1
|
Yuan Y, Deng Q, Wei X, Liu Y, Lan Q, Jiang Y, Yu Y, Guo P, Xu J, Yu C, Han L, Cheng M, Wu P, Zhang X, Lai Y, Volpe G, Esteban MA, Yang H, Liu C, Liu L. The Chromatin Accessibility Landscape of Adult Rat. Front Genet 2021; 12:651604. [PMID: 34108989 PMCID: PMC8181391 DOI: 10.3389/fgene.2021.651604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/01/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yue Yuan
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Qiuting Deng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Xiaoyu Wei
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Yang Liu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | | | - Yu Jiang
- First Hospital, Jilin University, Changchun, China
| | - Yeya Yu
- BGI-Shenzhen, Shenzhen, China.,BGI College, Zhengzhou University, Zhengzhou, China
| | - Pengcheng Guo
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiangshan Xu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Cong Yu
- BGI-Shenzhen, Shenzhen, China
| | - Lei Han
- BGI-Shenzhen, Shenzhen, China
| | - Mengnan Cheng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | | | - Xiao Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yiwei Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Giacomo Volpe
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Miguel A Esteban
- BGI-Shenzhen, Shenzhen, China.,First Hospital, Jilin University, Changchun, China.,College of Veterinary Medicine, Jilin University, Changchun, China.,Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China.,Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen, China
| | - Chuanyu Liu
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
2
|
Lopes MW, Sapio MR, Leal RB, Fricker LD. Knockdown of Carboxypeptidase A6 in Zebrafish Larvae Reduces Response to Seizure-Inducing Drugs and Causes Changes in the Level of mRNAs Encoding Signaling Molecules. PLoS One 2016; 11:e0152905. [PMID: 27050163 PMCID: PMC4822968 DOI: 10.1371/journal.pone.0152905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/21/2016] [Indexed: 12/19/2022] Open
Abstract
Carboxypeptidase A6 (CPA6) is an extracellular matrix metallocarboxypeptidase that modulates peptide and protein function by removal of hydrophobic C-terminal amino acids. Mutations in the human CPA6 gene that reduce enzymatic activity in the extracellular matrix are associated with febrile seizures, temporal lobe epilepsy, and juvenile myoclonic epilepsy. The characterization of these human mutations suggests a dominant mode of inheritance by haploinsufficiency through loss of function mutations, however the total number of humans with pathologic mutations in CPA6 identified to date remains small. To better understand the relationship between CPA6 and seizures we investigated the effects of morpholino knockdown of cpa6 mRNA in zebrafish (Danio rerio) larvae. Knockdown of cpa6 mRNA resulted in resistance to the effect of seizure-inducing drugs pentylenetetrazole and pilocarpine on swimming behaviors. Knockdown of cpa6 mRNA also reduced the levels of mRNAs encoding neuropeptide precursors (bdnf, npy, chga, pcsk1nl, tac1, nts, edn1), a neuropeptide processing enzyme (cpe), transcription factor (c-fos), and molecules implicated in glutamatergic signaling (grin1a and slc1a2b). Treatment of zebrafish embryos with 60 mM pilocarpine for 1 hour led to reductions in levels of many of the same mRNAs when measured 1 day after pilocarpine exposure, except for c-fos which was elevated 1 day after pilocarpine treatment. Pilocarpine treatment, like cpa6 knockdown, led to a reduced sensitivity to pentylenetetrazole when tested 1 day after pilocarpine treatment. Taken together, these results add to mounting evidence that peptidergic systems participate in the biological effects of seizure-inducing drugs, and are the first in vivo demonstration of the molecular and behavioral consequences of cpa6 insufficiency.
