1
|
Hegde S, Nizam A, Lakshmaiah VV, Naga Sahithi BV, Nagella P, Krishna SBN. Green synthesis of palladium nanoparticles from Polyalthia longifolia leaves and Evaluation of its catalytic and antibacterial Activities. INORG CHEM COMMUN 2025; 178:114585. [DOI: 10.1016/j.inoche.2025.114585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
2
|
Bouttier-Figueroa DC, Loreto-Romero MA, Roldan MA, González-Gutiérrez FH, Cortez-Valadez M, Flores-Acosta M, Robles-Zepeda RE. Green synthesis of gold nanoparticles via Moringa oleifera seed extract: antioxidant, antibacterial and anticarcinogenic activity on lung cancer. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:231-240. [PMID: 38881214 DOI: 10.1080/10934529.2024.2366736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Plant-mediated biosynthesis of nanoparticles is a green method that allows synthesis in one-pot process. Synthesis of gold nanoparticles with plant extracts has gained interest in the field of biomedicine due to its variety of applications. This study presents the synthesis via green chemistry of gold nanoparticles (AuNPs) using the methanol extract of Moringa oleifera seeds. The AuNPs were synthesized at room temperature. UV-Vis spectroscopy confirmed the formation of AuNPs by identifying the surface plasmon resonance located at 546 nm. TEM analysis shows spherical nanoparticles. FTIR analysis demonstrated the presence of specific bioactive molecules responsible for the Au3+ ion reduction process. The antioxidant activity of the nanoparticles was evaluated on the stabilization of the DPPH radical (1,1-diphenyl-2-picrylhydrazyl, 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl). The antimicrobial activity analysis was developed by broth microdilution method at different concentrations against Escherichia coli and Staphylococcus aureus. Minimum inhibitory concentration were 400 µg/mL and 200 µg/mL, respectively. A549 lung cancer cell proliferation was measured according to the MTT protocol, indicating a dose-dependent response and a IC50 of 163.9 ± 13.27 µg/mL. The AuNPs synthesized using M. oleifera seeds showed promise as active materials for antimicrobial or anticancer products.
Collapse
Affiliation(s)
- D C Bouttier-Figueroa
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Calle Rosales y Blvd. Luis Encinas S/N, Hermosillo, México
| | - M A Loreto-Romero
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Calle Rosales y Blvd. Luis Encinas S/N, Hermosillo, México
| | - Manuel A Roldan
- Eyring Materials Center, Arizona State University, Tempe, AZ, USA
| | - F H González-Gutiérrez
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Calle Rosales y Blvd. Luis Encinas S/N, Hermosillo, México
| | - M Cortez-Valadez
- CONAHCYT-Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, México
| | - M Flores-Acosta
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, México
| | - R E Robles-Zepeda
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Calle Rosales y Blvd. Luis Encinas S/N, Hermosillo, México
| |
Collapse
|
3
|
Alqarni LS, Alghamdi MD, Alshahrani AA, Alotaibi NF, Moustafa SMN, Ashammari K, Alruwaili IA, Nassar AM. Photocatalytic Degradation of Rhodamine-B and Water Densification via Eco-Friendly Synthesized Cr 2O 3 and Ag@Cr 2O 3 Using Garlic Peel Aqueous Extract. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:289. [PMID: 38334561 PMCID: PMC10857512 DOI: 10.3390/nano14030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
The purification and densification of wastewater play an important role in water recycling, especially if the materials used in water recycling are other types of recycled waste. Therefore, considering this view in this study, the biosynthesis of silver-decorated chromium oxide nanoparticles utilizing a wasted Allium sativum (garlic) peel extract is investigated. The aqueous extract of garlic peel (GPE) was treated with silver nitrate, chromium nitrate, and a mixture of silver nitrate and chromium nitrate to synthesize silver nanoparticles (Ag-garlic), chromium oxide nanoparticles (Cr2O3-garlic), and silver-decorated chromium oxide nanoparticles (Ag@Cr2O3-garlic), respectively. The synthesized nanoparticles were elucidated via thermal gravimetric analysis (TGA), infrared spectra (FT-IR), absorption spectra (UV-Vis), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Antimicrobial activity studies were conducted against waterborne germs, bacterial strains (Bacillus subtilis, Enterococcus faecium, Escherichia coli, and Pseudomonas aeruginosa), and fungal strains (Alternaria porri, Aspergillus flavus, Aspergillus niger, Fuserium oxysporum, and Trichoderma longibrachiatum) and showed significant levels of antimicrobial activity. The results revealed that Ag@Cr2O3 significantly improved antimicrobial activity due to their synergistic effect. The photocatalytic activity of nanoparticles was assessed using Rhodamine B dye (5 ppm) under solar irradiation. Cr2O3-garlic exhibited the best activity as a photocatalyst among the studied nanoparticles, with 97.5% degradation efficiency under optimal conditions.
Collapse
Affiliation(s)
- Laila S. Alqarni
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia;
| | - Maha D. Alghamdi
- Department of Chemistry, Faculty of Science, Al-Baha University, P.O. Box 1988, Al-Baha 65799, Saudi Arabia; (M.D.A.); (A.A.A.)
| | - Aisha A. Alshahrani
- Department of Chemistry, Faculty of Science, Al-Baha University, P.O. Box 1988, Al-Baha 65799, Saudi Arabia; (M.D.A.); (A.A.A.)
| | - Nasser F. Alotaibi
- Chemistry Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia; (N.F.A.); (I.A.A.)
| | | | - Khulaif Ashammari
- Physics Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia;
| | - Ibtihal A. Alruwaili
- Chemistry Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia; (N.F.A.); (I.A.A.)
| | - Amr Mohammad Nassar
- Chemistry Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia; (N.F.A.); (I.A.A.)
| |
Collapse
|
4
|
Keypour H, Kouhdareh J, Karimi-Nami R, Karakaya I, Abdollahi-Moghadam M, Rabiei K, Alavinia S. Facile synthesis of a new covalent organic nanosheet (CON-KEY1) based on polyamide links as an effective heterogeneous catalyst in C-C cross coupling reactions. RSC Adv 2023; 13:28686-28702. [PMID: 37790095 PMCID: PMC10542850 DOI: 10.1039/d3ra05664c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/23/2023] [Indexed: 10/05/2023] Open
Abstract
C-C coupling reactions represent a fundamental synthetic methodology widely employed in academic and industrial settings. Herein, we present a report on developing and synthesizing a heterogeneous catalyst that is environmentally compatible and has recycling capabilities. Furthermore, the utilization of this catalyst for C-C coupling reactions was explored. A novel amide-based CON was prepared via the reaction of a novel [2,2'-bipyridine]-5,5'-diamine (BDA) and 1,3,5-tris(4-carboxyphenyl) (TCB). TCB was activated with carbonyl diimidazole (CDI) and then reacted with BDA to synthesize favorable CON (i.e., CON-KEY1). Finally, the CON synthesized was reacted with palladium chloride ions, and the palladium-containing organocatalytic complex was decorated with the abbreviated Pd/CON-KEY1. This new heterogeneous complex was fully characterized through the required techniques, including FT-IR, EDX, XRD, TEM, SEM, ICP, TGA-DTA, N2 isotherms, and elemental mapping analysis. Computer simulation results include a multi-sheet 2D framework proposed by CON-KEY1. As a result, palladium ions were found to be arranged between the layers and on the CON surface. This heterogeneous complex functioned as a catalyst precursor in both the Suzuki-Miyaura coupling reaction of aryl boronic acids with aryl halides and the Heck reaction of aryl halides with acrylate derivatives or styrene. The desired coupling products with various functional groups were successfully attained with excellent yields of up to 98%. Simple set-up, improved yields, short reaction times, non-toxic solvents, catalyst durability, and high turnover frequency are among the distinct advantages of this synthetic method. Some other outstanding features of this catalytic system include convenient separation of catalysts and products, high yields, almost complete conversion, high selectivity, and good turnover frequency (TOF). The results show that the highest product efficiency in the reaction was achieved in the shortest possible time using Pd/CON-KEY1. Theoretical studies demonstrated the precedence of the palladium complexation with nitrogen atoms of CON-KEY1 rather than oxygen ones. Natural Bond Orbital (NBO) analysis affirmed that the system with Pd-N bonds (Eg = 0.089 eV) is more reactive with high electron conductivity compared to the Pd-O system (Eg = 0.120 eV).
