Molecular Neuropsychiatry and Development Laboratory, Toronto, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Numachi Y, Yoshida S, Yamashita M, Fujiyama K, Toda S, Matsuoka H, Kajii Y, Nishikawa T. Altered EphA5 mRNA expression in rat brain with a single methamphetamine treatment. Neurosci Lett 2007; 424:116-21. [PMID: 17714871 DOI: 10.1016/j.neulet.2007.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/08/2007] [Accepted: 07/23/2007] [Indexed: 11/25/2022]
Abstract
Methamphetamine is a potent and indirect dopaminergic agonist which can cause chronic brain dysfunctions including drug abuse, drug dependence and drug-induced psychosis. Methamphetamine is known to trigger molecular mechanisms involved in associative learning and memory, and thereby alter patterns of synaptic connectivity. The persistent risk of relapse in methamphetamine abuse, dependence and psychosis may be caused by such alterations in synaptic connectivity. EphA5 receptors constitute large families of tyrosine kinase receptor and are expressed almost exclusively in the nervous system, especially in the limbic structures. Recent studies suggest EphA5 to be important in the topographic projection, development, and plasticity of limbic structures, and to be involved in dopaminergic neurotransmission. We used in situ hybridization to examine whether methamphetamine alters EphA5 mRNA expression in the brains of adult male Wister rats. EphA5 mRNA was widely distributed in the medial frontal cortex, cingulate cortex, piriform cortex, hippocampus, habenular nucleus and amygdala. Compared to baseline expression at 0h, EphA5 mRNA was significantly decreased (by 20%) in the medial frontal cortex at 24h, significantly increased (by 30%) in the amygdala at 9 and 24h, significantly but transiently decreased (by 30%) in the habenular nucleus at 1h after a single injection of methamphetamine. Methamphetamine did not change EphA5 mRNA expression in the cingulate cortex, piriform cortex or hippocampus. Our results that methamphetamine altered EphA5 mRNA expression in rat brain suggest methamphetamine could affect patterns of synaptic connectivity, which might be responsible for methamphetamine-induced chronic brain dysfunctions.
Collapse
Affiliation(s)
- Yohtaro Numachi
- Musashi Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Thivierge JP, Marcus GF. The topographic brain: from neural connectivity to cognition. Trends Neurosci 2007; 30:251-9. [PMID: 17462748 DOI: 10.1016/j.tins.2007.04.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 03/27/2007] [Accepted: 04/18/2007] [Indexed: 11/30/2022]
Abstract
A hallmark feature of vertebrate brain organization is ordered topography, wherein sets of neuronal connections preserve the relative organization of cells between two regions. Although topography is often found in projections from peripheral sense organs to the brain, it also seems to participate in the anatomical and functional organization of higher brain centers, for reasons that are poorly understood. We propose that a key function of topography might be to provide computational underpinnings for precise one-to-one correspondences between abstract cognitive representations. This perspective offers a novel conceptualization of how the brain approaches difficult problems, such as reasoning and analogy making, and suggests that a broader understanding of topographic maps could be pivotal in fostering strong links between genetics, neurophysiology and cognition.
Collapse
Affiliation(s)
- Jean-Philippe Thivierge
- Département de Physiologie, Université de Montréal, C.P.6128 Succ. Centre-ville, Montréal, Québec, Canada.
| | | |
Collapse
|
21
|
Abstract
The serotonergic (5HT) system plays a key role in modulating behaviors, such as appetite and anxiety and has been implicated in many human disorders of mood and mind. Recent studies have begun to identify the signaling molecules and transcriptional cascades governing 5HT neuron development in the hindbrain. Already at early stages, local differences in requirements of 5HT neuron development have become apparent. These studies point toward cryptic heterogeneity amongst 5HT neurons and suggest that 5HT neuron determination and differentiation may be more flexible and less absolute biologic processes than might have been expected. Ultimately, the intrinsic heterogeneity and environmental sensitivity of 5HT neurons may help explain the variability observed in some human behavioral disorders, such as autism spectrum disorder, and the less predictable behavioral consequences of fetal alcohol syndrome.
Collapse
Affiliation(s)
- S P Cordes
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Department of Medical and Molecular Genetics and Microbiology, University of Toronto, ON, Canada.
| |
Collapse
|
22
|
Wilson DT, Polunas MA, Zhou R, Halladay AK, Lowndes HE, Reuhl KR. Methylmercury Alters Eph and Ephrin Expression During Neuronal Differentiation of P19 Embryonal Carcinoma Cells. Neurotoxicology 2005; 26:661-74. [PMID: 15990172 DOI: 10.1016/j.neuro.2005.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 01/15/2005] [Indexed: 11/19/2022]
Abstract
Developmental exposure to methylmercury (MeHg) induces a spectrum of neurological impairment characterized by cognitive disturbance, sensory/motor deficit, and diffuse structural abnormalities of the brain. These alterations may arise from neural path-finding errors during brain development, resulting from disturbances in the function of morphoregulatory guidance molecules. The Eph family of tyrosine kinase receptors and their ligands, the ephrins, guide neuronal migration and neurite pathfinding mainly via repulsive intercellular interactions. The present study examined the effects of MeHg on mRNA and protein expression profiles of Ephs and ephrins in the P19 embryonal carcinoma (EC) cell line and its neuronal derivatives. Undifferentiated control P19 cells displayed low- to undetectable levels of mRNA for ephrins or Ephs, with the sole exception of EphA2 which was highly expressed. Upon differentiation into neurons, the ephrin expression increased progressively through day 10. Similarly, expression of the Ephs, including EphsA3, -A4, -A8, -B2, -B3, -B4, and -B6, increased significantly. In contrast, EphA2 expression decreased in day 2, 6 and 10 control neurons. Treatment with MeHg did not affect the expression of mRNA for ephrins or Ephs in undifferentiated P19 cells. However, treatment of differentiating neurons with MeHg for 24 h caused consistent increases in ligand mRNA expression, particularly ephrin-A5, -A6, -B1, and -B2. Similarly, MeHg induced variable increases in mRNA expression of receptors EphA2, -A3, -B3, and -B6. A trend toward a concentration-response relationship was observed for the alterations in Eph receptor mRNA expression although increases at the low and mid concentrations did not reach statistical significance. Immunoblots for ligand and receptor proteins mirrored the increases in the mRNA levels at the 0.5 and 1.5 microM MeHg concentrations but showed decreased protein levels compared to controls at the 3.0 microM concentration. Alterations in the Eph/ephrin family of repulsion molecules may represent an important mechanism in developmental MeHg neurotoxicity.
Collapse
Affiliation(s)
- D T Wilson
- Joint Graduate Program in Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|