Collapse
Affiliation(s)
- Mark William Lopes
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Matthew R. Sapio
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Rodrigo B. Leal
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Lloyd D. Fricker
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
3
|
Sapio MR, Vessaz M, Thomas P, Genton P, Fricker LD, Salzmann A. Novel carboxypeptidase A6 (CPA6) mutations identified in patients with juvenile myoclonic and generalized epilepsy. PLoS One 2015; 10:e0123180. [PMID: 25875328 PMCID: PMC4395397 DOI: 10.1371/journal.pone.0123180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/17/2015] [Indexed: 01/12/2023] Open
Abstract
Carboxypeptidase A6 (CPA6) is a peptidase that removes C-terminal hydrophobic amino acids from peptides and proteins. The CPA6 gene is expressed in the brains of humans and animals, with high levels of expression during development. It is translated with a prodomain (as proCPA6), which is removed before secretion. The active form of CPA6 binds tightly to the extracellular matrix (ECM) where it is thought to function in the processing of peptides and proteins. Mutations in the CPA6 gene have been identified in patients with temporal lobe epilepsy and febrile seizures. In the present study, we screened for CPA6 mutations in patients with juvenile myoclonic epilepsy and identified two novel missense mutations: Arg36His and Asn271Ser. Patients harboring these mutations also presented with generalized epilepsy. Neither of the novel mutations was found in a control population. Asn271 is highly conserved in CPA6 and other related metallocarboxypeptidases. Arg36 is present in the prodomain and is not highly conserved. To assess structural consequences of the amino acid substitutions, both mutants were modeled within the predicted structure of the enzyme. To examine the effects of these mutations on enzyme expression and activity, we expressed the mutated enzymes in human embryonic kidney 293T cells. These analyses revealed that Asn271Ser abolished enzymatic activity, while Arg36His led to a ~50% reduction in CPA6 levels in the ECM. Pulse-chase using radio-labeled amino acids was performed to follow secretion. Newly-synthesized CPA6 appeared in the ECM with peak levels between 2-8 hours. There was no major difference in time course between wild-type and mutant forms, although the amount of radiolabeled CPA6 in the ECM was lower for the mutants. Our experiments demonstrate that these mutations in CPA6 are deleterious and provide further evidence for the involvement of CPA6 mutations in the predisposition for several types of epilepsy.
Collapse
Affiliation(s)
- Matthew R. Sapio
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Monique Vessaz
- Department of Genetic Medicine and Laboratory, University Hospitals of Geneva, Geneva, Switzerland
| | - Pierre Thomas
- Department of Neurology, University Hospital, Nice, France
| | - Pierre Genton
- Centre Saint Paul, Hôpital Henri Gastaut, Marseille, France
| | - Lloyd D. Fricker
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States of America
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States of America
- * E-mail: (LDF); (AS)
| | - Annick Salzmann
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- * E-mail: (LDF); (AS)
| |
Collapse
|
4
|
Sapio MR, Fricker LD. Carboxypeptidases in disease: insights from peptidomic studies. Proteomics Clin Appl 2014; 8:327-37. [PMID: 24470285 DOI: 10.1002/prca.201300090] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/10/2013] [Accepted: 10/30/2013] [Indexed: 12/19/2022]
Abstract
Carboxypeptidases (CPs) perform many diverse physiological functions by removing C-terminal amino acids from proteins and peptides. Some CPs function in the degradation of proteins in the digestive tract while other enzymes play biosynthetic roles in the formation of neuropeptides and peptide hormones. Another set of CPs modify tubulin by removing amino acids from the C-terminus and from polyglutamyl side chains, thereby altering the properties of microtubules. This review focuses on three CPs: carboxypeptidase E, carboxypeptidase A6, and cytosolic carboxypeptidase 1. Naturally occurring mutations in all three of these enzymes are associated with disease phenotypes, ranging from obesity to epilepsy to neurodegeneration. Peptidomics is a useful tool to investigate the relationship between these mutations and alterations in peptide levels. This technique has also been used to define the function and characteristics of CPs. Results from peptidomics studies have helped to elucidate the function of CPs and clarify the biological underpinnings of pathologies by identifying peptides altered in disease states. This review describes the use of peptidomic techniques to gain insights into the normal function of CPs and the molecular defects caused by mutations in the enzymes.