Collapse
Affiliation(s)
- Hassan Keypour
- Faculty of Chemistry, Bu-Ali Sina University Hamedan 65174 Iran
| | - Jamal Kouhdareh
- Faculty of Chemistry, Bu-Ali Sina University Hamedan 65174 Iran
| | - Rahman Karimi-Nami
- Department of Chemistry, Faculty of Science, University of Maragheh Maragheh Iran
| | - Idris Karakaya
- Department of Chemistry, College of Basic Sciences, Gebze Technical University 41400 Gebze Turkey
| | | | - Khadijeh Rabiei
- Department of Chemistry, Faculty of Science, Qom University of Technology Qom Iran
| | | |
Collapse
|
5
|
Raza MA, Kanwal Z, Riaz S, Amjad M, Rasool S, Naseem S, Abbas N, Ahmad N, Alomar SY. In-Vivo Bactericidal Potential of Mangifera indica Mediated Silver Nanoparticles against Aeromonas hydrophila in Cirrhinus mrigala. Biomedicines 2023; 11:2272. [PMID: 37626768 PMCID: PMC10452189 DOI: 10.3390/biomedicines11082272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The present study reports the green synthesis of silver nanoparticles from leaves' extract of Mangifera indica (M. indica) and their antibacterial efficacy against Aeromonas hydrophila (A. hydrophila) in Cirrhinus mrigala (C. mrigala). The prepared M. indica mediated silver nanoparticles (Mi-AgNPs) were found to be polycrystalline in nature, spherical in shapes with average size of 62 ± 13 nm. C. mrigala (n = ±15/group) were divided into six groups i.e., G1: control, G2: A. hydrophila challenged, G3: A. hydrophila challenged + Mi-AgNPs (0.01 mg/L), G4: A. hydrophila challenged + Mi-AgNPs (0.05 mg/L), G5: A. hydrophila challenged + Mi-AgNPs (0.1 mg/L) and G6: A. hydrophila challenged + M. indica extract (0.1 mg/L). Serum biochemical, hematological, histological and oxidative biomarkers were evaluated after 15 days of treatment. The liver enzyme activities, serum proteins, hematological parameters and oxidative stress markers were found to be altered in the challenged fish but showed retrieval effects with Mi-AgNPs treatment. The histological analysis of liver, gills and kidney of the challenged fish also showed regaining effects following Mi-AgNPs treatment. A CFU assay from muscle tissue provided quantitative data that Mi-AgNPs can hinder the bacterial proliferation in challenged fish. The findings of this work suggest that M. indica based silver nanoparticles can be promising candidates for the control and treatment of microbial infections in aquaculture.
Collapse
Affiliation(s)
- Muhammad Akram Raza
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan; (S.R.); (S.R.); (S.N.)
| | - Zakia Kanwal
- Department of Zoology, Lahore College for Women University, Jail Road, Lahore 54000, Pakistan;
| | - Saira Riaz
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan; (S.R.); (S.R.); (S.N.)
| | - Maira Amjad
- Department of Physics, Clarkson University, Potsdam, NY 13699, USA;
| | - Shafqat Rasool
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan; (S.R.); (S.R.); (S.N.)
| | - Shahzad Naseem
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan; (S.R.); (S.R.); (S.N.)
| | - Nadeem Abbas
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, UK;
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Suliman Yousef Alomar
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Nikolova MP, Joshi PB, Chavali MS. Updates on Biogenic Metallic and Metal Oxide Nanoparticles: Therapy, Drug Delivery and Cytotoxicity. Pharmaceutics 2023; 15:1650. [PMID: 37376098 PMCID: PMC10301310 DOI: 10.3390/pharmaceutics15061650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The ambition to combat the issues affecting the environment and human health triggers the development of biosynthesis that incorporates the production of natural compounds by living organisms via eco-friendly nano assembly. Biosynthesized nanoparticles (NPs) have various pharmaceutical applications, such as tumoricidal, anti-inflammatory, antimicrobials, antiviral, etc. When combined, bio-nanotechnology and drug delivery give rise to the development of various pharmaceutics with site-specific biomedical applications. In this review, we have attempted to summarize in brief the types of renewable biological systems used for the biosynthesis of metallic and metal oxide NPs and the vital contribution of biogenic NPs as pharmaceutics and drug carriers simultaneously. The biosystem used for nano assembly further affects the morphology, size, shape, and structure of the produced nanomaterial. The toxicity of the biogenic NPs, because of their pharmacokinetic behavior in vitro and in vivo, is also discussed, together with some recent achievements towards enhanced biocompatibility, bioavailability, and reduced side effects. Because of the large biodiversity, the potential biomedical application of metal NPs produced via natural extracts in biogenic nanomedicine is yet to be explored.