Collapse
Affiliation(s)
- Matthew R Sapio
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
5
|
Belhedi N, Perroud N, Karege F, Vessaz M, Malafosse A, Salzmann A. Increased CPA6 promoter methylation in focal epilepsy and in febrile seizures. Epilepsy Res 2013; 108:144-8. [PMID: 24290490 DOI: 10.1016/j.eplepsyres.2013.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/13/2013] [Accepted: 10/13/2013] [Indexed: 10/26/2022]
Abstract
Focal epilepsy (FE) is one of the most common forms of adult epilepsy and is usually regarded as a multifactorial disorder. Febrile seizures (FS) often appear during childhood in a subtype of FE patients, i.e. with temporal lobe epilepsy (TLE) and hippocampal sclerosis (HS). FS are the most common human convulsive event associated with fever. Genetic evidences for FS have suggested a complex mode of inheritance. Until now, to investigate genes at the genomic level, linkage analysis of familial forms and association studies have been performed, but nothing conclusive has been clearly related to FE and FS. As complex disorders, environmental factors might play a crucial role through epigenetic modification of key candidate genes such as CPA6, which encodes Carboxypeptidase A6, an extracellular protein. Therefore, we assessed DNA methylation in promoter of CPA6. In 186 FE patients and 92 FS patients compared to 93 healthy controls and 42 treated controls with antiepileptic drugs (AEDs), we found significant higher levels of methylation for epileptic patients. Methylation status were 3.4% (±3.2%) for FE cases and 4.3% (±3.5%) for FS cases, whereas healthy individuals and treated controls with AEDs showed a level of 0.8% (±2.9%) and 1.5% (±3.9%), respectively (p≤0.001 for all comparisons). These results let growing evidence for DNA methylation involvment in FE and FS.
Collapse
Affiliation(s)
- N Belhedi
- Laboratory of Genetic, Immunology and Human Pathologies, Department of Biology, Faculty of Sciences, Tunis, Tunisia; Neurological Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - N Perroud
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - F Karege
- Department of Biology, National University of Rwanda, Rwanda
| | - M Vessaz
- Department of Genetic Medicine and Laboratory, University Hospitals of Geneva, Geneva, Switzerland
| | - A Malafosse
- Department of Psychiatry, University of Geneva, Geneva, Switzerland; Department of Genetic Medicine and Laboratory, University Hospitals of Geneva, Geneva, Switzerland
| | - A Salzmann
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
6
|
Sapio MR, Salzmann A, Vessaz M, Crespel A, Lyons PJ, Malafosse A, Fricker LD. Naturally occurring carboxypeptidase A6 mutations: effect on enzyme function and association with epilepsy. J Biol Chem 2012; 287:42900-9. [PMID: 23105115 DOI: 10.1074/jbc.m112.414094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Carboxypeptidase A6 (CPA6) is a member of the A/B subfamily of M14 metallocarboxypeptidases that is expressed in brain and many other tissues during development. Recently, two mutations in human CPA6 were associated with febrile seizures and/or temporal lobe epilepsy. In this study we screened for additional CPA6 mutations in patients with febrile seizures and focal epilepsy, which encompasses the temporal lobe epilepsy subtype. Mutations found from this analysis as well as CPA6 mutations reported in databases of single nucleotide polymorphisms were further screened by analysis of the modeled proCPA6 protein structure and the functional role of the mutated amino acid. The point mutations predicted to affect activity and/or protein folding were tested by expression of the mutant in HEK293 cells and analysis of the resulting CPA6 protein. Common polymorphisms in CPA6 were also included in this analysis. Several mutations resulted in reduced enzyme activity or CPA6 protein levels in the extracellular matrix. The mutants with reduced extracellular CPA6 protein levels showed normal levels of 50-kDa proCPA6 in the cell, and this could be converted into 37-kDa CPA6 by trypsin, suggesting that protein folding was not greatly affected by the mutations. Interestingly, three of the mutations that reduced extracellular CPA6 protein levels were found in patients with epilepsy. Taken together, these results provide further evidence for the involvement of CPA6 mutations in human epilepsy and reveal additional rare mutations that inactivate CPA6 and could, therefore, also be associated with epileptic phenotypes.