Collapse
Affiliation(s)
- Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str., 7017 Ruse, Bulgaria
| | - Payal B. Joshi
- Shefali Research Laboratories, 203/454, Sai Section, Ambernath (East), Mumbai 421501, Maharashtra, India;
| | - Murthy S. Chavali
- Office of the Dean (Research), Dr. Vishwanath Karad MIT World Peace University (MIT-WPU), Kothrud, Pune 411038, Maharashtra, India;
| |
Collapse
|
7
|
Dhumal K, Dateer R, Mali A. Recent Catalytic Advancements in Organic Transformations Using Biogenically Synthesized Palladium Nanoparticles. Catal Letters 2023. [DOI: 10.1007/s10562-022-04258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Yaduvanshi N, Jaiswal S, Tewari S, Shukla S, Mohammad Wabaidur S, Dwivedi J, Sharma S. Palladium Nanoparticles and their Composites: Green Synthesis and Applications with Special Emphasis to Organic Transformations. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
9
|
Post-synthetic modification of dual-porous UMCM-1-NH2 with palladacycle complex as an effective heterogeneous catalyst in Suzuki and Heck coupling reactions. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
10
|
Gangwar C, Yaseen B, Kumar I, Nayak R, Sarkar J, Baker A, Kumar A, Ojha H, Kumar Singh N, Mohan Naik R. Nano palladium/palladium oxide formulation using Ricinus communis plant leaves for antioxidant and cytotoxic activities. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Moges A, Goud VV. Optimization, characterization, and evaluation of antioxidant and antibacterial activities of silver nanoparticles synthesized from Hippophae salicifolia D. Don. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Joudeh N, Saragliadis A, Koster G, Mikheenko P, Linke D. Synthesis methods and applications of palladium nanoparticles: A review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1062608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Palladium (Pd) is a key component of many catalysts. Nanoparticles (NPs) offer a larger surface area than bulk materials, and with Pd cost increasing 5-fold in the last 10 years, Pd NPs are in increasing demand. Due to novel or enhanced physicochemical properties that Pd NPs exhibit at the nanoscale, Pd NPs have a wide range of applications not only in chemical catalysis, but also for example in hydrogen sensing and storage, and in medicine in photothermal, antibacterial, and anticancer therapies. Pd NPs, on the industrial scale, are currently synthesized using various chemical and physical methods. The physical methods require energy-intensive processes that include maintaining high temperatures and/or pressure. The chemical methods usually involve harmful solvents, hazardous reducing or stabilizing agents, or produce toxic pollutants and by-products. Lately, more environmentally friendly approaches for the synthesis of Pd NPs have emerged. These new approaches are based on the use of the reducing ability of phytochemicals and other biomolecules to chemically reduce Pd ions and form NPs. In this review, we describe the common physical and chemical methods used for the synthesis of Pd NPs and compare them to the plant- and bacteria-mediated biogenic synthesis methods. As size and shape determine many of the unique properties of Pd NPs on the nanoscale, special emphasis is given to the control of these parameters, clarifying how they impact current and future applications of this exciting nanomaterial.
Collapse
|
13
|
Farhang M, Akbarzadeh AR, Rabbani M, Ghadiri AM. A retrospective-prospective review of Suzuki–Miyaura reaction: From cross-coupling reaction to pharmaceutical industry applications. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Rubus ellipticus fruits extract-mediated cuprous oxide nanoparticles: in vitro antioxidant, antimicrobial, and toxicity study. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Rasool S, Tayyeb A, Raza MA, Ashfaq H, Perveen S, Kanwal Z, Riaz S, Naseem S, Abbas N, Ahmad N, Alomar SY. Citrullus colocynthis-Mediated Green Synthesis of Silver Nanoparticles and Their Antiproliferative Action against Breast Cancer Cells and Bactericidal Roles against Human Pathogens. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3781. [PMID: 36364557 PMCID: PMC9658276 DOI: 10.3390/nano12213781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/12/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The present study investigated the biomedical potential of eco-friendly Citrullus colocynthis-mediated silver nanoparticles (Cc-AgNPs). The antibacterial efficacy of Cc-AgNPs was evaluated against two multidrug-resistant pathogenic bacterial strains, Escherichia coli and Pseudomonas aeruginosa. The antiproliferative and antilipidemic performance of the prepared particles was determined against the MCF7 cell line, a breast cancer cell line. The in vitro antibacterial assay revealed that Cc-AgNPs induced dose-dependent bactericidal activity, as a considerable increase in the zone of inhibition (ZOI) was noted at higher concentrations. Reduced proliferation, migration, spheroid size, and colony formation exhibited the substantial antiproliferative potential of Cc-AgNPs against MCF7 cells. Significant alterations in the expression of cell surface markers, apoptosis, and cell proliferation genes further confirmed the antiproliferative impact of Cc-AgNPs. Moreover, Cc-AgNPs exhibited antilipidemic activity by reducing cellular cholesterol and triglyceride levels and regulating key genes involved in lipogenesis. In conclusion, these results propose that Cc-AgNPs can be employed as a potent tool for future antibacterial and anticancer applications.
Collapse
Affiliation(s)
- Shafqat Rasool
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan
| | - Asima Tayyeb
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Akram Raza
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan
| | - Hanfa Ashfaq
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Sadia Perveen
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Zakia Kanwal
- Department of Zoology, Lahore College for Women University, Jail Road, Lahore 54000, Pakistan
| | - Saira Riaz
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan
| | - Shahzad Naseem
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan
| | - Nadeem Abbas
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Suliman Yousef Alomar
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Oladeji AV, Courtney JM, Fernandez-Villamarin M, Rees NV. Electrochemical Metal Recycling: Recovery of Palladium from Solution and In Situ Fabrication of Palladium-Carbon Catalysts via Impact Electrochemistry. J Am Chem Soc 2022; 144:18562-18574. [PMID: 36179328 PMCID: PMC9562286 DOI: 10.1021/jacs.2c08239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Recycling of critical materials, regeneration of waste,
and responsible
catalyst manufacture have been repeatedly documented as essential
for a sustainable future with respect to the environment and energy
production. Electrochemical methods have become increasingly recognized
as capable of achieving these goals, and “impact” electrochemistry,
with the advantages associated with dynamic nanoelectrodes, has recently
emerged as a prime candidate for the recovery of metals from solution.
In this report, the nanoimpact technique is used to generate carbon-supported
palladium catalysts from low-concentration palladium(II) chloride
solutions (i.e., a waste stream mimic) as a proof of concept. Subsequently,
the catalytic properties of this material in both synthesis (Suzuki
coupling reaction) and electrocatalysis (hydrogen evolution) are demonstrated.
Transient reductive impact signals are shown and analyzed at potentials
negative of +0.4 V (vs SCE) corresponding to the onset of palladium
deposition in traditional voltammetry. Direct evidence of Pd modification
was obtained through characterization by environmental scanning electron
microscopy/energy-dispersive X-ray spectroscopy, inductively coupled
plasma mass spectrometry, X-ray photoelectron spectroscopy, transmission
electron microscopy, and thermogravimetric analysis of impacted particles.
This showed the formation of deposits of Pd0 partially covering the
50 nm carbon black particles with approximately 14% Pd (wt %) under
the conditions used. This material was then used to demonstrate the
conversion of iodobenzene into its biphenyl product (confirmed through
nuclear magnetic resonance) and the successful production of hydrogen
as an electrocatalyst under acidic conditions (under cyclic voltammetry).
Collapse
Affiliation(s)
- Abiola V Oladeji
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U. K
| | - James M Courtney
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U. K
| | | | - Neil V Rees
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U. K
| |
Collapse
|
17
|
Mizoroki–Heck coupling: a novel approach for synthesis of (E)-1-(3-argioallyl)indoline-2,3-dione. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02978-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Green Synthesis of Trimetallic Nanocomposite (Ru/Ag/Pd)-Np and Its In Vitro Antimicrobial and Anticancer Activities. J CHEM-NY 2022. [DOI: 10.1155/2022/4593086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, we used the aqueous extract of garlic tunicate leaf to reduce a mixture of equal amounts of ruthenium chloride, silver nitrate, and palladium acetate for the biosynthesis of ruthenium/silver/palladium trimetallic nanocomposite (Ru/Ag/Pd)-Np. Some physicochemical tools were used for nanocomposite characterization, including Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), UV-Vis spectroscopy (UV-Vis), scanning electron microscope (SEM), and transmittance electron microscope (TEM). XRD revealed that the crystal size of the nanocomposite is 15.67 nm. The TEM images showed that the particle size ranged 50–90 nm. The antimicrobial efficacy of the nanocomposite was examined against Aspergillus flavus, Aspergillus niger, Candida albicans, Candida glabrata, Escherichia coli, and Bacillus cereus. The results showed a potent antimicrobial activity toward all tested microorganisms. (Ru/Ag/Pd)-Np showed antiproliferative activity against Caco-2, HepG2, and K562 cell lines. The antiproliferative potential of (Ru/Ag/Pd)-Np was significantly improved following UV irradiation.