Collapse
Affiliation(s)
- Matthew R Sapio
- Department of Neuroscience, Albert Einstein College of Medicine,Bronx, New York 10461,USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Salzmann A, Guipponi M, Lyons PJ, Fricker LD, Sapio M, Lambercy C, Buresi C, Ouled Amar Bencheikh B, Lahjouji F, Ouazzani R, Crespel A, Chaigne D, Malafosse A. Carboxypeptidase A6 gene (CPA6) mutations in a recessive familial form of febrile seizures and temporal lobe epilepsy and in sporadic temporal lobe epilepsy. Hum Mutat 2011; 33:124-35. [DOI: 10.1002/humu.21613] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 08/25/2011] [Indexed: 11/10/2022]
|
8
|
Carboxypeptidase A6 in zebrafish development and implications for VIth cranial nerve pathfinding. PLoS One 2010; 5:e12967. [PMID: 20885977 PMCID: PMC2945764 DOI: 10.1371/journal.pone.0012967] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 09/03/2010] [Indexed: 02/01/2023] Open
Abstract
Carboxypeptidase A6 (CPA6) is an extracellular protease that cleaves carboxy-terminal hydrophobic amino acids and has been implicated in the defective innervation of the lateral rectus muscle by the VIth cranial nerve in Duane syndrome. In order to investigate the role of CPA6 in development, in particular its potential role in axon guidance, the zebrafish ortholog was identified and cloned. Zebrafish CPA6 was secreted and interacted with the extracellular matrix where it had a neutral pH optimum and specificity for C-terminal hydrophobic amino acids. Transient mRNA expression was found in newly formed somites, pectoral fin buds, the stomodeum and a conspicuous condensation posterior to the eye. Markers showed this tissue was not myogenic in nature. Rather, the CPA6 localization overlapped with a chondrogenic site which subsequently forms the walls of a myodome surrounding the lateral rectus muscle. No other zebrafish CPA gene exhibited a similar expression profile. Morpholino-mediated knockdown of CPA6 combined with retrograde labeling and horizontal eye movement analyses demonstrated that deficiency of CPA6 alone did not affect either VIth nerve development or function in the zebrafish. We suggest that mutations in other genes and/or enhancer elements, together with defective CPA6 expression, may be required for altered VIth nerve pathfinding. If mutations in CPA6 contribute to Duane syndrome, our results also suggest that Duane syndrome can be a chondrogenic rather than a myogenic or neurogenic developmental disorder.
Collapse
|
9
|
Abstract
Carboxypeptidase A6 (CPA6) is an extracellular matrix-bound metallocarboxypeptidase (CP) that has been implicated in Duane syndrome, a neurodevelopmental disorder in which the lateral rectus extraocular muscle is not properly innervated. Consistent with a role in Duane syndrome, CPA6 is expressed in a number of chondrocytic and nervous tissues during embryogenesis. To better characterize the enzymatic function and specificity of CPA6 and to compare this with other CPs, CPA6 was expressed in HEK293 cells and purified. Kinetic parameters were determined using a panel of synthetic carboxypeptidase substrates, indicating a preference of CPA6 for large hydrophobic C-terminal amino acids and only very weak activity toward small amino acids and histidine. A quantitative peptidomics approach using a mixture of peptides representative of the neuropeptidome allowed the characterization of CPA6 preferences at the P1 substrate position and suggested that small and acidic P1 residues significantly inhibit CPA6 cleavage. Finally, a comparison of available kinetic data for CPA enzymes shows a gradient of specificity across the subfamily, from the very restricted specificity of CPA2 to the very broad activity of CPA4. Structural data and modeling for all CPA/B subfamily members suggests the structural basis for the unique specificities observed for each member of the CPA/B subfamily of metallocarboxypeptidases.