Collapse
|
19
|
Morales Santos FJ, Piñón Castillo HA, QuinteroRamos A, Zaragoza Galán G, Duran R, Orrantia Borunda E. Comparison of catalytic activity and antimicrobial properties of palladium nanoparticles obtained by Aloe barbadensis and Glycine max extracts, and chemical synthesis. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Bahadur Singh K, Gautam N, Upadhyay DD, Abbas G, Rizvi M, Pandey G. Morphology Controlled Biogenic Fabrication Of Metal/Metal Oxide Nanostructures Using Plant Extract And Their Application In Organic Transformations. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Nguyen NTT, Nguyen LM, Nguyen TTT, Liew RK, Nguyen DTC, Tran TV. Recent advances on botanical biosynthesis of nanoparticles for catalytic, water treatment and agricultural applications: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154160. [PMID: 35231528 DOI: 10.1016/j.scitotenv.2022.154160] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Green synthesis of nanoparticles using plant extracts minimizes the usage of toxic chemicals or energy. Here, we concentrate on the green synthesis of nanoparticles using natural compounds from plant extracts and their applications in catalysis, water treatment and agriculture. Polyphenols, flavonoid, rutin, quercetin, myricetin, kaempferol, coumarin, and gallic acid in the plant extracts engage in the reduction and stabilization of green nanoparticles. Ten types of nanoparticles involving Ag, Au, Cu, Pt, CuO, ZnO, MgO, TiO2, Fe3O4, and ZrO2 with emphasis on their formation mechanism are illuminated. We find that green nanoparticles serve as excellent, and recyclable catalysts for reduction of nitrophenols and synthesis of organic compounds with high yields of 83-100% and at least 5 recycles. Many emerging pollutants such as synthetic dyes, antibiotics, heavy metal and oils are effectively mitigated (90-100%) using green nanoparticles. In agriculture, green nanoparticles efficiently immobilize toxic compounds in soil. They are also sufficient nanopesticides to kill harmful larvae, and nanoinsecticides against dangerous vectors of pathogens. As potential nanofertilizers and nanoagrochemicals, green nanoparticles will open a revolution in green agriculture for sustainable development.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Luan Minh Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Rock Keey Liew
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; NV WESTERN PLT, No. 208B, Jalan Macalister, Georgetown 10400, Pulau Pinang, Malaysia
| | - Duyen Thi Cam Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|
22
|
Moradi P, Hajjami M. Stabilization of ruthenium on biochar-nickel magnetic nanoparticles as a heterogeneous, practical, selective, and reusable nanocatalyst for the Suzuki C-C coupling reaction in water. RSC Adv 2022; 12:13523-13534. [PMID: 35520120 PMCID: PMC9067317 DOI: 10.1039/d1ra09350a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/15/2022] [Indexed: 01/12/2023] Open
Abstract
Waste recycling and the use of recyclable and available catalysts are important principles in green chemistry in science and industrial research. Therefore in this study, biochar nanoparticles were prepared from biomass pyrolysis. Then, they were magnetized with nickel nanoparticles to improve their recycling. Further, the magnetic biochar nanoparticles (biochar-Ni MNPs) were modified by dithizone ligand and then applied for the fabrication of a ruthenium catalyst (Ru-dithizone@biochar-Ni MNPs). This nanocatalyst was characterized by high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), wavelength dispersive X-ray spectroscopy (WDX), N2 adsorption-desorption isotherms, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM) techniques. The XRD studies of Ru in the nanocatalyst showed that the crystalline structure of ruthenium in the Ru-dithizone@biochar-Ni MNPs was hcp. Another principle of green chemistry is the use of safe and inexpensive solvents, the most suitable of which is water. Therefore, the catalytic activity of this catalyst was investigated as a practical, selective, and recyclable nanocatalyst in the Suzuki carbon-carbon coupling reaction in aqueous media. The VSM curve of this catalyst showed that it could be easily recovered using an external magnet, and recycled multiple times. Also, VSM analysis of the recovered catalyst indicated the good magnetic stability of this catalyst after repeated use.
Collapse
Affiliation(s)
- Parisa Moradi
- Department of Chemistry, Faculty of Science, Ilam University P. O. Box 69315516 Ilam Iran
| | - Maryam Hajjami
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University 6517838683 Hamedan Iran
| |
Collapse
|
23
|
Li Z, Song E, Ren R, Zhao W, Li T, Liu M, Wu Y. Pd-Pd/PdO as active sites on intercalated graphene oxide modified by diaminobenzene: fabrication, catalysis properties, synergistic effects, and catalytic mechanism. RSC Adv 2022; 12:8600-8610. [PMID: 35424835 PMCID: PMC8984910 DOI: 10.1039/d2ra00658h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
Pd-Pd/PdO nanoclusters well dispersed on intercalated graphene oxide (GO) (denoted as GO@PPD-Pd) were prepared and characterized. GO@PPD-Pd exhibited high catalytic activity (a TOF value of 60 705 h-1) during the Suzuki coupling reaction, and it could be reused at least 6 times. The real active centre was Pd(200)-Pd(200)/PdO(110, 102). A change in the Pd facets on the surface of PdO was a key factor leading to deactivation, and the aggregation and loss of active centres was also another important reason. The catalytic mechanism involved heterogeneous catalysis, showing that the catalytic processes occurred at the interface, including substrate adsorption, intermediate formation, and product desorption. The real active centres showed enhanced negative charge due to the transfer of electrons from the carrier and ligands, which could effectively promote the oxidative addition reaction, and Pd(200) and the heteroconjugated Pd/PdO interface generated in situ also participated in the coupling process, synergistically boosting activity. Developed GO@PPD-Pd was a viable heterogeneous catalyst that may have practical applications owing to its easy synthesis and stability, and this synergistic approach can be utilized to develop other transition-metal catalysts.