Collapse
Affiliation(s)
- Peter J Lyons
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
10
|
Tanco S, Zhang X, Morano C, Avilés FX, Lorenzo J, Fricker LD. Characterization of the substrate specificity of human carboxypeptidase A4 and implications for a role in extracellular peptide processing. J Biol Chem 2010; 285:18385-96. [PMID: 20385563 DOI: 10.1074/jbc.m109.060350] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CPA4 (carboxypeptidase A4) is a member of the metallocarboxypeptidase family. CPA4 was originally found in a screen of mRNAs up-regulated by sodium butyrate-induced differentiation of cancer cells. Further studies suggested a relation between CPA4 and prostate cancer aggressiveness. In the present study, we determined that CPA4 is secreted from cells as a soluble proenzyme (pro-CPA4) that can be activated by endoproteases, such as trypsin. Three complementary approaches were used to study the substrate specificity of CPA4; kinetic analysis was performed using a new series of chromogenic substrates and some biologically relevant peptides, the cleavage of synthetic peptides was tested individually, and the cleavage of a mixture of >100 mouse brain peptides was examined using a quantitative peptidomics mass spectrometry-based approach. CPA4 was able to cleave hydrophobic C-terminal residues with a preference for Phe, Leu, Ile, Met, Tyr, and Val. However, not all peptides with C-terminal hydrophobic residues were cleaved, indicating the importance of additional residues within the peptide. Aliphatic, aromatic, and basic residues in the P1 position have a positive influence on the cleavage specificity. In contrast, acidic residues, Pro, and Gly have a negative influence in the P1 position. Some of the peptides identified as CPA4 substrates (such as neurotensin, granins, and opioid peptides) have been previously shown to function in cell proliferation and differentiation, potentially explaining the link between CPA4 and cancer aggressiveness. Taken together, these studies suggest that CPA4 functions in neuropeptide processing and regulation in the extracellular environment.
Collapse
Affiliation(s)
- Sebastian Tanco
- Departament de Bioquimica, Institut de Biotecnologia i de Biomedicina, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Zhang X, Che FY, Berezniuk I, Sonmez K, Toll L, Fricker LD. Peptidomics of Cpe(fat/fat) mouse brain regions: implications for neuropeptide processing. J Neurochem 2008; 107:1596-613. [PMID: 19014391 DOI: 10.1111/j.1471-4159.2008.05722.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Quantitative peptidomics was used to compare levels of peptides in wild type (WT) and Cpe(fat/fat) mice, which lack carboxypeptidase E (CPE) activity because of a point mutation. Six different brain regions were analyzed: amygdala, hippocampus, hypothalamus, prefrontal cortex, striatum, and thalamus. Altogether, 111 neuropeptides or other peptides derived from secretory pathway proteins were identified in WT mouse brain extracts by tandem mass spectrometry, and another 47 peptides were tentatively identified based on mass and other criteria. Most secretory pathway peptides were much lower in Cpe(fat/fat) mouse brain, relative to WT mouse brain, indicating that CPE plays a major role in their biosynthesis. Other peptides were only partially reduced in the Cpe(fat/fat) mice, indicating that another enzyme (presumably carboxypeptidase D) contributes to their biosynthesis. Approximately 10% of the secretory pathway peptides were present in the Cpe(fat/fat) mouse brain at levels similar to those in WT mouse brain. Many peptides were greatly elevated in the Cpe(fat/fat) mice; these peptide processing intermediates with C-terminal Lys and/or Arg were generally not detectable in WT mice. Taken together, these results indicate that CPE contributes, either directly or indirectly, to the production of the majority of neuropeptides.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
12
|
CPA6, FMO2, LGI1, SIAT1 and TNC are differentially expressed in early- and late-stage oral squamous cell carcinoma--a pilot study. Oral Oncol 2008; 44:941-8. [PMID: 18234543 DOI: 10.1016/j.oraloncology.2007.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 07/07/2007] [Accepted: 10/25/2007] [Indexed: 01/10/2023]
Abstract
To identify novel genes that could be involved in oncogenesis of oral squamous cell carcinoma a microarray-based gene-expression analysis was performed using tumour samples from patients with low-stage (n=4) and high-stage (n=4) disease in a pilot study. Genes (601) were found to be significantly regulated in cancer tissue compared to adjacent intraindividual mucosa controls. Genes (25) were identified with differences in their regulation comparing samples from early-stage cancer with those from advanced disease. The gene expression pattern of 5 of 7 genes examined by real-time-PCR verified the results received from the microarray-experiment. Among these, FMO2, CPA6, TNC and SIAT1 were significantly upregulated in early disease stages. LGI1 gene expression was significantly enhanced in normal adjacent mucosa of patients with early-stage disease without showing a differential expression in carcinoma biopsies. With this pilot study several novel genes were identified, which could be related to early and late stage disease. Hypotheses from these findings are discussed and have to be confirmed in a larger study sample.