Collapse
Affiliation(s)
- Zihan Li
- College of Chemistry and Molecular Engineering, Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China (+)86-371-67766667
| | - Erran Song
- College of Chemistry and Molecular Engineering, Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China (+)86-371-67766667
| | - Ruirui Ren
- College of Chemistry and Molecular Engineering, Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China (+)86-371-67766667
| | - Wuduo Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China (+)86-371-67766667
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering, Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China (+)86-371-67766667
| | - Minghua Liu
- Henan Institute of Advanced Technology, Zhengzhou University Kexuedadao 100 Zhengzhou 450001 Henan Province P. R. China
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
| | - Yangjie Wu
- College of Chemistry and Molecular Engineering, Zhengzhou University Kexuedadao 100 Zhengzhou 450001 P. R. China (+)86-371-67766667
| |
Collapse
|
24
|
Khan F, Shariq M, Asif M, Siddiqui MA, Malan P, Ahmad F. Green Nanotechnology: Plant-Mediated Nanoparticle Synthesis and Application. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:673. [PMID: 35215000 PMCID: PMC8878231 DOI: 10.3390/nano12040673] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 01/09/2023]
Abstract
The key pathways for synthesizing nanoparticles are physical and chemical, usually expensive and possibly hazardous to the environment. In the recent past, the evaluation of green chemistry or biological techniques for synthesizing metal nanoparticles from plant extracts has drawn the attention of many researchers. The literature on the green production of nanoparticles using various metals (i.e., gold, silver, zinc, titanium and palladium) and plant extracts is discussed in this study. The generalized mechanism of nanoparticle synthesis involves reduction, stabilization, nucleation, aggregation and capping, followed by characterization. During biosynthesis, major difficulties often faced in maintaining the structure, size and yield of particles can be solved by monitoring the development parameters such as temperature, pH and reaction period. To establish a widely accepted approach, researchers must first explore the actual process underlying the plant-assisted synthesis of a metal nanoparticle and its action on others. The green synthesis of NPs is gaining attention owing to its facilitation of the development of alternative, sustainable, safer, less toxic and environment-friendly approaches. Thus, green nanotechnology using plant extract opens up new possibilities for the synthesis of novel nanoparticles with the desirable characteristics required for developing biosensors, biomedicine, cosmetics and nano-biotechnology, and in electrochemical, catalytic, antibacterial, electronics, sensing and other applications.
Collapse
Affiliation(s)
- Faryad Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (M.S.); (M.A.S.)
| | - Mohammad Shariq
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (M.S.); (M.A.S.)
| | - Mohd Asif
- Regional Ayurveda Research Institute, CCRAS, Ranikhet 263645, India;
| | - Mansoor Ahmad Siddiqui
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (M.S.); (M.A.S.)
| | - Pieter Malan
- Unit for Environmental Sciences and Management, Mafikeng Campus, North-West University, Mmabatho 2735, South Africa;
| | - Faheem Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (M.S.); (M.A.S.)
| |
Collapse
|
25
|
Green synthesis of palladium nanoparticles and investigation of their catalytic activity for methylene blue, methyl orange and rhodamine B degradation by sodium borohydride. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02185-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Palem RR, Shimoga G, Kim SY, Bathula C, Ghodake GS, Lee SH. Biogenic palladium nanoparticles: An effectual environmental benign catalyst for organic coupling reactions. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Moniriyan F, Sabounchei SJ. A comparative study of catalytic activity on iron‐based carbon nanostructured catalysts with Pd loading: Using the Box–Behnken design (BBD) method in the Suzuki–Miyaura coupling. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Deka JR, Saikia D, Chen PH, Chen KT, Kao HM, Yang YC. N-functionalized mesoporous carbon supported Pd nanoparticles as highly active nanocatalyst for Suzuki-Miyaura reaction, reduction of 4-nitrophenol and hydrodechlorination of chlorobenzene. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Seyedi N, Zahedifar M. Preparation and characterization of new palladium complex immobilized on (chitosan)/PoPD biopolymer and its catalytic application in Suzuki cross‐coupling reaction. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Neda Seyedi
- Department of Chemistry, Faculty of Science University of Jiroft Jiroft Iran
| | - Mahboobeh Zahedifar
- Department of Chemistry, Faculty of Science University of Jiroft Jiroft Iran
| |
Collapse
|
30
|
Qadir A, Jahan S, Aqil M, Warsi MH, Alhakamy NA, Alfaleh MA, Khan N, Ali A. Phytochemical-Based Nano-Pharmacotherapeutics for Management of Burn Wound Healing. Gels 2021; 7:gels7040209. [PMID: 34842674 PMCID: PMC8628765 DOI: 10.3390/gels7040209] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/31/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Medicinal plants have been used since ancient times for their various therapeutic activities and are safer compared to modern medicines, especially when properly identifying and preparing them and choosing an adequate dose administration. The phytochemical compounds present in plants are progressively yielding evidence in modern drug delivery systems by treating various diseases like cancers, coronary heart disease, diabetes, high blood pressure, inflammation, microbial, viral and parasitic infections, psychotic diseases, spasmodic conditions, ulcers, etc. The phytochemical requires a rational approach to deliver the compounds to enhance the efficacy and to improve patients’ compatibility. Nanotechnology is emerging as one of the most promising strategies in disease control. Nano-formulations could target certain parts of the body and control drug release. Different studies report that phytochemical-loaded nano-formulations have been tested successfully both in vitro and in vivo for healing of skin wounds. The use of nano systems as drug carriers may reduce the toxicity and enhance the bioavailability of the incorporated drug. In this review, we focus on various nano-phytomedicines that have been used in treating skin burn wounds, and how both nanotechnology and phytochemicals are effective for treating skin burns.
Collapse
Affiliation(s)
- Abdul Qadir
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (A.Q.); (S.J.); (M.A.)
| | - Samreen Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (A.Q.); (S.J.); (M.A.)
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (A.Q.); (S.J.); (M.A.)
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Al-Haweiah, Taif 21974, Saudi Arabia
- Correspondence: or
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
| | - Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nausheen Khan
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India;
| | - Athar Ali
- Centre for Transgenic Plant Development, Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India;
| |
Collapse
|
31
|
Pattanayak DS, Mishra J, Nanda J, Sahoo PK, Kumar R, Sahoo NK. Photocatalytic degradation of cyanide using polyurethane foam immobilized Fe-TCPP-S-TiO 2-rGO nano-composite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113312. [PMID: 34333311 DOI: 10.1016/j.jenvman.2021.113312] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
An attempt has been made for the treatment of cyanide contaminated wastewater using a S-TiO2@rGO heterogeneous photocatalyst system immobilized on polyurethane foam (PUF) supporting materials. Further, to make the photocatalytic system more efficient and active under visible light, a highly efficient iron porphyrin derivative sensitizer viz. Fe-TCPP was synthesized and employed for cyanide degradation. To investigate the synthesized heterogeneous nano-composite S-TiO2@rGO-FeTCPP photocatalytic system, advanced techniques such as XRD, XPS, FT-IR, PL spectra, UV-vis DRS, FESEM, and EDS were utilized. The photocatalytic performance of the nanocomposite was evaluated in a suspended system and results revealed that about 75% of cyanide degradation was obtained at 100 mg/L of initial cyanide within 2 h. Whereas, at the same condition, more than 91% of cyanide degradation as well as 88% toxicity removal occurred by the PUF immobilized S-TiO2@rGO-FeTCPP solid-state photocatalytic system. First-order kinetics was applied to investigate the degradation of cyanide by the photocatalytic nanocomposite. From the kinetic study, the estimated first-order rate constant (Kf) in a solid-state photocatalytic system of the nanocomposite was 1.7 times superior to that of the suspended system. Further, the rate of photocatalytic activity was nearly 10.8 times greater than that of pure TiO2. This study demonstrated that the immobilized S-TiO2@rGO-FeTCPP photocatalytic system could be an efficient technique for degrading cyanide from industrial effluent.
Collapse
Affiliation(s)
- Dhruti Sundar Pattanayak
- Department of Chemistry, Environmental Science Program, Faculty of Engineering and Technology (ITER), Siksha'O'Anusandhan (Deemed to Be University), Bhubaneswar, 751 030, Odisha, India
| | - Jyoti Mishra
- Department of Chemistry, Environmental Science Program, Faculty of Engineering and Technology (ITER), Siksha'O'Anusandhan (Deemed to Be University), Bhubaneswar, 751 030, Odisha, India
| | - Jyotirmayee Nanda
- Department of Physics, Faculty of Engineering and Technology (ITER), Siksha'O'Anusandhan (Deemed to Be University), Bhubaneswar, 751 030, Odisha, India
| | - Prasanta Kumar Sahoo
- Department of Mechanical Engineering, Faculty of Engineering and Technology (ITER), Siksha'O'Anusandhan (Deemed to Be University), Bhubaneswar, 751 030, Odisha, India
| | - Rahul Kumar
- Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Naresh Kumar Sahoo
- Department of Chemistry, Environmental Science Program, Faculty of Engineering and Technology (ITER), Siksha'O'Anusandhan (Deemed to Be University), Bhubaneswar, 751 030, Odisha, India.
| |
Collapse
|
32
|
Abstract
Among transition metal nanoparticles, palladium nanoparticles (PdNPs) are recognized for their high catalytic activity in a wide range of organic transformations that are of academic and industrial importance. The increased interest in environmental issues has led to the development of various green approaches for the preparation of efficient, low-cost and environmentally sustainable Pd-nanocatalysts. Environmentally friendly solvents, non-toxic reducing reagents, biodegradable capping and stabilizing agents and energy-efficient synthetic methods are the main aspects that have been taken into account for the production of Pd nanoparticles in a green approach. This review provides an overview of the fundamental approaches used for the green synthesis of PdNPs and their catalytic application in sustainable processes as cross-coupling reactions and reductions with particular attention afforded to the recovery and reuse of the palladium nanocatalyst, from 2015 to the present.
Collapse
|
33
|
Manjare SB, Pendhari PD, Badade SM, Thopate SR. Palladium Nanoparticles: Plant Aided Biosynthesis, Characterization, Applications. CHEMISTRY AFRICA 2021. [DOI: 10.1007/s42250-021-00284-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
34
|
Abstract
Metal nanoparticles (MNPs) have been widely used in several fields including catalysis, bioengineering, photoelectricity, antibacterial, anticancer, and medical imaging due to their unique physical and chemical properties. In the traditional synthesis method of MNPs, toxic chemicals are generally used as reducing agents and stabilizing agents, which is fussy to operate and extremely environment unfriendly. Based on this, the development of an environment-friendly synthesis method of MNPs has recently attracted great attention. The use of plant extracts as reductants and stabilizers to synthesize MNPs has the advantages of low cost, environmental friendliness, sustainability, and ease of operation. Besides, the as-synthesized MNPs are nontoxic, more stable, and more uniform in size than the counterparts prepared by the traditional method. Thus, green preparation methods have become a research hotspot in the field of MNPs synthesis. In this review, recent advances in green synthesis of MNPs using plant extracts as reductants and stabilizers have been systematically summarized. In addition, the insights into the potential applications and future development for MNPs prepared by using plant extracts have been provided.
Collapse
|
35
|
Moradi P, Hajjami M. Magnetization of graphene oxide nanosheets using nickel magnetic nanoparticles as a novel support for the fabrication of copper as a practical, selective, and reusable nanocatalyst in C-C and C-O coupling reactions. RSC Adv 2021; 11:25867-25879. [PMID: 35479448 PMCID: PMC9037157 DOI: 10.1039/d1ra03578a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/08/2021] [Indexed: 01/14/2023] Open
Abstract
Catalyst species are an important class of materials in chemistry, industry, medicine, and biotechnology. Moreover, waste recycling is an important process in green chemistry and is economically efficient. Herein, magnetic graphene oxide was synthesized using nickel magnetic nanoparticles and further applied as a novel support for the fabrication of a copper catalyst. The catalytic activity of supported copper on magnetic graphene oxide (Cu–ninhydrin@GO–Ni MNPs) was investigated as a selective, practical, and reusable nanocatalyst in the synthesis of diaryl ethers and biphenyls. Some of the obtained products were identified by NMR spectroscopy. This nanocatalyst has been characterized by atomic absorption spectroscopy (AAS), scanning electron microscopy (SEM), wavelength dispersive X-ray spectroscopy (WDX), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) techniques. The results obtained from SEM shown that this catalyst has a nanosheet structure. Also, XRD and FT-IR analysis show that the structure of graphene oxide and nickel magnetic nanoparticles is stable during the modification of the nanoparticles and synthesis of the catalyst. The VSM curve of the catalyst shows that this catalyst can be recovered using an external magnet; therefore, it can be reused several times without a significant loss of its catalytic efficiency. The heterogeneity and stability of this nanocatalyst during organic reactions was confirmed by the hot filtration test and AAS technique. Catalytic activity of supported copper on magnetic graphene oxide was investigated as a selective and reusable nanocatalyst in the synthesis of diaryl ethers and biphenyls.![]()
Collapse
Affiliation(s)
- Parisa Moradi
- Department of Chemistry, Faculty of Science, Ilam University P. O. Box 69315516 Ilam Iran
| | - Maryam Hajjami
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University 6517838683 Hamedan Iran
| |
Collapse
|
36
|
Abstract
The past decade has witnessed a phenomenal rise in nanotechnology research due to its broad range of applications in diverse fields including food safety, transportation, sustainable energy, environmental science, catalysis, and medicine. The distinctive properties of nanomaterials (nano-sized particles in the range of 1 to 100 nm) make them uniquely suitable for such wide range of functions. The nanoparticles when manufactured using green synthesis methods are especially desirable being devoid of harsh operating conditions (high temperature and pressure), hazardous chemicals, or addition of external stabilizing or capping agents. Numerous plants and microorganisms are being experimented upon for an eco–friendly, cost–effective, and biologically safe process optimization. This review provides a comprehensive overview on the green synthesis of metallic NPs using plants and microorganisms, factors affecting the synthesis, and characterization of synthesized NPs. The potential applications of metal NPs in various sectors have also been highlighted along with the major challenges involved with respect to toxicity and translational research.
Collapse
|
37
|
Kyriakoudi A, Spanidi E, Mourtzinos I, Gardikis K. Innovative Delivery Systems Loaded with Plant Bioactive Ingredients: Formulation Approaches and Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:1238. [PMID: 34207139 PMCID: PMC8234206 DOI: 10.3390/plants10061238] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
Plants constitute a rich source of diverse classes of valuable phytochemicals (e.g., phenolic acids, flavonoids, carotenoids, alkaloids) with proven biological activity (e.g., antioxidant, anti-inflammatory, antimicrobial, etc.). However, factors such as low stability, poor solubility and bioavailability limit their food, cosmetics and pharmaceutical applications. In this regard, a wide range of delivery systems have been developed to increase the stability of plant-derived bioactive compounds upon processing, storage or under gastrointestinal digestion conditions, to enhance their solubility, to mask undesirable flavors as well as to efficiently deliver them to the target tissues where they can exert their biological activity and promote human health. In the present review, the latest advances regarding the design of innovative delivery systems for pure plant bioactive compounds, extracts or essential oils, in order to overcome the above-mentioned challenges, are presented. Moreover, a broad spectrum of applications along with future trends are critically discussed.