Collapse
|
13
|
Lyons PJ, Callaway MB, Fricker LD. Characterization of carboxypeptidase A6, an extracellular matrix peptidase. J Biol Chem 2008; 283:7054-63. [PMID: 18178555 DOI: 10.1074/jbc.m707680200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carboxypeptidase A6 (CPA6) is a member of the M14 metallocarboxypeptidase family that is highly expressed in the adult mouse olfactory bulb and broadly expressed in embryonic brain and other tissues. A disruption in the human CPA6 gene is linked to Duane syndrome, a defect in the abducens nerve/lateral rectus muscle connection. In this study the cellular distribution, processing, and substrate specificity of human CPA6 were investigated. The 50-kDa pro-CPA6 is routed through the constitutive secretory pathway, processed by furin or a furin-like enzyme into the 37-kDa active form, and secreted into the extracellular matrix. CPA6 cleaves the C-terminal residue from a range of substrates, including small synthetic substrates, larger peptides, and proteins. CPA6 has a preference for large hydrophobic C-terminal amino acids as well as histidine. Peptides with a penultimate glycine or proline are very poorly cleaved. Several neuropeptides were found to be processed by CPA6, including Met- and Leu-enkephalin, angiotensin I, and neurotensin. Whereas CPA6 converts enkephalin and neurotensin into forms known to be inactive toward their receptors, CPA6 converts inactive angiotensin I into the biologically active angiotensin II. Taken together, these data suggest a role for CPA6 in the regulation of neuropeptides in the extracellular environment within the olfactory bulb and other parts of the brain.
Collapse
Affiliation(s)
- Peter J Lyons
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
14
|
Kalinina E, Biswas R, Berezniuk I, Hermoso A, Aviles FX, Fricker LD. A novel subfamily of mouse cytosolic carboxypeptidases. FASEB J 2007; 21:836-50. [PMID: 17244818 DOI: 10.1096/fj.06-7329com] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nna1 is a recently described gene product that has sequence similarity with metallocarboxypeptidases. In the present study, five additional Nna1-like genes were identified in the mouse genome and named cytosolic carboxypeptidase (CCP) 2 through 6. Modeling suggests that the carboxypeptidase domain folds into a structure that resembles metallocarboxypeptidases of the M14 family, with all necessary residues for catalytic activity and broad substrate specificity. All CCPs are abundant in testis and also expressed in brain, pituitary, eye, and other mouse tissues. In brain, Nna1/CCP1, CCP5, and CCP6 are broadly distributed, whereas CCP2 and 3 exhibit restricted patterns of expression. Nna1/CCP1, CCP2, CCP5, and CCP6 were found to exhibit a cytosolic distribution, with a slight accumulation of CCP5 in the nucleus. Based on the above results, we hypothesized that Nna1/CCP1 and CCP2-6 function in the processing of cytosolic proteins such as alpha-tubulin, which is known to be modified by the removal of a C-terminal tyrosine. Analysis of the forms of alpha tubulin in the olfactory bulb of mice lacking Nna1/CCP1 showed the absence of the detyrosinylated form in the mitral cells. Taken together, these results are consistent with a role for Nna1/CCP1 and the related CCPs in the processing of tubulin.