Collapse
Affiliation(s)
- Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | - Eleni Spanidi
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece;
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | | |
Collapse
|
38
|
Wang G, Lv K, Chen T, Chen Z, Hu J. Immobilizing of palladium on melamine functionalized magnetic chitosan beads: A versatile catalyst for p-nitrophenol reduction and Suzuki reaction in aqueous medium. Int J Biol Macromol 2021; 184:358-368. [PMID: 34126154 DOI: 10.1016/j.ijbiomac.2021.06.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022]
Abstract
In this study, an environmental-friendly palladium catalyst with high efficiency, magnetic, recoverability, reusability, and excellent stability was prepared and thoroughly characterized by the Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), X-ray diffraction (XRD), Elemental mapping, Thermogravimetric analysis (TGA) and Energy-dispersive X-ray spectroscopy (EDX). Results demonstrates that melamine provides a coordination point on the surface of chitosan microspheres, which provides a platform for the uniform distribution of palladium (II) and combines with palladium (II) firmly to avoid unnecessary leaching of nanoparticles. Besides, Fe3O4/CS-Me@Pd microcapsules exhibited high catalytic performance in reducing p-NP in water at room temperature (150-300 s). This composite was also effective in the Suzuki-Miyaura coupling reaction under mild conditions with high catalytic performance (TON = 3.8 × 104, TOF = 7.6 × 104). Reproducibility experiments also showed that Fe3O4/CS-Me@Pd microcapsules have high recovery efficiency and can work at least six times during these two catalytic reactions. The hot filtration test indicated that the catalyst has heterogeneous nature.
Collapse
Affiliation(s)
- Gongshu Wang
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Kexin Lv
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Tian Chen
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Zhangpei Chen
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China.
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
39
|
|
40
|
Samadi Z, Yaghmaeian K, Mortazavi-Derazkola S, Khosravi R, Nabizadeh R, Alimohammadi M. Facile green synthesis of zero-valent iron nanoparticles using barberry leaf extract (GnZVI@BLE) for photocatalytic reduction of hexavalent chromium. Bioorg Chem 2021; 114:105051. [PMID: 34116265 DOI: 10.1016/j.bioorg.2021.105051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/26/2022]
Abstract
In this study, zero-valent iron (GnZVI) was synthesized using barberry leaf extract (GnZVI@BLE). The physicochemical properties of the final products were characterized by FT-IR, SEM, TEM, and EDS techniques. The results of TEM analysis showed that the obtained iron zero-valent nanoparticles with a diameter between 20 and 40 nm and shell-core structures were successfully synthesized. The results of FT-IR confirmed the presence of various functional groups. The photocatalytic activity of synthesized nanoparticles was investigated by reduction of hexavalent chromium. Laboratory data showed that the presence of GnZVI@BLE as a nanocatalyst in the photocatalytic process could be reduction the hexavalent chromium (Cr (VI)). Photocatalytic data revealed that, when the dosage of nanoparticles was 0.675 g/L, the reduction efficiency of hexavalent chromium was 100%. The kinetics of the reaction follows a pseudo-second-order equation. The constant of reaction rate was 0.4 at pH 2 and 0.5 g/L concentration of GnZVI@BLE.
Collapse
Affiliation(s)
- Zahra Samadi
- Department of Environmental Health Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Yaghmaeian
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sobhan Mortazavi-Derazkola
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Rasoul Khosravi
- Social Determinants of Health Research Center, Department of Environmental Health Engineering, School of Health, Birjand University of Medical Sciences, Birjand, Iran.
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health and Center for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Department of Environmental Health Engineering, School of Public Health and Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Alshammari HM, Aldosari OF, Alotaibi MH, Alotaibi RL, Alhumaimess MS, Morad MH, Adil SF, Shaik MR, Islam MS, Khan M, Alwarthan A. Facile Synthesis and Characterization of Palladium@Carbon Catalyst for the Suzuki-Miyaura and Mizoroki-Heck Coupling Reactions. APPLIED SCIENCES 2021; 11:4822. [DOI: 10.3390/app11114822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Palladium-based carbon catalysts (Pd/C) can be potentially applied as an efficient catalyst for Suzuki–Miyaura and Mizoroki–Heck coupling reactions. Herein, a variety of catalysts of palladium on activated carbon were prepared by varying the content of ‘Pd’ via an in situ reduction method, using hydrogen as a reducing agent. The as-prepared catalysts (0.5 wt % Pd/C, 1 wt % Pd/C, 2 wt % Pd/C and 3 wt % Pd/C) were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Brunauer–Emmett–Teller (BET) analyses. The catalysts were tested as a coupling catalyst for Suzuki–Miyaura coupling reactions involving aryl halides and phenyl boronic acid. The optimization of the catalyst by varying the palladium content on the activated carbon yielded Pd/C catalysts with very high catalytic activity for Suzuki reactions of aryl halides and a Mizoroki–Heck cross-coupling reaction of 4-bromoanisol and acrylic acid in an aqueous medium. A high ‘Pd’ content and uniform ‘Pd’ impregnation significantly affected the activity of the catalysts. The catalytic activity of 3% Pd/C was found to make it a more efficient catalyst when compared with the other synthesized Pd/C catalysts. Furthermore, the catalyst reusability was also tested for Suzuki reactions by repeatedly performing the same reaction using the recovered catalyst. The 3% Pd/C catalyst displayed better reusability even after several reactions.
Collapse
Affiliation(s)
- Hamed M. Alshammari
- Chemistry Department, Faculty of Science, Ha’il University, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Obaid F. Aldosari
- Department of Chemistry, College of Science, Majmaah University, P.O. Box 66, Majmaah 11952, Saudi Arabia
| | - Mohammad Hayal Alotaibi
- National Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Raja L. Alotaibi
- National Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Mosaed S. Alhumaimess
- Chemistry Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72351, Saudi Arabia
| | - Moataz H. Morad
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alwarthan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
42
|
Aabaka SR, Mao J, Lavanya M, Venkateswarlu K, Huang Z, Mao J, Yang X, Lin C. Nanocellulose Supported PdNPs as in situ Formed Nano Catalyst for the Suzuki Coupling Reaction in Aqueous Media: A Green Approach and Waste to Wealth. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
43
|
Dong L, Li R, Wang L, Lan X, Sun H, Zhao Y, Wang L. Green synthesis of platinum nanoclusters using lentinan for sensitively colorimetric detection of glucose. Int J Biol Macromol 2021; 172:289-298. [PMID: 33450341 DOI: 10.1016/j.ijbiomac.2021.01.049] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023]
Abstract
The sensitive colorimetric detection of glucose using nanomaterials has been attracting considerable attention. To improve the detection sensitivity, highly stable lentinan stabilized platinum nanoclusters (Pt-LNT NCs) were prepared, in which lentinan was employed as a mild reductant and stabilizer. The size of platinum nanoclusters (Pt NCs) was only 1.20 ± 0.29 nm. Pt-LNT NCs catalyzed the oxidation of substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2) to produce a blue oxidation product with absorption peak at 652 nm, indicating their peroxidase-like properties. Their enzymatic kinetics followed typical Michaelis-Menten theory. In addition, fluorescence experiments confirmed their ability to efficiently catalyze the decomposition of H2O2 to generate •OH, which resulted in the peroxidase-like mechanism of Pt-LNT NCs. Moreover, a colorimetric method for highly selective and sensitive detection of glucose was established by using Pt-LNT NCs and glucose oxidase. The linear range of glucose detection was 5-1000 μM and the detection limit was 1.79 μM. Finally, this method was further used for detection of glucose in human serum and human urine. The established colorimetric method may promote the development of biological detection and environmental chemistry in the future.