Collapse
Affiliation(s)
- Elena Kalinina
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
15
|
Fricker LD, Lim J, Pan H, Che FY. Peptidomics: identification and quantification of endogenous peptides in neuroendocrine tissues. MASS SPECTROMETRY REVIEWS 2006; 25:327-44. [PMID: 16404746 DOI: 10.1002/mas.20079] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Neuropeptides perform a large variety of functions as intercellular signaling molecules. While most proteomic studies involve digestion of the proteins with trypsin or other proteases, peptidomics studies usually analyze the native peptide forms. Neuropeptides can be studied by using mass spectrometry for identification and quantitation. In many cases, mass spectrometry provides an understanding of the precise molecular form of the native peptide, including post-translational cleavages and other modifications. Quantitative peptidomics studies generally use differential isotopic tags to label two sets of extracted peptides, as done with proteomic studies, except that the Cys-based reagents typically used for quantitation of proteins are not suitable because most peptides lack Cys residues. Instead, a number of amine-specific labels have been created and some of these are useful for peptide quantitation by mass spectrometry. In this review, peptidomics techniques are discussed along with the major findings of many recent studies and future directions for the field.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | |
Collapse
|
16
|
Lim J, Berezniuk I, Che FY, Parikh R, Biswas R, Pan H, Fricker LD. Altered neuropeptide processing in prefrontal cortex of Cpefat/fat mice: implications for neuropeptide discovery. J Neurochem 2006; 96:1169-81. [PMID: 16417576 DOI: 10.1111/j.1471-4159.2005.03614.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biosynthesis of most neuropeptides and peptide hormones requires a carboxypeptidase such as carboxypeptidase E, which is inactive in Cpe(fat/fat) mice due to a naturally occurring point mutation. To assess the role of carboxypeptidase E in the processing of peptides in the prefrontal cortex, we used a quantitative peptidomics approach to examine the relative levels of peptides in Cpe(fat/fat) versus wild-type mice. Peptides representing internal fragments of prohormones and other secretory pathway proteins were decreased two- to 10-fold in the Cpe(fat/fat) mouse prefrontal cortex compared with wild-type tissue. Degradation fragments of cytosolic proteins showed no major differences between Cpe(fat/fat) and wild-type mice. Based on this observation, a search strategy for neuropeptides was performed by screening for peptides that decreased in the Cpe(fat/fat) mouse. Altogether, 32 peptides were identified, of which seven have not been previously reported. The novel peptides include fragments of VGF, procholecystokinin and prohormone convertase 2. Interestingly, several of the peptides do not fit with the consensus sites for prohormone convertase 1 and 2, raising the possibility that another endopeptidase is involved with their biosynthesis. Taken together, these findings support the proposal that carboxypeptidase E is the major, but not the only, peptide-processing carboxypeptidase and also demonstrate the feasibility of searching for novel peptides based on their decrease in Cpe(fat/fat) mice.
Collapse
Affiliation(s)
- Jihyeon Lim
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Neuropeptides serve many important roles in communication between cells and are an attractive target for drug discovery. Neuropeptides are produced from precursor proteins by selective cleavages at specific sites, and are then broken down by further cleavages. In general, the biosynthetic cleavages occur within the cell and the degradative cleavages occur postsecretion, although there are exceptions where intracellular processing leads to inactivation, or extracellular processing leads to activation of a particular neuropeptide. A relatively small number of peptidases are responsible for processing the majority of neuropeptides, both inside and outside of the cell. Thus, inhibition of any one enzyme will lead to a broad effect on several different neuropeptides and this makes it unlikely that such inhibitors would be useful therapeutics. However, studies with mutant animals that lack functional peptide-processing enzymes have facilitated the discovery of novel neuropeptides, many of which may be appropriate targets for therapeutics.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|