Collapse
Affiliation(s)
- Le Dong
- Key Laboratory of Applied Chemistry, Hebei Key Laboratory of heavy metal deep-remediation in water and resource reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Ruyu Li
- Key Laboratory of Applied Chemistry, Hebei Key Laboratory of heavy metal deep-remediation in water and resource reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Liqiu Wang
- Key Laboratory of Applied Chemistry, Hebei Key Laboratory of heavy metal deep-remediation in water and resource reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xifa Lan
- Department of Neurology, the First Hospital of Qinhuangdao, Qinhuangdao 066000, China.
| | - Haotian Sun
- Ocean NanoTech, LLC, San Diego, CA 92126, USA
| | - Yu Zhao
- Key Laboratory of Applied Chemistry, Hebei Key Laboratory of heavy metal deep-remediation in water and resource reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Longgang Wang
- Key Laboratory of Applied Chemistry, Hebei Key Laboratory of heavy metal deep-remediation in water and resource reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
44
|
Naghipour A, Sayadi M, Sedghi A, Javad Sabounchei S, Babaee H, Notash B. A comparative study of palladium-based coordination compounds with bidentate (N,N, P,P and P,O) ligands; Design, synthesis, X-ray structural, catalytic activity and DFT studies. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Application of biosynthesized metal nanoparticles in electrochemical sensors. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2021. [DOI: 10.2298/jsc200521077d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recently, the development of eco-friendly, cost-effective and reliable methods for synthesis of metal nanoparticles has drawn a considerable attention. The so-called green synthesis, using mild reaction conditions and natural resources as plant extracts and microorganisms, has established as a convenient, sustainable, cheap and environmentally safe approach for synthesis of a wide range of nanomaterials. Over the past decade, biosynthesis is regarded as an important tool for reducing the harmful effects of traditional nanoparticle synthesis methods commonly used in laboratories and industry. This review emphasizes the significance of biosynthesized metal nanoparticles in the field of electrochemical sensing. There is increasing evidence that green synthesis of nanoparticles provides a new direction in designing of cost-effective, highly sensitive and selective electrode-catalysts applicable in food, clinical and environmental analysis. The article is based on 157 references and provided a detailed overview on the main approaches for green synthesis of metal nanoparticles and their applications in designing of electrochemical sensor devices. Important operational characteristics including sensitivity, dynamic range, limit of detection, as well as data on stability and reproducibility of sensors have also been covered.
Collapse
|
46
|
Sadjadi S, Koohestani F. Bentonite with high loading of ionic liquid: A potent non-metallic catalyst for the synthesis of dihydropyrimidinones. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Kiani M, Rabiee N, Bagherzadeh M, Ghadiri AM, Fatahi Y, Dinarvand R, Webster TJ. High-gravity-assisted green synthesis of palladium nanoparticles: the flowering of nanomedicine. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 30:102297. [DOI: 10.1016/j.nano.2020.102297] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/15/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
|
48
|
Wang Z, Bai X. One-pot synthesis of bio-supported Pd nanoparticles by using clove leaf and their catalytic performance for Suzuki coupling reaction. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
49
|
Green mediated synthesis of palladium nanoparticles using aqueous leaf extract of Gymnema sylvestre for catalytic reduction of Cr (VI). SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03663-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
50
|
Boomi P, Ganesan R, Prabu Poorani G, Jegatheeswaran S, Balakumar C, Gurumallesh Prabu H, Anand K, Marimuthu Prabhu N, Jeyakanthan J, Saravanan M. Phyto-Engineered Gold Nanoparticles (AuNPs) with Potential Antibacterial, Antioxidant, and Wound Healing Activities Under in vitro and in vivo Conditions. Int J Nanomedicine 2020; 15:7553-7568. [PMID: 33116487 PMCID: PMC7548233 DOI: 10.2147/ijn.s257499] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background A diabetic ulcer is one of the major causes of illness among diabetic patients that involves severe and intractable complications associated with diabetic wounds. Hence, a suitable wound-healing agent is urgently needed at this juncture. Greener nanotechnology is a very promising and emerging technology currently employed for the development of alternative medicines. Plant-mediated synthesis of metal nanoparticles has been intensively investigated and regarded as an alternative strategy for overcoming various diseases and their secondary complications like microbial infections. Hence, we are interested in developing phyto-engineered gold nanoparticles as useful therapeutic agents for the treatment of infectious diseases and wounds effectively. Methods and Results We have synthesized phyto-engineered gold nanoparticles from the aqueous extract of Acalypha indica and characterized using advanced bio-analytical techniques. The surface plasmon resonance feature and crystalline behavior of gold nanoparticles were revealed by ultraviolet-visible spectroscopy and X-ray diffraction, respectively. High-performance liquid chromatography analysis of the extract demonstrated the presence of different constituents, while major functional groups were interpreted by the Fourier-transform infrared spectroscopy as the various stretching vibrations appeared for important O-H (3443 cm−1), C=O (1644 cm−1) and C-O (1395 cm−1) groups. Scanning electron microscopy, high-resolution transmission electron microscopy results revealed a distribution of spherical and rod-like nanostructures with 20 nm of size. The gold nanoparticle-coated cotton fabric was evaluated for the antibacterial activity against Staphylococcus epidermidis and Escherichia coli bacterial strains which revealed remarkable inhibition at the zone of inhibition of 31 mm diameter against S. epidermidis. Further, antioxidant activity was tested for their free radical scavenging property, and the maximum antioxidant activity of the extract containing gold nanoparticles was found to be 80% at 100 µg/mL. The potent free radical scavenging property of the nanoparticles is observed at IC50 value 16.25 µg/mL. Moreover, in vivo wound-healing activity was carried out using BALB/c mice model with infected diabetic wounds and observed the stained microscopic images at different time intervals (day 2, day 7 and day 15). It was noted that in 15 days, the wound area is completely re-epithelialized due to the presence of different morphologies such as spherical, needle and triangle nanoparticles. The re-epithelialization layer is fully covered by nanoparticles on the wound area and also collagen filled in the scar tissue when compared with the control group. Conclusion The pharmacological evaluation results of the study indicated an encouraging antibacterial and antioxidant activity of the greener synthesized gold nanoparticles tethered with aqueous extract of Acalypha indica. Moreover, we demonstrated enhanced in vivo wound-healing efficiency of the synthesized gold nanoparticles through the animal model. Thus, the outcome of this work revealed that the phyto-engineered gold nanoparticles could be useful for biomedical applications, especially in the development of promising antibacterial and wound-healing agents.
Collapse
Affiliation(s)
- Pandi Boomi
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Ramalingam Ganesan
- Department of Chemistry, Arumugam Seethaiyammal Arts and Science College, Tiruppattur, Tamil Nadu, India
| | | | - Sonamuthu Jegatheeswaran
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | | | - Halliah Gurumallesh Prabu
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Narayanasamy Marimuthu Prabhu
- Disease Control and Prevention Lab, Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Muthupandian Saravanan
- Department of Medical Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health Science, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|